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ABSTRACT

A complete classification of dynamics of a population of a inhibitary pulse-coupled
oscillators is presented. The model is based on the work of Mirollo and Strogatz,
but our model has an inhibitory coupling between oscillators which makes a sharp
contrast with the dynamics of the 2bove authors’ model. The main result is that
for a large class of initial conditions, the population approaches a periodic state in
which all the oscillators keep finite size of phase difference (we call it “phase locking
solution” here). For the remaining class of initial data except for nongeneric ones, it
evolves to a periodic state with a cluster or a synchronous state depending on a size
of cluster. The criterion for the classification is explicitly given and can be judged
easily only by the initial condition.

1. Introduction

This work was motivated by the study
of Mirollo and Strogatz' on synchronization f®
of biological oscillators typically displayed
by the flashing of fireflies in perfect unison. S
Their model consists of a population of iden- ”
tical integrate-and-fire oscillators. The cou- ~
pling between oscillators 1s all to all and pul- /
satile: when a given oscillator fires, it pulls %
the others up by a fixed amount, or brings -
them to the firing threshold, whichever is 0
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Figure 1: Functional form of f(¢)
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less. They showed that for almost all initial conditions, the population evolves to a
synchronous state. The main issue of t his paper is to study the dynamics of a population
of oscillators when they interact in an imhibitory way, namely, when a given oscillator fires,
it pulls the others down by a fixed armount. This type of coupling becomes important
especially in models of neural oscillators?

In contrast to activation case, phase lock-
ing states become dominant for inhi bitory f®)
case instead of synchronization. Im fact
generically there are three basins of attrac- ; )
tions; phase locking, phase locking with clus- ;
ter, and synchronization. The precise mean-
ing of each state will become clear at the
end of this section. A complete classification
of initial data according to their asymptotic s k ;
states is done by simple criterions depend- 06, -~ oy 1 o
ing only on initial condition. We consider a
population of N + 1 oscillators and each os- £©) (1- §n) - shift
cillator is characterized by a state variables
z which 1s assumed to increase momotont- | I e
cally toward a threshold z = 1. When z
reaches the threshold, the oscillator fixes and : !
z jumps back instantly to zero, after which : . Fire!
the cycle repeats. Hereafter we assume that : :
z depends only on a phase variable ¢ € [0, 1} 6;=¢;+1-¢,
and evolves according to z = f(¢), where
f:10,1] — [0,1] is a smooth function satis-
fying f/ >0, f7 <0, f(0) =0,and f{1)=1
éeegF);g- ) f" <0, f(0) =0, and f(1) 1) &- pull down

The phase variable ¢ is such that d¢/dt =
1/T, where T is the cycle period. The cou-
pling between oscillators is defined as fol-
lows. If z; fires, then z;(¢)(j # ¢} is pulled
down instantaneously by the amount ||, or
to zero, whichever is more, i.e., z;(¢ +0) =
maz(0,z;{(¢) + €) ¥j # 1. Note that ¢ is al- A .
ways a negative number, Absorption occurs OF,E - Fy 1
when an oscillator is pulled down below zero
level (see Fig. 3 and 4). Namely, when z;
fires, an oscillator z;(j # ¢) is absorbed by
z; if maz(0,2;(¢) + ¢) = 0 holds. We assume that the absorbed oscillators behave in the
same way as z; thereafter. We call such a group of oscillators a cluster. If a cluster of &
oscillators fires, it pulls all the other oscillators down by |ke|. When all the oscillators act
as one, we call it synchronization. Since the interaction among oscillators is pulsatile,
and when an oscillator (a cluster) fires, it instantaneously returns to zero phase, it suffices
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Figure 2: Firing map
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to study the following firing map F' to know the asymptotic behavior (see Fig. 2):

é 3 P
F: ¢f — Ff o = qsf € D(0,1)
ﬁb‘N F.‘N ¢-N
Fy 9(f(1 —¢n) +¢)
F(®) = 1‘?2 _ 9(f(¢1+1:— ¢n) +¢€) g=f! (1.1)
-F;N g(f(dN-1 + 1- ¢n) + ¢)

where D(0,1) is the ordered space in (0,1),ie, D0, 1) = {® |0 < 1 < ¢ < - <
¢n < 1} . It is clear that F preserves order. Also note that one oscillator always sits at
¢ = 0, so the firing map F becomes N-dimensional. F¥{®) stands for the k-iterations
of firing map F, if it can be defined and Ff = F¥(®)(: = 1,---, N) denotes the i-th
component. ®* = (¢],---,d;_,) is called a k-phase locking solution if it is a fixed
point of F*, i.e., F¥(®*) = &*. This notion can be easily generalized to the case where
there are clusters (see Section 3). Our goal is to show the following theorem.

N L1
R Fo OFon . E, 1
absorption
relabeling
O L
=4
0w YU 1

Figure 4: Absorption
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Main Theorem

Suppose an initial condition ¢ = (¢, ¢y, - -

totic state is determined by the followang diagram.

¢ <1-g (-€)

., ¢n) € D(0,1) is given, then the asymp-

m= Min (k)
s.t. ¢N"¢'k <1 —g (-£)

Yes No
(N +1) -
Phase Locking
(Fig. 6) ‘
m
O =g@l+eg) +tg{-(m +1)e)-1
0, <0 o, =0
(N+1-m) - Marginal State
Phase Locking

©,>0

(Fig. 7)

Figure 5: classification of asymptotic dynamics

Synchronization

(Fig. 8)




553

The vertical direction

. d L
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Oscillator Index

Figure 6: Phase locking solution

Oscillator Index Oscillator Index

Figure 7: Phase locking solution with clus-

Figure 8: Synchronization
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We shall prove Main Theorem in the subsequent sections. In Section 2, (N + 1)-phase
locking case (the left-half part of the diagram) is treated and the remaining part is proven
in Section 3.

2. Convergence to phase locking state

We shall prove in this section that the oscillators tend to a unique phase locking state
(see Fig. 6) if there does not occur absorption at the first firing, i.e., the first left option
in the diagram of Main Theorem. The following lemma tells us whether an absorption
occurs or not at firing, and how many if it does.

Lemma 1
(1) No absorption <= ¢y < 1 — g(—e¢)

(2) m oscillators in @ are absorbed by F

<=3m =max{i} st  ¢n— i1 >1— g(—e)

Proof of Lemma 1
See the definition (1.1) of the firing map F'. ]

We focus on the case (1) of Lemma 1. The convergence proof is divided into two parts;
first there never occurs absorption for subsequent firing and then show the existence of
globally attracting periodic point of the map F. The next lemma shows the first part.

Lemma 2

If Fy > 0, then, F¥ > 0 holds for any k > 2.

Proof of Lemma 2
We prove this by induction.
Suppose that there exists a [ such that F* > 0 for any £ < I. Then

Fy
Fl
Fl+l(@) - F '2
Fy
Hence,
Y = g(f(1 - Fy) + ).
Using the monotonicity and convexity of g, we have
Fy = gUf(FNA+1-F)+¢)
< g{l+e)
< 1 —g(—e)
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Applying f on both sides, the inequality becomes
1-Fy > g(—¢)
f(1-Fy) > —e
fl=F)+e > 0
Thus
A > g(0) = o,
which completes the proof.

The firing map F turns out to be contracting everywhere as in the following lernma.

Lemma 3
Let DF|q be the Jacobian matriz of F at ®, and 0i(®) (i =1,---,N) be the eigen-
values of DFg. Then,
rn?x(]o,(@)[) <1

for any & € D(0,1).

Proof of Lemma 3
In view of Eq.1.1,

OF; , .
— ~g(f(dicy + 1 —dn) + &) f'(Dis + 1~ dn).
Odn
Letting A; 2 9 (fldics +1~¢n)+e) f'(di1 +1— dn). We have
oF, ,
Ba. = G f(Bici +1—dn)+€) - f(disi +1 - dn)
= h (2<i<N)
aF; S,
3% 0 (J#i~1N)
Hence
0 o en 0 —hy
hg —-—hg
DFlg=1] o : :
" . 0 —"hN_;
6 .« 0 hny —hy

The next sublemma is useful to compute the characteristic polynomial of DF.

Sublemma 1

~A 0 0 ~hy
hy . o —hy
det(DF — M) = (=1)'hy - hy_ig1-| 0 hy "~ 0O : ,
o=A =hyoin
0 0 hy. —P
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where
B MY L AN F Ay AN g A ko Ay Ry

P;
Ry hn_iqa

(1<i<N-2)

Proof of Sublemma 1  This can be proved by induction, so we leave the details to
the reader. ]

Using Sublemma 1, we have

-A =k
hy —Pn_2
= (=" hy----- ha - (APn_y + hy - hy)

= (=N 4 AV by Ay AV b Ry ).

Hence the characteristic equation becomes

det(DF = M) = (=1)""%.hy-- - hy-

AV o b AN AN A b bRy ha Ay A 4 Ry che oAy = 00 (21)
We can estimate the modulus of roots of Eq.2.1 with the aid of the following sublemma.
Sublemma 2 {Kakeya-Enestrém’s theorem? )

Suppose the coefficients of the equation f(z) = agz™ + a1 '+ - -+ ap 1+ a, =0
are real and satisfy

ag > > > ay > 0,
then the modulus of each root is strictly less than 1.
Since it holds that
hi = g’((f(cb.-_l +1—¢n)+e) fldior+ 11— ¢n)

9 (fldica +1—dn)+¢)
F{f(ici +1—¢n))

< 1,

the coefficients of (2.1) satisfy the hypothesis of Sublemma 2, which completes the proof.

Using the above lemmas, the following goal of this section is an immediate consequence.

Proposition 1

® € D(0,1 — g(—¢))

1

=3¢ =| " | €D(0,1-g(—¢), lim F*(®) = ¢*
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Proof of Proposition 1
By Lemma 1, the hypothesis of this proposition indicates no absorption. So by Lemma
2, we have for any &

2 €D(0,1-g(—e) = F(®) € D(0,1—g(—¢))

Hence by Lemma 3 and the principle of contraction mapping, there exists a unique fixed
point ® which is globally asymptotically stable in D(0,1 — g{—e¢)) B

It should be remarked that the criterion (1) of Lemma 1 is satisfied for any ¢n as
e | 0, which implies that the basin of attraction of (N + 1)-phase locking state covers the
whole initial space as € | 0.

3. Phase locking with cluster and synchronization

When an absorption occurs at first firing (i.e., the right option in the diagram of Main
Theorem), the subsequent dynamics is different from that of Section 2 due to the existence
of cluster. Suppose that m oscillators are absorbed by firing, we have a (m + 1)-cluster
at phase 0 at the next moment. Since the members of the cluster behave in unison, we
regard this to be one oscillator with strength (m + 1)e. The number of oscillators is
therefore reduced to N + 1 — m with new labelling ¥ =* (¢, -,¢¥n_m ). It may happen
that there occurs another absorption until the next firing of cluster, and another cluster
may be formed. However this is not the case, namely

Lemma 4

If m oscillators are absorbed by the first F', then,

Ff(E) >0
holds for 1 <Vk < N —m
Proof of Lemmma 4
This can be done in a parallel way to that of Lemma 2, so we omit the details.

This lemma implies that if the absorption occurs again, it must be done by the cluster’s
firing. It is convenient to define a firing map H of cluster:

Y H, ¥
e '(;b.2 - I‘{? H; = H;(¥), v =
: : ¢N—~m
d’N—m HN——m
H, g(f(L —dn_m) + (m + 1)e)
H, g{f(1 + 1 —bn_m) + (m + 1)e)

Hyorn 9(FBNomor + 1 = rym) + (m 4+ 1)e)



5568

In view of the above observation, it is reasonable to consider a composite mapping R

defined by
Ry
R(T) = : = Ho FN-m(¥).
RN-—-m

R is a sort of Poincaré Mapping consisting of one round of firings of oscillators. In
what follows we study the mapping R. Note that the next absorption, if it happens, can
be captured by R owing to Lemma 4. The mapping R is also a contracting one.

Lermma 5

Let 6;(9) (:=1,-- N —m) be the eigenvalues of DR|y, Then,
max |&;(TP)] < 1
forany ¥ € D

Proof of Lemma 5

Noting that H satisfies a similar property as in Lemmae 3, and that R is a composite
mapping of F" and H, we easily see the conclusion. ]

After a cluster is formed by the first firing F', we need to know a criterion on whether
the absorption occurs or not. The next result gives a non-absorption condition.

Proposition 2
gl +e)+g(=(m+1)e) < 1 (3.1)

2N
=7 ¢ = ?’bf € D(0,g(1+¢), Jim RN(¥) = ¥
YN -m

Proof of Proposition 2
We prove this by induction. Suppose that there occurs no absorption up to k — 1.

Then

¥ (4
R ‘!f"' = (H o FN-m) 0 g*-! wz’
YN -m YN -m
Thanks to Lemma 2, there are no absorption by applying FN~™,
P nf
ns

Let FN-m o Rk~1 Ib‘z

'ﬂbN—-m W,ﬁf-m
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Then

M
In view of Lemma 1, it sufficies to show the following for the non-occurrence of absorbing
by H:
Mhem < 1—g(—(m+ 1)e).
Since the state vector {(n¥,---,n%_, ) is obtained right after FN=™ it holds that

Them < g(l+e€)

Using the hypothesis, we obtain

Mem < 1 —g(=(m+1)e).

Thanks to Lemma 5 and the principle of contraction mapping, we conclude that there
exists a unique fixed point ¥* of R which is globally asymptotically stable. B

Thus if the criterion (3.1) is satisfied, we don’t have absorption any more, and all the
orbits approach a phase locking solution with cluster (see Fig. 7).

Suppose the inequality (3.1) does not hold, the oscillators, in general, eventually ap-
proach synchronization. When we regard the first component R;(¥) as a function of ¥,

we denote it by R(1).

Proposition 3

(1) g(1+e)+g(=(m+1)e)>1 = 0<R(h) <1,
(2) gl+e)+g(—(m+1)e)=1 = 0<R() <1,

where R'(1,) is strictly bounded away from [ and R(0) = iir&f?(l,b]).

(0)
(0)

A

@ 0
R 0

1

Proposition 3 gives us the remaining part of the proof of Main Theorem as follows.

In case of (1), there exists k such that R*(1;) < 0, which implies that absorption occur
again by finite times operating of . Moreover, it is clear that if g{1+¢)+g(—(m+1)e) > 1,
then g(1 +¢€) + g{~(n + 1)¢} > 1 for Yn > m. Therefore synchronization must be reached
by finite firing (see Fig. 8).

In case of (2), since £(0) = 0, absorption doesn’t occur by finite times firing of R.
Furthermore, since the distance of phase between the cluster and other oscillators tends
to zero as k — 400, so it is not a phase locking solution. We call such a neutral solution
a Marginal solution.

Proof of Proposition 3
Differentiating each component of F(¥) by 1, (denoted by ’), we obtain for F(¥):

{ Fy = ¢(f(dr+1—dn-m)+e)- Fi+1 = Pnem)
FI =0 (i#2)

il
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Similarly for F*(¥),

{ (F3Y = gU(FB+1=Fyon) 40 [ (th+1 = $n-m)
FI'= 0 (i+#£2)

We have in general the following:

{wﬁ'=1
(FY = 0 (i#1)

{(Ffjﬂ.)’ = GUE "+ 1= FT) o [(F7 41 = ) - (57

)
(7)Y =0 (t#£7+1, 1%

J
(FNR) =g (F(FR RS + 1= Py ™) ) fUPN 1= BT (SRR

From R;(¥) = g(f(1 — FJ=™) 4 (m + 1)¢) and the above formulation,
Ryp) = ¢(f(1—FRZm) +(m+1)e)- (1 — Fy=m) - (= FRIRY
= ¢'(F(1 = FyZ7) + (m+1)e)- f'(1 - F{ZT)
GUFENTRS + 1= U + @) PRV + 1 - By =) (P

Noting that
i

f'(X(z,bﬂ) = g’(f(X(%bl)))
and
’ ne) - f’ — Qf(f(X("'bl))+n€)
g'(f(X () + ne) - [(X()) 7 (FX(@))
< 1,
we have

g1~ FT) + (m+1)e) - f(1 - FyTT) < 1
GUENIT + 1= Fy ) + o) (FRZRS +1 - FT) < L
~ Moreover, we can obtain by induction
(Fi'Y <1  j=2,,N-m
which impies that )
R) <1

for both cases (1) and (2). The positivity of R'(1);) is easily seen from the asumption for
f and the above discussions,

Next let us find the value of R'(0). Again by induction we can show that when t; | 0,

Fi=Fi, j=12-

Hence,

FU-m = g(f(FE-m 41— F{-m )+ ¢)
= g(1+¢)
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For the first case (1), we have

R(0) = g(f(1— F{Iy)+(m+1)e)
= g(f(1 —g(1 +€)) + (m+1)¢)
< g(f(g(=(m + 1)e)) + (m + 1)¢)
= 0.

Similarly for the second case (2)

R(O) = o(f(1—g(l+€)+(m+ 1))
g(f(g(=(m + 1)€)) + (m + 1)¢)
= 0.

Thus we complete the proof. L
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