

Advanced Institute for Materials Research Tohoku University

MS GH-0-19 (11:00-13:00) Phase field method and applications in biology and materials science ICIAM2019, 19th July 2019, Valencia

From Janus to Ashura -A hierarchical structure of nanopolymer particles-

Yasumasa Nishiura

Tohoku University, AIMR

Collaborators: E. Avalos, T.Teramoto, H.Yabu

Polymer Blends vs Block Copolymer

No chemical bond **Polymer Blends** \sim \sim Macro Phase Separation µm Scale "Polymer Blends and Alloys", edited by G. O. Shonaike and G. P. Simon Bonded! Block Copolymers \sim **Micro Phase Separation** nm scale A. K. Khandour, S. Fröster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules, 29, 8796 (1995)

Phase Separated Structures of Polymer Materials

No chemical bond Polymer Blends

Macro Phase Separation µm Scale

"Polymer Blends and Alloys", edited by G. O. Shonaike and G. P. Simon

Micro Phase Separation

Nanoscale structuring by changing copolymerization ratios, molecular weights, and miscibility of polymers.

Bonded! Block Copolymers

Micro Phase Separation

nm scale

A. K. Khandour, S. Fröster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, *Macromolecules*, **29**, 8796 (1995)

morphology: copolymerization ratio, χN, periodicity: N

Polymer particles with phase separated structure?

200 nm

Metamorphose from lamellar to onion

Ashura particle for three homopolymers

What we did

- Mathematical modeling and computations for these phenomena
- Appropriate parameters for temperature change?
- Answer to mutual exclusiveness among polymers of Asyura

Modeling of diblock copolymer

What is an appropriate free energy!

Free energy for block copolymers

micro-phase separation A and B are bonded

Bulk Phase (No solvent)

Model the bonding

Chemical bonding → Micro-phase separation

These two opposite effects characterize the micro-phase wave number $oldsymbol{k_c}$.

 $v \sim +1$: A-polymer rich $\rightarrow v \sim 0$: interface $v \sim -1$: B-polymer rich

They are repulsive, but bonded together.

Block Copolymer Melts

Two different types of homopolymers are bonded

3D image by X-ray computerized tomography by Prof.Jinnai

3d double gyroid

T.Teramoto and Y. Nishiura : Dynamics and morphologies of micro-phase Separation, JJIAMJ 27 (2010),

A short history of Ohta-Kawasaki dynamics

A model of density functional type for micro-phase separation

T. Ohta and K. Kawasaki, Macromolecules 19 (1986) 261.

 \star A mathematical formulation of O-K model and its singular limit were introduced by

Y.Nishiura and I.Ohnishi, Physica D (1995) 31

DHVQICA III

$$F_{\varepsilon,\sigma}(u) := \int_{\Omega} \{ \frac{1}{2} \varepsilon^2 |\nabla u|^2 + W(u) + \frac{1}{2} \sigma |(-\Delta_N)^{-1/2} (u - \overline{u})|^2 \} dx,$$

$$\overline{u} := \frac{1}{|\Omega|} \int_{\Omega} u dx, \quad u \in \mathrm{H}^1(\Omega),$$

$$-\Delta v = (1 - 2\chi_{\hat{D}_{p,l}^-}) - \frac{1}{|\hat{D}_p|} (|\hat{D}_{p,l}^+| - |\hat{D}_{p,l}^-|), \quad \text{in } \hat{\Omega}_p \setminus \Gamma_t,$$

$$\frac{\partial v}{\partial n} = 0, \qquad \text{on } \partial \hat{\Omega}_p,$$

$$v = C \kappa_{\Gamma_t},$$

$$V = \frac{1}{2} \left[\frac{\partial v}{\partial n} \right]_{\Gamma_t},$$
Modified Hell-Shew equations

Many mathematicians started to work on this problem after this. R.Choksi, M.Peletier, J. Williams, ...

Exploring 3D morphology

T.Teramoto and YN, J.Phys.Soc.Japan (2002)

T.Teramoto and YN, JJIAM (2010)

Morphological characterization of the diblock copolymer problem with Topological computation

Rigorous Existence for Double Gyroids

*T. Wanner, 1D problem, Disc. And Cont. Dyn.Sys., 37(2) (2017)
*J.-P.Lessard, E. Sander, and T.Wanner, J.Comp.Dyn. (2018), bif. point
*Jan Bouwe van den Berg and J.F.Williams, preprint (2018)
Contraction mapping in a gyroid symmetric space in 3D

Introduce the solvent

Particles are floating in water!

Bulk phase to Particle phase

Modeling the trilateral problem

P1: Confinement effect

- Divide copolymer-rich and solvent-rich phases.
 - We introduce a new variable separating two regimes.
- Shape itself is formed spontaneously (not always spheres)

P2: Micro-phase separation

- Two polymers are **bonded**, but repel each other
- Non-local effect

P3: Compatibility to external solvent

- Each component of diblock copolymer may have different affinity to solvent.
- If outside is water, then hydrophilic (phobic) one prefers closer (distant) place to water.
 - We introduce a new term in the potential W(u,v)

Internal vs External

Shape variable: Cahn-Hilliard equation

Microphase separation: Diblock copolymer model

Model free energy for constrained Diblock Copolymer

Confined particle by solvent micro-phase separation occurs inside only

E.Avalos, T. Higuchi, T. Teramoto, H. Yabu and Y. Nishiura : "Frustrated phases under three-dimensional confinement simulated by a set of coupled Cahn– Hilliard equations", **Soft Matter** 27 (2016)12 : 5905--5914 (2016)

Minimize the Free Energy

u: shape variable v: micro-phase variable

$$F_{\epsilon,\sigma}\left(u,v\right) = \int_{\Omega} \left\{ \frac{\epsilon_u^2}{2} \left| \nabla u \right|^2 + \frac{\epsilon_v^2}{2} \left| \nabla v \right|^2 + W\left(u,v\right) + \frac{\sigma}{2} \left| (-\triangle)^{-1/2} \left(v - \overline{v}\right) \right|^2 \right\} dr,$$

or strength of bonding

where

 E.Avalos, T. Higuchi, T. Teramoto, H. Yabu and Y. Nishiura: "Frustrated phases under three-dimensional confinement simulated by a set of coupled Cahn– Hilliard equations", Soft Matter 27: 5905--5914(2016)

Coupled Cahn-Hilliard equations for constrained di-block copolymer

u : shape variable

$$\tau_u u_t = \Delta \left(\frac{\delta F}{\delta u}\right) = -\Delta \left\{\epsilon_u^2 \Delta u + (1-u)\left(1+u\right)u + b_1 v + b_2 \frac{v^2}{2}\right\}$$

u divides copolymer-rich and solvent-rich phases.

$$\tau_v v_t = \Delta \left(\frac{\delta F}{\delta v}\right) = -\Delta \left\{\epsilon_v^2 \Delta v + (1-v)\left(1+v\right)v + b_1 u + b_2 uv\right\} - \sigma \left(v - \overline{v}\right)$$

v : phase-separation variable

V describes **micro-phase separation**

 $V = \pm 1$: A-polymer-rich, B-polymer-rich V = 0: No copolymer

Shape variable "u" uv^2 forms particle shape

A new variable **u** defines the shape coupled with uv² term

Affinity toward solvent (Trilateral)

The product **uv** plays a key role for affinity effect

Metamorphose from lamellar to onion

"Transformation of block copolymer nanoparticles from ellipsoids with striped lamellae into onion-like spheres and dynamical control via coupled Cahn–Hilliard equations" Avalos, E., Teramoto, T., Komiyama, H., Yabu, H., Nishiura, Y. **ACS Omega** (2018)

Microwave Annealing

annealed in a water bath at 40 $^{\circ}\mathrm{C}$

microwave annealing

Macromolecules, 46(10), 4064-4068 (2013)PAT. P. JP2009-188892

-60°< θ <60°, step 2°

Macromol. Rap. Commun. 2010, 31(20), 1773-1778

Transformation Process from Lamellae to Onion: Size Effect

Macromol. Rap. Commun. 2010, 31(20), 1773-1778

Temperature T is related to one of the parameters in our model through the following two relations.

Relation between temperature and x

 $(\chi_{1s} - \chi_{2s})^2$ \uparrow • Temperature \uparrow • • • χ_{12} \uparrow

Relation between Interfacial Thickness and x

EUGENE HELFAND AND YUKIKO TAGAMI* Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07974 (Received 4 November 1971)

Interfacial thickness ε_{v} controls the temperature!

 ${\bf E}_{v} \propto 1/T^{\frac{1}{2}}$

Experiments

Figure 3. STEM images (dark field) of PSt-PI-76 nanoparticles prepared at 35°C. Nanoparticles with various transformed lamellar structures were observed. Scale bars indicate 100 nm.

Macromol. Rapid Commun. 2010, 31, 1773-1778.

Interfacial thickness \mathcal{E}_{v} controls the temperature!

$$\tau_{v}v_{t} = -\Delta\left\{\epsilon_{v}^{2}\Delta v + (1-v)\left(1+v\right)v - b_{1}u + b_{2}uv\right\} - \sigma\left(v-\overline{v}\right)$$

Temperature is increased

 $\mathcal{E}_{\mathcal{V}}$

 $\mathcal{E}_{\mathcal{V}}$ becomes smaller

Simulation 0.0020 0.018 0.014 0.010

Experiments

Figure 1: Changes in morphology as ϵ_v decreases. $b_1 = 0.4$. From left to right: $\epsilon_v = 0.020, 0.018, 0.014$ and 0.010. Top: cross section. Bottom: isosurface of order parameter v.

$\boldsymbol{\varepsilon}_{\boldsymbol{v}}$ is decreased

Small difference of compatibility initially b1 = 0.40

If **b1 =0**, no morphological change even if ε_{ν} becomes smaller!

Figure 6: System with $b_1 = 0.0$. 10k time steps. From left to right: $\epsilon_v = 0.020$, 0.018, 0.014 and 0.010. Top: cross section. Bottom: isosurface of order parameter v. Notice that the number of layers increases with decreasing values of ϵ_v , as expected.

No affinity difference, nothing happens!

Our model has predicted this phenomenon. Reverse onion is also confirmed experimentally!

Asyura (阿修羅) 3 different homopolymers

Not easy to make submicron particles

Z. Nie et al., J. AM. CHEM. SOC, 2006, 128, 9408-9412 S. Bhaskar et al., Macromol. Rapid Commun. 2008, 29, 1655-1660

K. Maeda et al., Adv. Mater., 2012, 24, 1340-1346

手法	Microfluidic tips	electrohydrodynamic cojetting	centrifuge droplet shooting
直径	c.a. 100 µm	several 10~100µm	c.a. 100 µm
構造	層状分割	等分割	等分割
材料	光硬化性樹脂	PLGA, NIPAM etc.	アルギン酸

Self-ORganized Precipitation method (SORP)

diameter : 200~300nm

diameter : ~1.5µm

Possible to make sub-micron particles

サブミクロンサイズの 微粒子を作製可能

H.Yabu et al., Chaos 2005, 15, 047505

3 homopolymer blends

Electron Tomograpy of Asyura particles

Free energy for Ashura

Ashura Particles: Experimental and Theoretical Approaches for Creating Phase-Separated Structures of Ternary Blended Polymers in Three-Dimensionally Confined Spaces, ACS-omega (in press), Yutaro Hirai, Edgar Avalos, Takashi Teramoto, Yasumasa Nishiura and Hiroshi Yabu

4-component model 3 homopolymers (v,w,z)+shape u

List	ting 1: Parameters of simulation of Ashura particle	
dx = 0.02;	% cell size	Triple junction
dt = 0.00004;	% time step	
epsu=0.08;		
epsv = 0.04;		he is positive by is positive
epsw=0.04;		D3 IS DOSILIVE, D4 IS negative
epsz = 0.04;		
b10 = -0.08;		
b12 = -0.08;		
b13 = -0.08;		
b2 = -0.8;		Symmetric for three polymers
b3=0.4;		Symmetric for three polymers,
b4 = -0.5	% b4<0 for ashura	hut
tauU=1.0;		Dut
tauV = 1.0;		we also need cubic term v w z
tauW=1.0;		
au Z = 1.0;		to keep mutual evolusiveness
a = 3.0;	% stability parameter	
nsteps = 4000;		
L=0.8;	%system size	

2D-3D Asyura and the energy decay

Figure 1: (a) Steady morphology of Ashura particle in two dimensions with components u, v, w, and z. (b) The energy as function of time resulting of adding the terms in eq. [].

Figure 2: (a) Steady morphology of Ashura particle in three dimensions with components u, v, w, and z. (b) The energy as function of time resulting of adding the terms in eq. [].

Parameters: $\in_{u} = 0.08$, $\in_{v} = \in_{w} = \in_{z} = 0.04$, $b_{1} = -0.08$, $b_{2} = -0.8$, $b_{3} = -0.4$, $b_{4} = -0.5$, $b_{5} = 0.0$, $\tau_{u} = \tau_{v} = \tau_{v} = \tau_{z} = 1.0$.

Summary

- Control of shape and phase separation
 - Confinement dynamics: u-dynamics
 - Micro-phase separation: v-dynamics
 - Metamorphose when temperature is changed.

- Ashura particles (confined three polymers) can be produced both in experiments and simulations.
 - · Cubic term vwz is necessary!

For reference: http://www.wpi-aimr.tohoku.ac.jp/nishiura_labo/index-e.html

Mathematical challenge

· Variational problem

$$\mathsf{Rugged} \; \mathsf{landscape} \quad F_{\epsilon,\sigma}\left(u,v\right) = \int_{\Omega} \left\{ \frac{\epsilon_u^2}{2} \left| \nabla u \right|^2 + \frac{\epsilon_v^2}{2} \left| \nabla v \right|^2 + W\left(u,v\right) + \frac{\sigma}{2} \left| (-\Delta)^{-1/2} \left(v - \overline{v}\right) \right|^2 \right\} dr,$$

- Atlas for meta-stable patterns
- · Singular Perturbation (Slow-Fast system) for 1D
 - 8d ODE problem

for stationary patterns

Thank you for listening!

Modeling and Computation

Edgar Avalos Takashi Teramoto

Funding:

Experiments

Hiroshi Yabu

