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Abstract
We investigate the self-propulsive motion of a drop contai n%ﬁcive polar field. The drop

demonstrates spontaneous symmetry breaking from a uni orm ientational order into a splay or

bend instability depending on the types of active stress, 1ame1§) contractile or extensile, respec-

tively. We develop the analytical theory of the n@nism this instability, which has been

observed only in numerical simulations. We show that bgthfcontractile and extensile active stress

result in the instability and self-propulsive inK We also discuss asymmetry between contractile
1

and extensile stress, and show that exten$i Nat\estress generates chaotic motion even under a
th

simple model of the polarity field cou ekg
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otion and deformation of the drop.
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Publishihg INTRODUCTION

Cell motility is a fascinating phenomenon in biological systems. Depending on the cell
type, cells may move in a fluid, on a substrate, in a tissue consisting of other cells, or many
other environments [1]. It is evident that this phenomenon is a redult of the complex co-
operation of biomacromolecules and therefore it is difficult to ua{fe and its mechanism.
Nevertheless, simple models may give an insight into the essenti l)pects of the mechanism
responsible for cell motility, and assist in the classificati n\o\ chanism into several
universality classes[2]. This direction of research has bee ith great success, for exam-
ple, for micro-organisms in a fluid, which is describedfby a s mer model[3, 1]. The model
imitates the motion of flagella and cilia on a cell b 0 e ectlve slip boundary on a solid
(but possibly deformable) body, and all the cqm 1t37yf propulsion falls into a functional
form of the effective slip boundary conditi 1a’dynam1cs problem. Despite the rea-
sonable generality of the model, the probl DQ\n@lytlcally tractable for a simple geometry,
and for this reason, extensive studies ha o bectearried out to clarify that it can reproduce
realistic motion near a wall, interacti \1731‘\9 n swimmers, and collective behaviors[5].

The extension of the idea towa m ch more complex motility such as keratocyte or
amoeboid movement on a sub 1n its infancy. Such motility is driven by the activity

of a cytoskeleton, the m cﬁs of*which is controlled by the collective behaviors of actin

filaments and myosin cularymotors. The activity of a cytoskeleton falls into two classes:

(i) actin polymerlz on/and i) contractility of actin filaments mediated by molecular mo-

the surface

tors. The latte rne\ assaﬁed into two sub-categories: (ii-a) contractility on cortex on
N)11 andu(ii-b) contractility in cytosol in the bulk. Recently, several models

have beendproposed to describe each mechanism such as polarity-driven cell motility [6—10]
for (1)
results in bléﬁ)bmg, which is considered as another type of motility [14, 15].

2 ] “and nlotility induced by active stress [11-13] for (ii-b). The surface contractility

ingredients of these models are the field that describes position and shape of

The 15
the'moving cell, and the polarity field that represents orientation and its magnitude of actin

ildments inside the cytoskeleton. In this respect, they are regarded as active hydrodynamics
confined in a drop whose interface is moving by the internal force generated by active
fluid[16]. This combination of the polarity field and free-boundary problem is one of the main

obstacles to analytical treatment. This is, in fact, another motivation for this study, namely,
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Publishiwg vould like to compare the models of cell motility and self-propulsion of a chemically driven
drop[17]. In the latter model, a drop produces or consumes a concentration field such as
surfactants by chemical reaction, resulting in inhomogeneous surface tension and motion
of the drop through the Marangoni effect[18-21]. This model shares the free-boundary
problem of the drop with the model of contractility-driven cell m0tility, but the polarity
field is replaced by a scalar field describing the concentration ofhemical molecules. Owing

ave been proposed|[22—

because of its vectorial

to the simplicity of the scalar field, various analytical treatmerits
24]. The polarity field is, on the other hand, very diffic %&\t

nature. This drawback of its complexity may be compensated fer by a richer structure in
—

ay derson trate more various motion

the model; as we will show, the active polar drop
than the motion of chemically driven drops Wherﬁzly straight and helical motion have been

observed. By analyzing the model with the po&\e@e hope to clarify the similarity and

differences between these models. \fe
Active polar or nematic fluids exhi it‘@\&ic‘ atures compared from simple isotropic

id crystal, even under unconfined systems. First, the

fluid and also from conventional li

fluid may show topological defec{i hnation), which plays an important role in its dy-

namics. Although the defect are\S\s

mopological charge (sign); for example, only the +1/2

disclination of the actiy, |\'€ﬁ,§ic fluid is able to move spontaneously[25-27]. Another im-
c fl

n in conventional liquid crystals, the motion of

portant feature of the a id is that uniform orientation becomes unstable as activity
increases. Eventuél i{ d?nonstrates turbulence-like flow containing a large number of
topological defeg:)_ . The turbulence-like flow and moving topological defects have been
confirmed by eriments of microtubule and kinesin[29], and E-coli in liquid crystals [30].

This ingtability

curs by coupling between fluid flow and the polarity field. It was first
propoged-the e‘e{:ally in [31], followed by detail theoretical studies[32, 33] as well as nu-
m rlga anal%is [34]. Depending on the sign of the active stress, contractile and extensile
stress reSults in splay and bend instability, respectively, in a flow-tumbling regime. On the

er

N
stable[33].

d, in a flow-aligning regime for a rod-like shape, only the extensile stress is linearly

ntuitively, the active polar drop uses the mechanism of this instability to move
spontaneously[l1]. Our claim is that this is true for the extensile stress, whereas for the

contractile stress, the effect of the interface confining the active fluid inside the drop must
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Publishih(g' onsidered. We discuss how the interface gives rise to additional flow. We also show that
after the instability, the distortion of the polarity field produces source dipole flow resulting
in self-propulsion.

In this work, we focus on active polar drops where the motility is driven by bulk con-
tractility generated by active stress. To the best of the author’s Y{owledge, most previous
studies have focused only on numerical simulations in two [11,45837] e three dimensions
[13]. There have been scarce theoretical studies on active drop jn [38], the speed of an
active polar drop is computed by assuming an ansatz of X\ﬁe d [38]. The flow field

29 These works focused on

inside a thin film of a drop was analytically calculated
—

fluid flow and the speed of a drop under a given polarity field*designed for their analysis.
However, it is not clear how transition (bifurcati()::ccu tween the stationary state and
the self-propelled state. The main focus in thi%)gis‘a) investigate the mechanism of the

| -
transition (drift bifurcation) using as a simw as possible.

NS
II. MODEL
y \

We consider an active polar ﬁeﬁ%& op with a radius R in two dimensions. The model
for polarity distribution, P(x)ngQosition X, is written as[! ]

16F
9, +%)+vpp)-V)P+w-P:gn-P—f5—P (1)

where the rotatjza ridtio efficient is denoted by I', and the explicit form of the free
energy, F, will H&si later. The symmetric and anti-symmetric parts of the velocity
gradient ten rs}e denoted by k;;j(x) and w;j(x), respectively. They are explicitly given by

the gradient (f the velocity field v(x) as

1
rij = 5 (Vivy + V) (2)
1
wij = 5 (Vivy = Vjui). (3)
‘ﬂy t\erm ¢k-P is called flow alignment, and its coefficient, &, imitates the shape of a filament
such as rod-like (£ > 0) or disk-like (¢ < 0). It also demonstrates shear-alignment (|¢| > 1)
or shear-tumbling (|¢| < 1) depending on the parameter . Here, v, is the polymerization

velocity and describes advection. We neglect this term here and set v, = 0 because this is

not the main mechanism of self-propulsion in this model.

4
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Publishing, \s we are interested in small systems with the characteristic length scale [ ~ 0.1 — 100u

m[5? | , we use the Stokes equation:
nAv — Vp+f =0, (4)

together with incompressibility divv = 0. Here, 1 is viscosity, p i8.pressure and the force

acting on the fluid is 5

,)\ ()

)Tz;ﬁd elastic stress, (®). The

f =div (a(a) + 0(6)) .

The force acting on the fluid has two parts: active stréss,

active stress is given by [11, 13] 3

) (6)

ile stress (¢ > 0) and extensile stress

The sign of the parameter ( demonstrat@

(¢ < 0). The elastic stress o{®) arises f%&"ank elasticity of the polar field and under

a one-constant approximation

P;h;) — KV, P,V ; Py, (7)

where K is the Frank elastic %\t and h = —§F/JP is the molecular field vector.

As we are interest the wniversal aspects of the model, we simplify it so that it can

reproduce spontaneQus niotion, In the original work of [11], the frictional and inertia terms

in hydrodynamigs<and erization term in the polarity field are included in the model.
Our results th‘?hical simulation in Section II A suggest that all these terms are not

r selfspropulsion. It is often the case that friction of the velocity field is included

necessary
in (4) to express }riction between a cell and substrate. This term is given by —yv, which
introduces a ot er length scale \/77/_7 into the model. The length scale sets screening of the
dyn c flow, and when the friction coefficient, ~, is larger, that is, the length scale is
sﬁg@ an the size of the drop R, the velocity gradient is more localized near the interface
n the drop and surrounding fluid. Although this term changes a critical activity to
obtain self-propulsion, it does not change the structure of bifurcation and therefore it is not

the main mechanism of motility in this model. We, thus, neglect this term to consider the

minimal ingredients of self-propulsion.
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PublishingThe free energy is chosen as the Ginzburg-Landau form (see (13)) so that the polar state
|P| = 1 is stable and thus the equation of the polarity field is given by

1 K
atP+w-P:§/<a-P+fP(1—|P|2)+FAP. (8)

Together with the equation of hydrodynamics (4), we have the ck{ed equations. We may
have to choose the boundary conditions for the polarity and v }&}

them by introducing another field of density. In the theore%ﬁilysis in Section IV, we
tio

5, Or approximate

use the boundary-value problem whereas in numerical si we use the phase-field

approach, which is discussed in the next section (see 9_)1. -

A. Numerical Simulation ( ,)

! -
To consider translational motion and defermation of the drop, the density field ¢(x) is

introduced using the phase-field approach
\

Ly (0rp + v - ~
6

—DAG + gp(NS —§+a6—;<1—|1°|2>), ©)

\
\ 5=Vo— [ 6*(3—20)av. (10)
/K /
of t

ténsport coefficient of the density field associated with its time

where

Here, I'y is invez{

scale, D is gr dkj%sgy coefficient associated with interfacial tension[l8], ¢ is the unit of

bulk free

[ is the um
ﬂ

and pelarityields (see (14)).

D

rgy¥see (11)), a is the strength of constrain of drop volume to be V, = 7R?, and

of l}ulk free energy density associated with the coupling between the density

The system consists of two fluids A and B. The drop is made of fluid A whereas the
su un(hng fluid is made of fluid B. The density field ¢(x) expresses fraction of the fluid
wziﬁh respect to mixture of the two fluids A+B. The equation has the two stable points
¢ =% 0 and ¢ = 1, and they indicate inside (¢ = 1) and outside (¢ = 0) the drop. In the
previous studies on a conserved density field of the drop, the Cahn-Hilliard (CH) equation,
=T ;1A(5F /8¢ has been used[! 8], where ¢ is the convective time derivative as the left-hand
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Publishizng< of (9). In this study, we use the modified version of the time-dependent Ginzburg-
Landau (TDGL) equation, b= —F;15F/5q§. In both equations, the width of the interface
scales as y/D/g.  Although the conventional TDGL equation has an infinitely growing
domain, the modified version suppresses the growth to describe a drop with a finite size
to ensure conservation of the drop density. When the volume iszéqua,l to Vo, ¢ = 1/2 is
an unstable point as in the standard TDGL model. The differ is found in 6(¢), which
controls the unstable point so that the total volume is appraoxini ?y conserved as V. The
advantage of this approach is that the model has a free e e%%*

(11)

Within the phase-field approach, an additienal fercé“has to be included in the force f in
the Stokes equation (4). The stress tensoﬁ%@ d with this additional force is propor-
bulk terms in the free energy thanks to

tional to V;0V,¢, and is not dependé&\

incompressibility[22]. Therefore, the B‘Yﬂ}ne nservation described by the last term in (11)
N

0

is independent from the force a&x‘ethe fluid due to the phase field.  We also note
that the modified TDGL equ 'We ficial to numerical simulations because there is no
fourth-order space derivative. In ot model, the self-propulsion and deformation of the drop

is realized by the adveftive temmn v - V¢, and the right-hand side of (9) is always close to
zero as in the model using the CH equation|[13].
The free ener )& It{odel is given by the following three terms
5 F=FoL+F,+ Fp (12)
Loe, 1o K 2
/ F[P(x)] = [ dV |8y ( SIPP+ S [P[* ) + [ Vipy] (13)
y. 2 4 2
ﬂ
K Foplo(x), P(x)] = ﬁ/dV (1= [P[)¢* (3 —29)] (14)
ﬂ

where 62318 the unit of the bulk free energy density for the polarity field, and without loss
We&erahty, we may set o = 1. The free energy of the polarity field ensures that the
amplitude of the polarity is |P| = 1 almost everywhere except in the region in which the
polarity field is strongly deformed. The polarity field in the proximity of a topological defect
is also strongly deformed. The deformation of the polarity field is penalized by the Frank

elastic constant, K. The indices in the elastic term assumes a matrix norm. The coupling

7
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Publishihg ween ¢ and P is chosen so that |P| = 1 inside the drop where ¢ = 1 and |P| = 0 outside.
For this purpose, we set 5 = 1.

We performed numerical simulations with the parameters chosen as n = 1.0, I'y = 1.0,

=50 K=02 &=11,9g=10, a =10, and D = 1.0. The two-dimensional system has

is chosen to be 0.005.

ields[%]. We varied

2562 mesh points each of which has the size 0.6, and the time st
We used the pseudo-spectral method to solve the polarity and
- ropulsmn

" tr nsform of a quantity

the activity parameter ¢ and the size of the drop R to see the
The velocity field is calculated in the Fourier space.
S

such as v(x) is denoted as v(k). The velocity field is 36X ed-as
v(k) £k 3 (15)
where the Oseen tensor in the Fourier space i L..‘.)
2 k”“ﬂ (16)
where 6;; is the Kronecker delta an k‘%
.~

III. SPONTANEOUS Md\\\ﬂD DEFORMATION

uﬁblsiﬂ results. The active polar drops are stationary when their

First, we discuss our

activity is low and t 1all. As the activity increases, the stationary state becomes

unstable and the starg$ to move. The motion is straight with a constant speed as

shown in Fig. L(A)."Rhis nlotion occurs both in extensile and contractile drops. This result
has already, Been/obtained in [11]. However, as the activity increases, the extensile drop
produce iffgtent otion to the contractile drop. The extensile drop has a spinning motion
wher of mass does not move, but the polarity field changes by rigid rotation
of the dgop 1g 1(C)). Rotational motion also occurs in which the translational motion
follows aSclosed path Flg 1(A)). Then, as the activity increases, the motion of the extensile
‘dq.sp nges from a zigzag motion to random motion (Fig. 1(B)). These complex motions

not occur in the contractile drop. Such chaotic motion has not been obtained by the
hydrodynamic model, but has been observed in extensile drops using the kinetic model[15].

The different behaviors of spontaneous motion between the contractile and extensile

drops are evident in the phase diagram shown in Fig. 2. The overall tendency is that for
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Color Online) Typical trajectories of active polar drops in different types of motion with

different activities ¢. (A) Contractile stress for R = 12 with ¢ = 0.02 (translation, red), ¢ = 0.05

(zigzag motion, blue) ¢ = 0.06 (rotation, light blue). (B) Extensile stress R = 12,( = —0.04

(zigzag motion, blue) and R = 14,¢ = —0.07 (chaotic motion, yellow)Z(C) Polarity field P and

its amplitude |P| of spinning active drop with the extensile stress R \bKnd ¢ = —0.03. The
)

TN

—~
higher activity and larger drops, the self-propulsive métion becemes complex. The transition

direction of rotation is shown by white arrows.

between the stationary state and the straight translational métion is characterized by a non-
dimensional number of the Péclet number, Pe. /Thigis @ained by normalizing length, time,

velocity field, and pressure in our model (se%‘o‘ﬂmﬂ:er (21) and also (23)). The Péclet

number is given by \

B ¢|Rer

>

Here, Uy = [(|R/n is a charact&'i“&tlocity of the system. Since the flow is driven by
the active stress, which is ptéxw o (, the Péclet number also contains the activity

coefficient. In fact, the transition between stationary and self-propelled states occurs at

(17)

Pe ~ 25 as shown in Fi .}t?igher activity, the boundary between two types of the motion

becomes less clearept Iryth ase diagram, we define each state by translational speed u
and rotational velocity a{stationary for (Jul) < 0.001 and (Jw|) < 0.01, translation for
(lul) > 0.001 ﬂ'%<|w < 0.01, spinning for (|ul) < 0.001, (Jw|) > 0.01.When (|u|) > 0.001

and (|w|) 2 0.04, the motion is called zigzag for (maxw — minw)/max|w| > 1 and rotation

for (max

éﬁny) max|w| < 1. This criteria ensures whether the drop periodically turns
ﬁ
left and righ

igzag), or moves with constant angular velocity (rotation). When the speed
afdd ang velocity changes irregularly, its state is called chaotic.

NS

extensile stress under different activities ¢ and sizes R. The solid lines indicate R = 1/4/(].

Color Online) Phase diagrams of the motion of active polar drops with (A) contractile and

To summarize the numerical results, several observation can be made. (i) Spontaneous

9
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Publishi:nlg)' ion occurs irrespective of the sign of active stress. The contractile and extensile drops
both exhibit self-propulsion, and seem to be unstable above the critical activity (., or the
critical Péclet number Pe. ~ 25. For an extensile drop, this is not surprising as the bend
instability should occur in unconfined systems for & > 1. However, the contractile active

polar fluid in large systems is linearly stable[33], while both our mzr{erlcal results and those

in [11, 36] indicate the pitchfork bifurcation. (ii) Both the
studied here using partial differential equations of density anx
di

model [15] using a Smoluchowski equation of a probabili

dy mic model[l1, 30]
y fields and the kinetic

istsibution of a position and

orientation of filaments reproduce self-propulsion includin
_—

the mechanism of various types of self-propulsion is ncod

(me-motlon This implies that
1n the hydrodynamic model,

while to have quantitative features, one has to OHSld kmetlc model, which includes
more information about higher-order momentQ\D

\

To study the mechanism of self-p hlsiQn, we consider the polarity field inside a disk

with a radius R. When there is \% ogical defect (disclination), the polarity is a unit
vector and thus is expressed b \

IV. THEORETICAL ANALYSIS

w (cos v, sin) (18)
The phase 1(x ) at ghe })os X inside the drop may be expanded in polar coordinates
(r,0) with r = |

& )= Z [wm cosmf + 1y, (r) sin me] : (19)
The adv. <\e;vf );h s approach is that the bend (splay) instability is expressed by m = 1 and

with a constant C. The polarity fields with bend and splay deformation
ape-sho 'n ig. 3(A) and (B), respectively. It is also convenient to expand other vector
fields su(§1 as velocity v and force f fields[16], for example,

< V= [(Vam D)0+ (Vi - t) 8], (20)

where n and t are unit normal and tangential vectors, respectively (see Fig. 4), and we define
two unit vectors as n,, = (cosmf, sinm@) and t,, = (— sinmf, cosm@). For the special case,

n; = n and t; = t. The expansion coefficients {v,, ,,, Vi, } characterizes the velocity field.

10
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(Color Online) The polarity fields expressed by (19) where non-zero coefficients are only

(A) 41 = 0.4r and (B) ¢); = 0.4r. The directions of motion are shown by the black arrows for (A)

A

By projecting (1) onto (—sin, cos)), we obtain the equa Dbephase as

extensile and (B) contractile stress.

Op = way — (0,0, + v,0,) Y ‘)
Kyy — K P
+& {% sin 2¢) + Ky cos 1&}—1— LKA, (21)

We choose the unit length scale as R, the it tim le as R/Uy, the characteristic

velocity as Uy = K%%, and the characteristi ressur‘)as po = (. The non-dimensional
(17)

nd the Ericksen number

‘s\ ‘R | (22)

This number quantifies the stren%}j\ ress generated by the flow field compared with the
0

numbers in this system are the Péclet nu

elastic stress. In our model, the fl generated by the active stress, and therefore, the
Ericksen number contains the a ivity- coefficient, (. The non-dimensionalized equations

are obtained as

y. A = Pe (Op) — wyy +v - Vi
ﬁyy % 8in 2¢) + fiyy COS 214 ) (23)

Av—Vp—i—f—O (24)
divv =0 (25)

4
=
&3 f = div (PP + Er o). (26)

e, th§ sign in the active stress is chosen such that positive (¢ > 0) corresponds to con-
\ﬂ'f'szti&e stress whereas negative (¢ < 0) corresponds to extensile stress. Without topological
ects, the amplitude of the polarity field is almost constant |P| ~ 1 and therefore the elas-
tic stress is 0(© ~ (OP) (OP). This term is neglected in our analysis as it is not necessary
to reproduce self-propulsion. We have confirmed that the numerical simulations without

elastic stress also demonstrate self-propulsion of the active polar drop.

11
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n-v =n.v® = y.n (27)
n-o0®=n o +n. (£PP + Ero >) (29)

Here, u is self-propulsive velocity. The first two equations d m?tra continuity of the

velocity fields inside and outside the drop. The last conditiag\K
r

surface of the drop. There is another boundary conditi

s force balance on the

in (23). We may choose

a specific boundary condition such as parallel or perpen igllar-anchoring on the surface.
Nevertheless, the boundary condition is not arbitraky becéjlse it has to satisfy force-free

condition. This is particularly important for theffirst mo = 1 in the expansion of (19).

For our purpose, it is suffice to impose the bo&%f?f ‘awdltlon for ¢ and 1/}1 We use the

following boundary condition to ensure tl‘Q&fr condition (see (68))

at the linear order in the expansﬁ<)h aetive stress with respect to ¢ (see (37)).

N

In this section, wes ¢ %how self-propulsion occurs in the active polar drop. The

(30)

A. Self-propulsive Motlo

velocity of a drop co put by integrating the normal velocity over the surface of the
drop as[18, 20]

1
u=— v, RdS, (31)

where R 1 </ectf>r pointing to the surface of the drop. The normal velocity on the surface

ﬂ

is v, %:.Fo a circular drop, the velocity given by (31) is non-zero only when v,, ~ cos 6

of Uy, ~ We expand the velocity field using force multipoles, F; j,..i,, as

\ v = TiiFy — Vi TijFy + ViVilijFry — - - (32)
N

where T;;(x,x') is the Oseen tensor, and summation over repeated indices is assumed. The

Ith force multipoles are expressed as

EliQ"'il = /$i1$i2 e xilflfldV. (33)

12
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Publishiﬁg ler the force-free condition, the self-propulsive velocity (31) is nonzero only when there
is a source dipole. The velocity field, v(9)(r, ), generated by the source dipole, q, in two-
dimensional polar coordinate (r,#) is obtained by taking trace (dx;) of V;V,T}; as

1
27T77r2
where the source dipole is obtained from the distribution of the fo c&ﬁ\

q= %/ (3r*f — 2x(x - f)) dV, (35)

dt )See . For a given source
K

dipole, the velocity is obtained as Q
! )

This aspect of the self-propulsion is shared«by otée) phenomena such as squirmers[5],
phoretic motion and self-phoresis|[17], and ge w: ion driven by the Marangoni effect[20)].
All these motions are driven by the sou e\e of their flow fields. In contrast to the active

polar drop, the flow field in these odels driven by interfacial (or surface) force[15]. In

@(r,0) = [(@-n)n—(q-t)t (34)

The anisotropy of the velocity field (34) is given by n

the active drop studied here, the OW 1 1%n by active stress acting in bulk. Nevertheless,
in terms of force-free motion, nl 0 rce dipole is associated with self-propulsion.

The active stress is expresse ns of polynomials of v

cos 2y sin 2y
sin 21 — cos 2¢

4 \
<\ =+ ;_01 + 2(; 25’ +O@W?)] . (37)

We subtratt a trage of the active stress as it merely modifies the pressure. By expansion of

(19), t €8¢ roplilsive velocity is also expanded in terms of its coefficients 1, and U as

-~ 3 u= j:% /drr d%r zi +0 (z/ffn, VWU ﬂﬂ) : (38)
— alr and (r) = blr with a given constants al,b!, the velocity is u ~ £(b!, al).

is analy51s suggests that, for small distortion of the polarity field, the velocity of the drop

is proportional to the first mode of the expansion in (19). The contractile active stress gives
rise to self-propulsion in the +x direction for ¢; > 0, whereas the extensile active stress

results in motion in the —y direction for ¢; > 0 (see Fig. 3).
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Publishing3. Perturbation around Stationary States

When Pe = 0, the stationary polarity field is uniform inside the drop. As Pe increases,
the flow field is generated by the active stress. When Pe is small, the flow may perturb the
polarity field, but it is not strong enough to generate a source dipole #The flow is dipolar and
does not lead to self-propulsion. The drop remains stationary. /st the mechanism of
self-propulsion, we need to clarify when this stationary state (Qes unstable. Therefore,

we linearize the model around the stationary state.

In contrast to self-propulsion driven by chemical rea@‘h&u h the Marangoni effect
[18, 20] in which the stationary state is trivial, the st@tionarystate of the active polar drop
is not simple owing to the flow alignment term. h.egn@rs polarity field does not satisfy
(23) owing to the stress acting on the surface ofch.e d’fﬁ) Nevertheless, it is important to
observe that (19) is divided into two termsg odd ‘a d“even m. The stationary state results

in dipolar flow, which generates perturbatiom only in even m terms. This implies that when

the initial phase does not contain odd mo Me is no odd mode in the final state. On the

other hand, self-propulsion is associa h’m{h the first mode of (19). As we are interested
in transition between the statior&N e and self-propelled states, it is natural to use a

following scaling \\

O(1) for even m
y Y~ qeform=1 (39)
/\ 4 €2 for odd m # 1

We denote Q stationary solution of (23), which contains only even modes in (19). We

setfof the model (23) in terms of e. Each variable is expanded as

4

= + 67,0(1) 4 Eziﬁ(z) 4o (40)

a follo’ving (19), each order in (40) is expanded in modes denoted by m. Note that ¢*
}bata\ins only even m whereas 1)) may contain m = 1 and all even m. Higher-order terms

stich as 1) contain, in general, all m. The active stress is expanded around the steady state

14
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Publishig m terms of € as

0@ — Tro@ = %) 4 eglay(@) 4. (41)
cos 21" sin 290"
plas) g [COS2VT sin2y (42)
sin 2¢0* — cos 2¢* /
— sin 2¢* cos 2@/}*
cos 2%

At O(e), the model becomes, é\g
1

o@D = 42 (43)

_5{ ~ Ho 1)

—5 Sﬁ\ mcosQw > (44)

where the velocity gradient and rota &x ors are proportional to ™) because the
to M in kY = (av +8v(1> and

Kij
wi(;) =z (@vj — 0 v(l) ix ity ﬁeld perturbed by () is the solution of (24)
43

under the active stress

velocity field vV is linearized wit

in rested in ¢1 : when it becomes non-zero as Pe is

varied and how it grows. T hanks tothe scaling (39), the even modes in ¢! do not generate

7,& because 1* consist even modes. Therefore, (44) is formally rewritten as
— PeN Wy, (45)
The explicit e operator N’V is lengthy, but is obtained by replacing wéy), 5932,

/ﬁé‘?, and y) 1 44) with the linear function of wl (see (69) and (70)). We analyze (45)
by using éerlyke expansion of ¢(x) is given by

-

) Y(r,0) =Y [a" Ry (r) cosm + b Ry (r) sinm#)] (46)

n,m

wh ar) and b} are the coefficients associated with ¢4 (r) and 15, respectively, and
~

R;n<7“) _ i (_1)8(1 B S)' ,r,l—28 (47>

2 S = I )

for even [ —m. For odd | —m, then R = 0. Note that [ > m. Clearly, for given [ € [0, c0)

and [ > m, R)"(r) is expressed by power series in 7.
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PublishingTaking inner product of the linearized equation (45) with the Zernike polynomials for
m = 1 in the expansion of (46), we obtain the following linear algebraic equation using the

boundary condition (30):

all L(aa) [ ,(ab) all
L = —0, / (48)
b L) L®) ]\ b}

where each block is a square matrix and is decomposed as \Q

111 --- ‘)
~—

0616 ---
L@ = Pes L (49)

0010 --- 5
and

(50)

the left-hand side in (45) owing to

The other two matrices are expressed hs&ml ar way. The first term in (49) corresponds to
\ Frank elasticity (see (A6)), whereas the second term,

Ped L"), corresponds to the rig 91de from the coupling with fluid flow. The first row

in the matrices represen boundary condition (30), namely,

& at R (1 Zb}R}u) = 0. (51)

m rlces are obtained by taking an inner product of (45) for each basis in

1p1y1ng R} (r) and integrating over r using the orthogonal relation (A5).
From th eodnd row, the projection onto R}(r), Ri(r),... is performed. When Pe = 0,

is clearly invertible and therefore the solution is a; = b} = 0 and the
statig SO tlon is stable. The diagonal term in (49) is given by 2(s 4 2) for s = 1, 3,.
QQO})dmg to the second, third, ... row. This suggest that the possible scenario for zero
nvalue arises from the smallest [.
he stability of the stationary state 1* is obtained by the determinant of the linearized

matrix in (48). A non-trivial solution appears only when the determinant vanishes, and the
matrix is not invertible. This corresponds to find zero eigenvalues in which the stationary

state looses it stability. This aspect is explicitly shown in Appendix B.
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To analyze (45), or equivalently (48), we need to calculate stationary solution of (23)-
(25). The concrete form of ¥* is available only numerically. Nevertheless, it is reasonable

to use an approximation /
" =0+ O(Pe), (52)

where the polarity field is aligned with the xz-axis, that is, P.= nside the drop (see Fig. 4).
Here, the lowest-order term is chosen to be zero, thoug&l t1 lly uniform constant is
a

possible by rotation. Then, the inhomogeneous termf(is approximated as

NOYD = —o) 4 v+ vy €2 yy w — &kl (53)

Note that when ¢* = 7/2 is chosen \‘\L—

and, as we show later, the sign of NLRO r flow becomes opposite. As a result, the
stability of (53) does not change? e ‘physical meaning of (53) is decomposed into two
parts. The first part consists rst and last terms, which describe the flow generated

itatiopary polarity field (52), which is coupled with the distortion

by distortion of the polagity field. The second part consists of the second and third terms.
Flow is generated by ghésst

of the polarlty fiel 1d/étab1 izes/destabilizes the polarity field.
First, we co e steady velocﬂ:y v* and resulting shear low «*. The active stress for

the polarity field (52) xpressed as

0@ = +O(R — r)e,e,, (55)

) sa step function O(z) = 1 for x > 0 and O(z) = 0 otherwise. The positive and
s denote contractile and extensile active stress, respectively. The active force

n gatlve s1 i
ted by the active stress is obtained as

f=fn+ fit (56)
fn= :F%6(R — 1) (1 + cos20) (57)
fi= %5(3 — r)sin 26. (58)
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PublishingThe steady velocity field is given by the m = 2 mode and expressed in the form of (20)

as
v = (V;‘%2 . I'g) n+ (Vf’2 . tg) t, (59)
where
via= " m; & (60)
\
V:,z = ‘& (61)
Owing to incompressibility and the boundary co on 0 ngentlal stress at the interface,

we obtain the two coefficients v; and 03 as

\\\\m (62)

Note that the balance of normal stre terface is satisfied by deformation. We assume
the uniform surface tension is lar so t anormatlon is negligibly small and therefore (59)
approximates the velocity ﬁe rmation. Schematic pictures of the velocity field
are given in Fig. 4. The contrac active stress generates the flow in the opposite direction.
The flow of contractile cmstress is qualitatively the same as was observed in [11]. We
finally obtain

v2 r® — r)a RE (r) 4 v (2r — 4r3)bl1R717;(r)) cos

—u(r® = )L RY (1) + v (2r — 4r*)af RY (1)) sin 6]

+ O (cos 30, sin 30) (63)

a&s

S ~ glen Py ’{Zx Fyy e
é- *! */ /U:Z,Q,x UZZI
- Z ; Un2,z + Vs o + r + r

x (a; R} (r) cosf + by R} (r) sin ) + O (cos 30, sin 36) (64)
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PUbIIShIHg . 4: (Color Online) The steady velocity field v* generated by the uniform polarity field ¢*

for (A) contractile and (B) extensile active stress. The polarity field is shown by the gray line and
the flow field is shown by blue arrows. The directions of a normal and tangential vectors are also

shown by black arrows. /

FIG. 5:  (Color Online) The mechanism of rotation induce b ipolariflow generated by (A)

contractile and (B) extensile active stress in stationary state:

the x-axis is shown in solid black lines, while stable state@

L...
Next, we consider a velocity field gene a,t istortion of the polarity field w . The

active stress generated by wl is expre
\“’ (65)

and the resulting force is
‘\ (@) — 397y (66)

hﬁ.u)rlentatlon perturbed from

in dashed gray lines.

with V = Vy, \Y/ e d}p‘tortlon is expressed by the first mode in (19) which gives rise
to the force in t 0 he expansion (20)
£l = (£%Y  nn + (£7" - t)t, (67)
£
4
wher
= ) (B 1a (oW
£ = £7Y = 4 8 =t ] (68)
5 ' 2 T + wgl) 2r dr wgl)

~
e may see from this result that the boundary condition (30) satisfies the force-free condi-
tion.
We may express the velocity field only by the first mode in (20), and calculate it by the

(1) (1)

method outlines in Appendix C. Once we obtain v, ; and v, ;, the shear and rotational flow
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Publishiisgxpressed as

1 ! ’ 1 / ’
Ky =— (vﬂy + vt(}ﬂy) cos + 1 (vgix + vgl),z> sin 0

4
+0O(cos 30, sin 36) (69)
1
Way = = 3 < 7(11} =t vﬁ)x) sinf 4+ = ( S% vt vﬁ yfcosb. (70)

Here, we have used incompressibility to simplify the rotationa

W)m the force gener-

(@9 in the linearized

ated by active stress (68), the cos terms in (69) and (70)
matrix (48) for the coefficients of the expansion (46), whéreas sin @germs result in L(®:?).
Owing to the effect of rotational flow and shear alignm tﬁ?e determinant of the lin-
earized matrix (48) becomes zero when the Péclet number b§comes the critical Péclet num-
ber, Pe.. This instability occurs both for al an@ gesting that both splay and bend
instability is induced by this effect. The physical meaning of the effect of the dipolar flow
induced by the stationary polar field is sg in/Fig. 5. When the active stress is con-

tractile, the orientation along the z-axig 1 table, and a small perturbation of the first
mode m = 1 in Fig. 3 will grow. T tensile active stress exhibits an opposite flow, and

stabilizes orientation along the he How generated by the perturbed polarity field
also gives rise to perturbatio mode as (69) and (70). The stability of the uniform
polarity field is shown in Flg?;\ﬂ{s 1s obtained by zeroth of the determinant of (48) with
(64), (69), and (70). W trﬁﬁe the Zernike expansion of r in (46) at the lowest order nec-
essary to find the tr nsi}io wJhe advection term is found to be small and is neglected. As

activity 1ncrea862/ instability’ occurs both for contractile and extensile stress in the rod-like

flow-alignme 1m f > 1).

FIG. 6: 010}, e) Stability of the stationary state in which the polarity field is uniform inside
the active.po 1/ op. The stationary state is unstable in the region that does not include Pe =0
for_each/line. he horizontal axis indicates signed Pe where Pe > 0 demonstrates contractile stress

V‘%{Cﬁ:‘ e < 0 demonstrates extensile stress. The splay and bend instability is shown by blue
nes, respectively. The dashed lines show stability of the bulk system with L = 10 in (71).

e black lines indicate £ = +1 and Pe = 0.

We may also consider the system without boundary. In this case, (23)-(25) are linearized
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Publishi;mrg) ind the stationary state P* = e,, that is, ©* = 0. Note that in contrast to the active
drop, there is no flow v* = 0 at the stationary state of the bulk system. In the Fourier

space, the system becomes unstable when
2

a 2nK
where 6} is the angle of the wave vector k with respect to the axis N d L is the system

c0s 20, (1 + £ cos 26;) > 1 (71)

size. The bend instability corresponds to 6, = 0 whereas the Splay insta 1hty corresponds
to 0 = m/2. The result is shown in Fig. 6. Similar to th pentagic case[33], the splay
instability occurs when £ < 1 for the contractile stress bend 1nstab111ty occurs

when £ > —1. The mechanism of this asymmetry b t'éen tractile and extensile stress

is that the rotational flow destabilizes the unifozm ori ntabon both by contractile (splay

instability) and extensile (bend instability) wh‘ejeas the shear flow in the rod-like

flow-alignment regime suppresses the instakility
suggests that the effect of the boundary

for £ > 1. \
5

.~
V. CHAOTIC MOTION AN LOGICAL DEFECTS

stre
ly‘”for the contractile stress. Our result

e instability for the contractile stress

When the activity is h1ghxi propulswe motion is no longer periodic. Its long-

time behavior is diffusive whereas the short-time behavior is ballistic, as shown in root

mean-square displa me}lt —x(0)[?) in Fig. 7(C). During the diffusive
motion, dlstortlo of t oM field is accumulated at lines, which are dynamically deforming

%.Qf the drop is also fluctuating correlated with the motion of the line

ity is increased, the density of the line defects increases, and at high extensile
activity, igclinations appear.

See t operties of topological defects in terms of force multipoles discussed in

Sﬁrst consider an active nematic fluid, because it has been well studied[25-27].

118 c e, the orientational field is expressed by a symmetric traceless second-rank tensor

DD <liP - (1/2)d;; to respect the symmetry of Q under P — —P. Topological defects

in‘the nematic field may have charges given by half integers. The polarity field around a

topological defect with its charge +1/2 is expressed by

o . 0
P = (cos ii,sm 15) : (72)
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PUbIIShIHg . 7: (Color Online) (A) Trajectories of chaotic motion. (B) The polarity field, P, and defect

density, p, of the active drop with R = 14 and {( = —0.2 when it moves diffusively. The color
of the defect density indicates topological charge. The surface of the drop is also shown by the
black line in which ¢ = 0.5.  When p ~ 0, there is no defect. (C) Log-log plot of root mean-
square displacement (MSD) of the active drop with R = 14 for contrac 1 = 0 07) and extensile
(¢ = —0.07) stress. The two lines indicate slope 0.5 and 1.0. TraJ torl s are shown in the inset.

(D) Density of defects as a function of activity.

""'-..

—_—

where § = tan'y/z. The plus and minus si@ de tes—i—l /2 and —1/2 disclinations,

®.

Qkiz:i

where we subtract the trace of the ﬁs')ve ress because it merely modifies pressure in

incompressible systems. XX
The force dipole in (33) ge he active stress can be obtained by integrating (73)

inside the drop This clearly vanishes as Fj; = 0. The source dipole of +1/2 disclination is

respectively. The active stress is then given b

from (35
e (74
0

and for the/— defect the source dipole vanishes q = 0. As the source dipole is associated
with the 6r01?1 ive velocity, the +1/2 disclinations move whereas —1/2 disclinations do
not. The samé%onclusion was reached by directly solving the Stokes equation in [25, 27].
r-analygisoes not rely on the explicit of model of the nematic or polar field, but the self-
pr ulsi(}l of a defect arises merely from decomposition of force multipoles, that is, source
Hmolgarising from spatially distributed active stress (force dipoles).
We apply the same analysis to the polar fluid. In this case, the polarity field around the

topological defects is expressed as
P = (cosf,+sinb). (75)
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Publishi.ﬁga or a calculation similar to that mentioned previously, we find there is neither force dipole
nor source dipole for the defects. This analysis suggests that the topological defects in the
polar drop do not spontaneously move. According to the analysis in Sec. IV A, the absence
of source dipoles implies that no self-propulsion of the drop occurs. The self-propulsion is
rather driven by string-like domain where the distortion of the polafity field is localized (see
Fig. 7(B)).

The position of the topological defect is extracted by t ?od in [50]. The signed
defect density is obtained as
<

p == ((02p2)(0ypy) — (0upy ) (Oyp2 Wi (76)

N | —

At the position of defects with positive topolo(ic‘e‘ml charge p > 0, whereas for negative
topological charge p < 0. The number densh)O\it(E defects with positive and negative
the

charges is statistically the same. In Fig. %(

As activity increases, the density linead'\cwes.
VI. DISCUSSIONS AND S I\R

nsity of the positive defects is shown.

Y\

In this work, we have anal)é%ﬁctive polar drop, and showed that it exhibits different

type of self-propulsion d emi.Sg) on whether stress is contractile or extensile. The contractile
1

stress results in transfati tion, and, at higher activity, rotational and zigzag motion.

In addition to t}:ge b ons/c aotic diffusive motion occurs only with extensile active stress.
c\&pli motion seems to be turbulence-like behaviors in bulk owing to
the active st ss)fvhich as been discussed in the system without boundaries or with solid

The origin of t

boundariés. Qn the other hand, the self-propulsion under contractile stress has a different

origit génerated by a surface force similar to inhomogeneous surface tension in the

Marangoni effect. This extra effect, only existing in the confined drop, gives rise to instability
o%"form polarity field. This is in contrast to bulk systems where the contractile active
res rod-like molecules does not linearly destabilize the uniform polar field.
\Om result of asymmetry between the contractile and extensile stresses has some similar-
ities to the results in [51], in which a contractile active polar fluid with frictional boundaries
exhibits spontaneous flow and oscillatory dynamics in the flow-alignment regime, whereas

spontaneous flow, oscillatory dynamics, and chaotic flow in the flow-tumbling regime. Al-
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Publishiti@ugh there is no interfacial effect in that work and they studied two different systems
with different flow-alignment parameters, not activity, they observed chaotic flow only in
one regime. It would be interesting as a future work to study nonlinear effects and the
mechanism of chaotic flow.

Oscillatory dynamics such as traveling waves do appear as a s?&)ndary bifurcation, not

as a linear instability through Hopf bifurcation. This is in contr 6?0 theobservations of an

of O' ~ ((V;Pj+ V;P;) (see [51]). In these cases, the s

active nematic fluid[52, 53] and active polar fluid with additional &ctive stress in the form
s have additional time scales

associated with the dynamics of the concentration field ad/6r velocity field (inertia term).
Our system is in the low-Reynolds-number regime, n‘(;l‘in qshe uniform concentration and
thus lacks those time scales. Nevertheless, our @m s oscillatory dynamics such as
zigzag motion after several transitions from tHe sta 10{93/ state.

Recently, several experimental systems ml proposed to study self-propulsion of
a drop containing liquid crystals with gertain activity[10—12]. Our model is probably too
crude to explain the motion in the W0r~\a;(f we also think the self-propulsion in these
studies is not driven by the active s , but other mechanism. To test out model, the
system such as [29, 30] has to be%\i three-dimensional space inside the drop. We are

not aware of such system reahz periments. Nevertheless, we hope to convey a basic

understanding of these e'ns%ena
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Publishing APPENDIX A: ZERNIKE POLYNOMIALS

Several lowest-order terms in Zernike polynomials are given by

Rl =r (A1)
Ry = —2r + 3r° / \ (A2)
R: =3r — 127 + 107° 3 (A3)
Ry = —4r +30r® — 60r° + 3 %\ (A4)
Orthogonality is expressed by — .

/0 1 rd@l (A5)

The Laplacian acting on the Zernike polynomh;\%ﬂts in[19]

A (R} cos mé) \\

= (s + )ﬂsl-‘\;)\(l — 5) (RY cosmb) . (A6)

This operator makes sense when t \@) ing is N +2 dimensions onto N dimensions where
N is the number of terms in tthion. Note that R;"™ = 0 for odd | —m and therefore

the Laplacian operator i s the mapping from [(N + 2)/2] to [N/2] where [] is the floor
function.
£

APPENDI N& LITY IN DYNAMICS

The a ly?}s the previous section is associated with the stability of the steady state.

e tifne evolution of the linearized equation is expressed, similar to (45), as

gﬂﬂ ) Pedypl?) = Al — PeN DV (B1)
(%g 5With the boundary condition, we use the ansatz of a}(t) = aj e and b} (t) = b} e

af Lo L@\ faf
A = , (B2)
b Lt Lo |\ b
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Publishingcre

Alea)
0 A(bb)

0000 -

7000 - /\
A A — g go0... | L ) (B4)
0000---7\
L))

-~
From det(L — A) = 0, the stability of the linearize ;;uat'son is obtained from o. When
we neglect the second term on the right-hand side of ( Il the o are negative, and this
ga’f/avﬂthout the coupling to the shear

suggests that the system relaxes to uniform
and rotational flow. \\
\
APPENDIX C: VELOCITY FIELD DER FORCE

<

We solve the Stokes equation&%O\' ensions in the form of
\\v Vpif= (C1)

V-v=0. (C2)

Here, p is press?d f!is }orce acting on the fluid. We will consider only the first mode,
which is expressed bym =1 (v, 1 and v, ;) in (20). The pressure p is expressed by the two
coefficients )nd D1y @S

D = PnizCOSO 4 pPp1ysind

b = Pn,1 1 <C3>

In“the se ond line, we define the vector of the coefficient p,,; to use a compact expression.

Wb\hls expansion, incompressibility implies

MIE G (C4)
.

r
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Publishiwfcre " denotes derivative with respect to 7. The Stokes equation is then rewritten as

/

v, 2v, 2v

Vit T T T P =0 (©5)
Vit 2vi1 | 2Vapi o Pag

Vi % - r;, 7‘2’ - 7“7 +1f,=0 (C6)

/
pn,l Pn1

PZ,NLT T2 —g(r) —K\
where 3
e fn,l ft,l
gir=f,,+——-—. (C8)
r T )

The solution of the equation of the pressure is —~—
Pn,1 (T) =Ar 5 ((39)

‘ the bgunda,ry conditions. The solution of
? -

(C7)

(C10)
(C11)

2. d
dT2%2d—T,2(T2¢§1)) (C12)

hé@b\ (C13)

where B is another int nstant to be determined from the boundary condition, and

P = (@ ).

propulsive veloci<t)’ u,
is asgociated with self-propulsive velocity u = —(1/27) [vstdf[16]. The

1 aan expressed as

rom the Boundary condition, (v, 1(R) —u)-n = 0. Using the self-
h/e t?ngential velocity at the surface is (v;; —u) - t = v,, where the

slip velocity, v

velocity fiel

A
Vi =u+ —(r* = R?) + h,(r) — h,(R) (C14)
=~ A
b Vi1 =u+ §(3r2 — R*) +hy(r) — h,(R) (C15)
q
1
5 u=—2 (AR*+ 4 (hy(R) — h,(R))) . (C16)
WQze the tangential slip velocity is known, we may calculate the velocity field outside the
drgp, and, assuming same viscosity outside the drop, the boundary condition (29) results in
2
A = ((R) + R (R) — hy(R))
2
= 5 (. (R) — hy(R)). (C17)
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Publishingln order to calculate (69)and (70), it is suffice to compute v/ ; + v} ;. Using incompress-
n,1 t,1

ibility and the result of the general solution, we obtain

1+Vt1—Ar:|:;j ( “)). (C18)
Using the recurrence relation of the Zernike polynomials
N
o (Rl =2mi) + 0 2;”) - 73
_(l;( ) —1) Rz 2(r -)\ (C19)
a-\

)
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