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DIFFUSION SYSTEMS
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Abstract

Asymptotic configuration of interfacial patterns of reaction diffusion sys-
tems 1s considered when the interfacial thickness tends to zero. Under several
hypotheses derived by formal asymptotic analysis, it is shown that there are
no smooth limiting configuration of interface for generic domains. This par-
tially explains the fact that interfacial patterns become fine and complicated
as in the micro-phase separation of hlock copolymer in this limit.

1. Introduction

Morphology of finel patierns in phase (ransition are usually simple ones:
only one phase dominates the whole domain (non-conserved) or it is decomposed
into simple subdomains (conserved) after coarsening process. This is due to the
tendency to minimize the area of interface. However, il there is a microscopic
constraint to the system, the final pattern becomes much richer and has in general
a variety of morphologies from lamellar to labyrinthine patterns. Block copolymer
is one of such materials where two monomers (say, A and B) are connected at
some point {constraint), and this is responsible for the {formation of very fine
and complicated structures depending on the ratio of composite monomers in the
process of micro-phase separation ({3][2][13]. Locally each monomer moves in a
random way and tends Lo segregate each other (histability ), however connectivity
does not allow them to form a large domain consisting of only one monomer
(nonlocality). Ohta and Kawasaki [9] proposed the following model system to
describe such a phenomenon.

Uy = EQAU: + f('u-,'t-')
in £,
(1.1) j 0=DAuvtu
du v
5 = 0= 5 on 0J%.

where u is the order parameter indicating A-rich or B-rich phase, v represents
the nonlocal effect due to connectivity, e(< 1) corresponds Lo the interfacial

thickness and D{> 1) is proportional to the square of the polymerization index
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334 Y. NISHIURA AND H. SUZUKI

(namely, the length of block copolymer) which is usually quite large. and f{w.n)
is a cubic nonlinearity (typically of the form u — u® — ). It is anticipated that
many other phenomena could be described by similar models to (1.1}, since the
basic mechanisiu creating a variety of patterns is due to the competition betwoeen
local dynamics and nonlocal effect. In fact similar patterns are observed in lignid
crystal, magnetic thin film, and so on. The arguments in this note is valid to

slightly more general system:

uy = e?Au+ flu,v)
in €2,
(1.2) oy = DAv 4 g(u,v)
Ju Jv
on - on HQ.
 On 0 on on o

where ¢ is a nonunegative constant. Although the precise assumptions for (f.¢)
are delegated to [7], they are qualitatively the same as (1.1). A naive approach
to find nontrivial patterns of {1.2) is to consider the limiting case either ¢ | 0 or
D 1 oc. For the latter case it is known (see [5]{4]} that the resulting equalions
become a scalar equation with a constraint of integral type and it is unlikely to
have a stable complicated pattern for such a system, since there are no stable
multi-layered solutions even in 11 case [6. On the other hand we know very little
about the former case in higher space dimensions, since it has been regarded to
be extremely difficult to find the first approximate stationary solutions in the
limit of ¢ | 0. Especiallly we are interested in the behavior of the asymptotic
configuration of the interface T'® (see (2.1)). The aim of this note is to answer (at
Jeast partially) the {ollowing question.

Does (1.2) has an e-family of stationary layered solutions with smooth inter-
face I'S up to ¢ = 07

The answer is obviously affirmative, since we know planar and spherical lay-
ered solutions {see [12][10]). However those domains have very special geometries,
i.e., rectangles and spheres and it is not a priori clear that such smooth interfaces
persist up to € = 0 for generic domains. It turns out that the answer is nega-
tive for generic ones under several hypotheses derived by the formal asympiotic
analysis. Here we only consider the case where I'® is a simple closed curve inside
of Q. (U=, V) is called an e-family of matched asymptotic solutions to {1.2),if it
has an matched asymptotic expansion mentioned in Section 2.

MaAIN THEOREM
(a} (Disk Symmelry) Suppose that (1.2) with n = 2 has an e-family of malched
asymplotie solutions with simple closed smooth interfaces U5 (see (2.1)) up lo
¢ = 0 and that the matching condition (MC')y holds (see Lemmas 3.4.1 and
3.4.2), then T must be a circle.
(b} (Non-eristence ) Moveover under Hypothesis 1.1 in Section 4, (a) implies thal
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the reduced problem (2.26) has no solulions for generic domains Q, and hence
there does not exist associated -family of matched asympiotic solutions.

REMARK 1.1 The hypothesis in Main Theorem (@) can be weakened, in fucl, il
suffices o wssume the existence of principal orders of outer and tner expansions.
The extension fo {n > 3}-case can be done without difficully. More precisely, see
the foriheoming paper [8].

The above non-existence result is not a dissapoiting result and, in fact, it
suggests an important thing about the behavior of the interface as ¢ | 0. Namely,
if some stationary pattern of (1.2) exists up to e = 0, but does not have a smooth
limiting interface, then the configuration of the interface must become fine and
complicated as ¢ | 0. In order to understand the morphology of the complicated
patterns, il seems necessary to apply an appropriate rescaling to blow up the
degenerate situation since there are no well-defined asymptotic limit of interfaces
in the originai framework. The study in this direction is now currently being done
and will be reported elsewhere. The outline of this note is as follows. 1n Section
2 we shall display the expansion of e-family of matched asymptotic solutions.
In section 3 we shall derive (vg)y, = consiani along the interface, which is a
byproduct of the anaiysis of the formal matched asymptotlic expansions of the
eigenvalue problem of Allen-Cahn operator associated with the original system
(1.2). Based on these observations we shall prove the Main Theorem in Section
4. The key ingredient is the Serrin’s result [11] (and its generalizations) for the
over-determined Poisson equation.

2.Matched asymptotic expansion of singularly perturbed stationary
solutions

In this section, we summarize the hypothesis for the stationary solutions which
have interior transition layers, especially, a precise definition of matched asymp-
totic expansion of them is presented. We assume that there exist an e-family of
smooth stationay solutions (U/¢(x). ¥&(z)) to (1.2) with interjor transition layers
such that the interface T%:

1
(2.1) [F={{2eQU(z)= —2-(fz+("v*) + h_{v"))}

is a smooth simple closed curve in R? and have a definite limit 'y with same
properiies as € | 0, where ug are two stable branches of f(u,v) = 0 (see [7]).
Let QF be the regiou surrounded by T and Q5 = O\QF. In some tubular
neighbourhood T'(Tg) of T'g, local coordinate system (s,y) is defined and for
€ T(To)

(22) xr = Pg(.&‘(.’lf)) + y(-‘f')l’(s(ﬂ’))

holds, where s(2) is the parameter measuring the arclength along [’y to the point
on ['p closest to x, v(s) is outward unit normal vector at s, and y(r) is signed
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distance from = 1o I'g that is positive if 2 € Qg . We use the notation u(s,y)
for the representation of u{x) by the local coordinate systemi. Using this loeal

£

coordinate system, ['® can be expanded into
m

(2.3) % =To(s) + y(s,e)v(s), 7{s,6) =D wl: €™ Fmt1(8,€).
k=1

(Us(z),VE(x)) is called an e-family of matched asympiotic solutions when it has
the following expansion (2.4) (matched asymptotic expansion (MAE) procedure).
Roughly speaking, (U¢(x),V*(z)) is expanded separately in two regions QF and
they are matched smoothly at I'*. More precisely we have

(
Ui{z) = quk (z)e* + (2,6} 4+ ™ RE(2,¢)

(2.4) { z € QF
Vi(e) = vif(a)e" +e*VE(a,e) + ™55 (x,¢)

\ k=0

where

L.J( y(fz—d'Y!S.fi) Z Cbi:(é‘(ﬂl), ’y(@l‘) N 7(‘535))8!;7

(28)  BE(z.e) = = ) =t <
0, ly(z) — v(s,€)| > d.

(_mel)mi p (JJ)“ETL5 EJ) ‘.
(26)  VEme)= = @ -sel <d,
0, ly(z) — 7(s.€)] > d,

w(r) € C*(R) is a cut off function such that

(2.7) w(t)=1for 7| < ~]~., A7) =0for || 2> 1,0 <w(r) <1,

[aw]

d > 0 is some small constant, and R{x.g) and §(»,¢e) are remainders. ¢f and
d}f are functions of s and £, an( £ is streiched variable £ = {y — v(s.€))/e. The
coeflicients 'uf vk cﬁi, and d satisfy some equations and relations. We can
obtain these equations by makmg3 outer and inner expansions and equating the
same powers of ¢*. The resulting relations are, what we call, malching condi-

tions between inner and outer expansions and ("'-matching conditions between
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(U£,V5) and (U2, VE). Let fe(s) = v™ + Tjey Buls)er + e™Buri(s,¢) be the
value of VE(z) on T, QF be the region sm]ounded by I'¢, and Q7 = Q\Q},

We display the equations and the relations up to order O(e). Higher order
terms are given by the same procedures.

O(Y) -

Ti(:)t = hi(‘v(?)
(2.8) € QF
DAvE + g(he(v¥),0F) =0

(2.9) vE(s,0) = v*, %%; = 0on 99,
(2.10) (vg Jy(5:0) = (g )y(s,0)

$E(5,0) = J(hy(v*) + ho(v*)) — uF(s,0), @7F(s,Foc)=0
(2.11) _
¥y (s, Fo0) = 0 = ¥ (s, Fc0)

(2.12) 3 (5.0) = ¢5(s,0)

FE + f(he(v*) + ¢E,0%) = 0
(2.13) fel®, 0<s<¢

Dy = g(ha(v*),v*) — glhs(v*) + 65, v7)

FOEGE + [0 =0
(2.14) e
DAv]—}—goii—l—g Ul—-U

(2.15) 'uf‘(s,{}) = B1(s) ~ ('Ug:)y(s,[])'yl(.s), % =0on 99,

(V3 Jyy(8:0)71(8) + (v )y(5,0) + 43 (5,0) =

(2.16) (05 Dy (5, 0071 (8) + (7 )y(5,0) + ¥ (5,0)

£y 0ot = ~Dyof - 1
(2.17) ) Eel®, 0<s<d
1)1/”‘]i - "DD]@E;E - E}i(.gtf} - G']:i:-.



338 Y. NISHIURA AND H. SUZUK]I

7 (s5,0) = —(ug )y (5. 0)mls) = ui(5,0), oF(s,Foo) =0,

(2.18) .
5 (s, Foc) = 0 = ¥ (s, Foc )
(2.19) (ud )y (8,0) + &7 (5.0) = (15 )y(s,0) + 7 (5,0),
where - = g% I = (—0,0), I = (0,0¢), £ is the total arclength of Ty,

it = au (u%.,'i.r&), fgi = %f(h.i('v*‘)—}-qﬁg:,'n*), and Dy {k =0,1,---mj are the
coeflicients of the expansion of Laplacian A in the local coordinate system (s,§);

(2.20) Ap= =Y Dy

Do=%»  Di=-rls)&,  Da=ho—r(s)2E+ ()%,
(2.21)
32 2
o= £z — Wigts — Wik + 01 dm
where ' = ;% and x(s) is curvature of To(s). F*E, G and E*E are defined by
-— 1 dF
PR, 6y = o Zu (5,68 4 7(s,8))e" +§:¢ (s.€)e",
" 1m0 =0
(2.22)
Zv (s5,e€ +7(s,8))e + &2 Z 'd)i (s 5)5)
=0 =0
- 1 d't“ m ™ N
G (65“27"&“?9 Zﬂ(-ﬂff*}’?(bgnf + Y ¢F(s.0)e,
i=0
(2.23)

qu (5,66 + 7{s.€))e’ +522 (35)5)

1=0

e=(

(2.24) Ert(s.6) = %% [DA (Z vie ) (5,68 + (s, EJJ}

1=0

e=0

Here we present the precise form of F'1* for later use in Section 3
I j ,

1% = {5 )y, 0) + JP5(05 )y, 0)Hm (5) + €)
(2.25)
— fOE 4T (5,0) — fOFui(s,0).



STATIONARY INTERFACIAL PATTIZRNS 339

We call the second equation of {2.8) with (2.9} and (2.10) the reduced problem,
that is

( DAGE + glha(vi).vF) =0, in OF
; + (')'1)5
(226) < (i ((,0) =", —~ =10 on o9,
dn
('r"‘aq)y('-""*.o) = ("-:[‘}_ )y(S,O)

3. Asymptotic formula for critical eigenvalues of Allen-Cahn oper-
ator assoclated with Activator-Inhibitor systems

In this section, we consider the following eigenvalue problem

L = dw in €.
(3.1) .

ow

S 0 on Jf.
where
(3:2) ‘= eA 4

fe = %f(UE,V‘S), and (U/°,V¢) is a stationary solution of (1.2) having the
expansion as in Section 2. The information on the spectral behavior of (3.1} is
basic for the study of the stability of (%, V). Iispecially the behavior of critical
eigenvalues (i.e., those which tend to zero as € | 0) play the key role to investigate
the spectrum of the linearized problem for the full system. However in this short
note, we only focus ou the asymptotic expansions of eigen-pairs of (3.1) and their
matching conditions, which gives us an important resull Proposition 3.4 to prove
the Main theorem.

Qur approach is the matched asymptotic expansion method. We divide (3.1)
into two problems as follows;

2Aw™ + fow™ = Nw in Q_,
(3.3)- .
Ow =0 on O£, w” = OF on 1.
on
e2AwT + fiwt = Awt in QF,
(3.3)+
wt = O°f on ¢,
where

m

(3.4) 0 =Y fOus), A= g
k=0 k=1
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e - - . . . . .
QF and I'® are defined in Section 2. ©¢ and A® are determined by (‘!-matching
condition of w® and v on I'¢.

QUTER EXPANSION Let

T

(3.5) wE = Z ekwﬁ:(a') and f¢F = Z € ]“LI
k=0
where
kil 1 dk =
(36) f —k—gg}' fu (Zoc 'iL ZE'U )
= =0 =0

Substituting (3.5) and (3.6) into (3.3)+, we have

Zekﬁwfd + ek z FiEay i Z Z )\m}ji

fe=2 k=0 14 Jmk k=1 1=kl

Equating Jike power of £¥, we obtain the following equations:

k=0: F%y 0 = 0,
k=1: FO%uF 4 FlEed < \wf,

2<k<m: .rﬁ\wA o + Z I"”j: i Z )\iwji,
i r=k 1+y=ki>1

By using induction arguments, we see mf = (0 <k <m)

INNER EXPANSION  We introduce the stretched variable £ in the neighbour-
hood of I'® as in Section 2. Substituting

ZE@A (8,€) and [ = ZF’“*"‘

k=0

into (3.3)¢

T

RIS ES B ol B S N MY
1oy

k=0 Tj=k k=0 k=1 i+ g=k,i>1

where

L m

. 1 d m . ;
V= g S (Ze i (s,e6 +(s,€)) + ) €'¢i(s,€),
. de =0 t=0

Do eF(s el 4 q(s)) + Zs"-zﬁ(s.@))
i=0 ]




STATIONARY INTERFACIAL PATTERNS 341
Fquating like powers of ¢*, we have the following problems for gf
0 -
(.D + ]u (:U - 0

(3.7) | fel®, 0<s<y
Flsitoc) =0,  ¢5(s,0) = O(s),

Q.:k + F‘DCL = Zf?igk i

(3.8) |
. fel= 0<s<t
Cr (8,£0c) = 0, ;;':(b 0) = Brls),
where
(3.9) RE(s,6) = A\ — D; = F'E,

By the similar argument in Fife (1], we can see that the inhomogeneous terms of
(3.8) and their derivatives of any order with respect to s and £ decay exponentially
as |€] — oc. Then noting that ¢F (> 0) are fundamental solutions of (3.7) and
(3.8), the solutions of them are given by

_ dol )
d)g((])

(3.10) &= Gl s)

GEls.€) = 2BL0L(s) + dol€) [(do( 1))

(3.11)
X f;m ( o QBO(T)R?:(.S,T)C?__i(.S,T)) drdt, (1 <k < m).

Finally we define the formal approximation to the solution WE(2) of (3.3)x.

We take a sufficiently small o > 0 and let k.(s) be the curvature of I'*. Define
d >0 by

and W*(z)on QF by

(3.12) WE(z) =<

M
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LEMMA 3.1, Theve exist N > 0 independent of €. such that for oll v € QF
and sufficiently small ¢,

(e7A + J5 = M WE]| < Kem!
holds.

In order to determine @* and A°, W must satisfy the ¢''-matching conditions

(3.13) E(M’,ri)y(s’hf(s’g}) — (¥ s v(s,6)) = &‘m"*"l).‘
which can be rewritten as
{3.14)
(W uls:7(5,2)) = (Wi us 1s2)) = 3 e {500 = G (s,0)} + O™,
k=0

Noting (2.12), we see that (fa'"(.s,O) - f{,”(s.,(]) = () is already satisfied. For (3.14),
we see that

LEMMA 3.2. Each (' -tnatching condition
(3.15) (F(5.0) = ¢ (5,00 =0 (1< k<m)

is equivalent to the formal solvability condition for (3.8);

k
(MC )i <Z €)Ck- nqﬁo(éJ> =0,

£
where Ri(s,@ and g:i(s.,f) are
) RF(s.€) £ € (-05,0)
Ris, €)=
R} (5.€) £ € 10,00)
and
A C(s,€) £ € (~00,0)
Gi(s,€) =
G (s.€) £€[0,00)

respectively, and (-, -)¢ denotes L*-inner product with respect Lo €.

ProOF. Differentiating (3.11) with respect to £ at £ = 0, we have

; koo
%(5)91{(8)-&- : dJO(T)If?:(.S,T)waf(.HﬂT)(lT(lf..

$0(0) bu(0) = J3

GE0.6) =
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Then,

0= (1-.;(&0) — C;(S.,O) = ;30_1{5)- UB@ vE C;BO(T)R;”(.&',T)Cg_i(.s.‘v‘)drdt

k
- —[:cu ?:1 QBU(T)R?-_(S?T")C}:__!-(S,T){[,Tdf'} = <Z Ht(bé){:k—4¢0(‘f)> .
1=1 £

In the following of this section, we study how ©° and A® are determined.
When &k = 1, we have the following result.

LEMMA 3.3. Ay s delermined by (M (); and is given by

hyi{B*) +oc .
(3.16) M= tlylo,0) [t/ [ (dolt)

ProoF. g']i satisfies

e e .0 . | .
C]zt + FSiC;I = ¢) (%)[/\]q’)a: + =], H* = rogy ~ Fii(,b[}
0

and (M ('), is rewritfen as

R __Bols) te 2,
0 = (50 = 20 [ ol

0 . +o0 .
+/_m H+cpg(r.)dt+/0 H‘qﬁo{f.)dt] = 0.

We see that »T = '1 satisfy the next equation;
. i 1

e O

OF(5.6) = HE(5,6) = {(uF )y, 0)0F + (vF ), (5,0) /0% ).

This can be solved as
=+ 0} . ‘ £ | . |
c'bg((oj}d’%m + cﬁo(@/ﬂ Wo(i’-))"'/m OF (s, 7)ol T )drdL.

+ 7

(3.17)  r¥(s,€) =

Differentiating (3.17) with respect to £ at £ = 0. we have

: E(0) -, 1
3.18 PE(5.0) = F. d={0) + =
(9-18) i) bo(0) " ) é0(0)

0 ,
f QF (s, 7)g( 7 )T

Fox
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Using
o _ 4 " a0 o
f [uZ do(r)dr = ¢5(0), [ ao(r)dr = f Jolu, 35 )du
Foo Fox hy(83)
and after some computation, (3.18) can be rewritten as
0 .
[ s m)do(r)dr = 6 (5,0)60(0) — Gol0H 6T (5,0) + (45 )u(5,0)}
Foo
+(v0i)y(s..0)] Jul, B3)d,
h(By)

where o = (A4 (33) + h—(/%))/2. Moreover, noting that ¢7(s,0) = ¢ (s,0), vF
are C''-matched on T (see (2.10)) (so we omit the superseript + of (vg)y) dnd
(2.19), we have

. +o : h...(ﬁg) .
(6,0~ (s,0) = ¢ %((0'3)) [A | ol di + (0)y5,0) e fu(u,ﬁo)d'u}-,

which implies (3.16).

Noting that the inhomogeneous terms of the equation (; and (; are conlin-
uous at £ = 0, once Asis determined, we can regard (; as C%-solution on R. So
we omit " and write {7 as

Q?:ﬁo(fJ
¢o(0)

As a corollary of Lemma 3.3, we have an important consequence.

Ci((s,¢) = O1(s)+ % U l:f (bo(t))™ / do(T)(Ry(s, T)qbo(’r))d'rd?} Ools)

PROPOSITION 3.4,
(vo)y = constant  on Iy

Next, for (M ')y we have

LEMMA 3.5. (MUC)q is equivalent to the following problem;
d2
“_GD + P(s JOD = A9y, 5 € (0,4,
(3.19)
dBq d0g
—{(0) = —{£).
(0) = =2¢0)

where, P(s) is a smooth bounded function of s.

Bo(0) = Bp({), P

Proor. First note that (M), is rewritten as

(3.20) 0= (Ri¢) + RzCo-.%)g = (121C1,<330)5 + {Ralo. do)e
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Substituting the representation of ¢y into the first term of (3.20), we have

(RaCi,dode = i [01(Rido, bo)e + Oo [7 dol€)( Ry (5, €)hol£))

X J$(G0l€))™2 JL (R, 7)ol ) Jdrdlde] = G(Oy),

where

G(©0) = *% S35 G0l €M Bi(5,€)60(6)) S5 (do(1))?

X fw W Rq{s, T)d)o(r))drdtd{

On the other hand, recalling (2.21)., {3.9) and (3.10), the second term of (3.20) is
computed as follows

; Oy [T . 1 oo,
Ra(o, m Ag — I df — b 3:s0
(Radoydohe = 7= | "0 = FL)dule) Pt %(0)] [d0(€)0.:00

—29160(£)0500 — 1 dol£)O0 + (7)) (do)ece (€)O0 — K2 Edo(£)Og

—Hg’)’l (,150({)@0] qu(‘f)dg

I [z\e /Mub (€))2dE — 00,00 [ (d0l€))2d
- 450(0) 20 e 0 ss 0./—-00 0
+ou . +oo |,
0, { / F2(do(€))2dE — (7} )? f GRS

+oo .
+ato))? [ edntEpdolerde | = F(00)
Hence (M C'); is equivalent to

F(Oo) + G(00) = 0,
and this yields (3.19).

REMARK 3.6. (3.19} is a Sturm-Liouwmlle eigenvalue problem with periodic
boundary condition, und the existence and asympiotic behavior of the eigenval-
ues and thfzv ewgenfunclions are well-studied. We denote those cigenpairs by

{ ‘2 7® }n—

By Proposition 3.5, A; and Og are determined. Generally A, and @4_4 (k > 3)
are determined by (M), that is

ProrosiTion 3.7. For each n > 1, (MC (K 2 3) is equivalent lo the
Sfollowing problem

2

Ot P(8)0kes — MU0y = Uhls),  0<s< !

(3.21) -
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with Periodic boundary condition, where P(s8) is the same one appeaved in Propo-
silion 8.5 and Yi(s) 1s a smooth bounded function of s depending on Mg, Ai_y,
Ag”'}, A1, ©pls, ---,Oén}, and . Then Ay and Qp_q are defermined once

A v - . .
Ahe1s s a1 and @;;_3.,---,68  are known. In fact, A, is uniquely determined
by the solvability condition

(3.22) (0,60, =0,

where {-,-)s denoles L%-inner product with respect to s, and then, Op_y is also
uniquely determined by (3.21) with ((—)k_g,@g7l))5 = 0.

Proor. We prove by using induction arguments. Assume that A, and ©;_,
(2 € j < k) are known, and we determine Agyy and Op_y. (MC')pp; is rewritten
as

k+1 .
0 = <Z Ri(81§)gk+]-—i:d)0(f)>
&

i=1

(3.23) -
. . + '
= <Rle7¢o>é + <R2Ck—1,¢50>6 + <Z ff-iCk+1—f-.¢0> :
1=3 £

Then note that the third term of (3.23) does not depend on @, and O, and
Agy1 1s only involved in the third term and the coefficient of Mgy is given by

$o(&)

——=~0q(s). Noting that the coeflicients of O and G_; in the representation of

$o(0) _
(r are 3}2{—% and g—zi% /:(49)0(1,))"2/—; Q.SO(T)(R](S,T)q.bQ(T))def., respectively,

the first term of (3.23) is computed as follows:

+ £

s _ ! ; 2 : -2
(RaGiodole = 3 (o(€)) /D(gf)o(f-n

[@k(Rlcf)G,@go)E + G f

(3.24)
X JL oo Go(T)( Ra(s,7)bo())drdld€] + Shs(s) = G(Ok1) + Secnfs).

Here, G(-) is the same one defined in Proposition 3.5 and Xi_1(s) is a known
function depending on A; (1 <7 <k}, @; (0 <2 <k —2), its derivalives, and so
on. On the other hand, noting that {._; is can be represented by

Cr-1(8.8) = zzg;@k—l(ﬁ) + Zp_1(8.€),

(Zr_1(8,&) 1s a known function independent of ©p_; and Apy} we have

(3.25) (RaGierido), = F(Ouo1)+ (RaZio1, o),
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Using (3.24) and (3.25), we see that {3.23) is equivalent to (3.21). The remainder
of the statement is obvious from Riesz-Schauder theory.

4 Over-determined reduced elliptic problem and the proof of
Main Theorem

Formal asymptotic analysis in Lhe previous sections tells us that the normal
derivative of the C'-matched solution g at 'y is constant along the interface
(Prop. 3.4). On the other hand, ng satisfies the reduced problem (2.26) subject
vg = ¥ on I'g. This is apparently an over-delermined problem and only special
I'y and vy are allowable. In fact, the first part of the Main Theorem in Section 1
is clear from Theorem 2 of J. Serrin {11]. To show the second part, the following
hypothesis is necessary.

HyroTuEesis 4.1. The nonlinear e¢lliptic problem
DAvg 4+ g{h-(vg},v0) = 0 in RA\QF,

vg = v" and (vp), = constani on Tg = 00F

has only axisymmelric solutions.

Under this hypothesis it is clear that the Neumann boundary condition on
04 of the reduced problem (2.26) cannot be satisfied for generic domains. This
completes the proof of the second part of the Main Theorem.
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