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Coexistence of Infinitely Many Stable Solutions to
Reaction Diffusion Systems in the Singular Limit
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Division of Mathematics and Informatics, Faculty of Integrated Arts and Sciences,
Hiroshima University, Higashi-Hiroshima 724, Japan

1. Introduction and singular limit slow dynamics

Recognition stems from realization of the separation boundary between two different
physical or chemical states. In other words we can observe natural phenomena through
the emergence and evolution of the interface between these states as in solidification,
combustion, chemical reaction, and biological patterns. The interface studied here results
from the balance between two opposing tendencies: a diffusive effect and a (physical or
chemical) separation kinetics built in the system. The former attempts to smooth out
the inhomogeneity as in the heat equation, and the latter drives the system to one or the
other pure state such as solid or liquid (see, for instance, Fife [19] for details). Turing’s
contribution [58] is one of the pioneering works related to the onset of spatial patterns
through a cooperative work of diffusion and separation kinetics. Besides the existence of
these two tendencies, another key ingredient to produce interesting interfacial pattems is
the differences of the strength of the above mixing and unmixing effects among species
involved in the system. In fact, reaction diffusion systems for two components u and v,
which are the main concern in this paper, can be classified formally as

(1) There is a difference in the diffusion rates of # and v;

(ii) There is a difference in the reaction rates of u and v;

(ii) There are differences in the diffusion and reaction rates of z and v,
ie., a combination of (i) and (ii).

Steady interfacial patterns, which usually originate in the onset of symmetry breaking
patterns through Turing’s diffusion driven instability, are commonly observed in the first
category. A typical example is an activator-inhibitor system describing morphogenetic
patterns (see Meinhardt[38] and Murray [40; chapters 14 and 151). Propagator-controller
systems, including a simple skeleton model for the Belousov-Zhabotinsky reaction, lie
in the second category (see, for instance, Fife [18], and Keener and Tyson {33]). Layer
oscillation ("breather”) is one of the characteristic phenomena in the third category (see
Nishiura and Mimura [46]).
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In this paper we focus on the first category and consider the following system in
one-dimensional space:

duy = Uy + flu, v) (1.1a)
m [

v = Dvex + g8, v) (1.1b)

Uy =0=vy, on g, (1.1c)

where I is the unit interval (0, 1), 5 denotes the ratio of reaction rates of u and v, and &2
and D are the diffusion coefficients of u and v, respectively. We assnme that0 < s << 1
but D = 0(1), i.e., (1.1) belongs to the first category.

Although & = O(1) is a typical situation in this category, the main results hold for
the wider regime where /8 = ¢(1) as ¢ | 0, in particular, one can take § = ¢% with
0 < o < 1 (see Remark 2.8). The nullclines for typical f and g are drawn in Figure 1.1;
f = 0 is of sigmoidal shape; g = O intersects with f = 0 transversally, and f > 0, g > 0
in Jower regions of those nuliclines. More precise assumptions will be stated at the end
of this section.

Figure 1.1.

One of the most important features of the nonlinearity is the bistable nature of f,
Namely, for a fixed v, the kinetics u, = f(u, v) drives u toward either the lefi-end zero
or the right-end zero of f = 0 depending on the initial data. This separating force causes
the emergence of transition layers when the initial data is distributed in spatial direction
(see Figure 1.2(a)). It turns out that the width of the resulting layers becomes O(s).
Then these layers start to propagate slowly (O(g/6)-speed) in some directicn, but this
wave can be blocked at some stage by the inhibitor v, and settles down to a steady state
(see Figure 1.2(b)), since v can diffuse much faster than u and make an environment
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that controls the motion of u. Note that the ratio of unit time scales of Figures (a) and
(b) is 3 : 40, i.e., layers propagate very slowly. Our main concern is the stability of such
a layered solution obtained as the final pattern in Figure 1.2(b).
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The basic question is “ How many such stable layered solutions and what do they look
like? ” The answer is, which is our final goal, is really remarkable, namely,

Main Theorem. The number of non-constant stable steady states of (1.1) becomes
“infinite " in the singular limit ¢ | 0. In other words, for any large number N, one
can find an &g such that (1.1) has at least N asymptotically stable steady states for

0<e<egp
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In fact we will prove in Section 3 that for an arbitrary number n, the normal n-layered
solution (see Corollary 3.9) as in Figure 1.3 becomes stable for smail &. Throughout the
paper we use the word “stable” in the sense of “asymptotically stable” in an appropriate

normni.

uE(x)
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Figure 1.3.

Apparently this makes a sharp contrast with a scalar reaction diffusion equation.
Sy = E2uzy + f(u), uy =0on al, (1.2)

where f is typically a cubic-like function of u. It is known (Casten and Holland {10],
and Matano [37]) that any non-constant solution of (1.2) is, if it exists, unstable. If
some constraint (for instance, mass conservation) is imposed or (1.2), then (1.2) may
have a unique (up to reflection) non-constant stable solution with one internal transition
layer (see Carr, Gurtin, and Slemrod [8]). However, all the remaining multi-layered
solutions are unstable. A natural question is “What 1s the mechanism that causes the
above difference between scalar and system?” It is obvious that the second component
v somehow controls the beliavior of u, but in what manner ?

In order to see the role of the controller v more clearly, we shall derive a singular
limit slow dynamics from (1.1) in a heuristic way. Hereafter we assume for definitness
that (f, g) is of type (b) in Figure 1.1. The dynamics of (1.1) consists of two stages
with different time scales; outer dynarmnics (phase separation process) and then followed
by the slow layer dynamics (propagation process). Let (ug(x), vo{x)) be a smooth and
moderate initial data, then the diffusion term s2u,, could be neglected for a while until
uxy becomes sufficiently large. The resulting outer dynamics is

oU, = f(U, V)
t=7 (1.32)
Vi=DVy +gU,V)
with
Ve=0 on al. (1.3b)

If layers move slowly compared with the relaxation time of (1.3) (see (1.11)), we can
expect that the solution of (1.3) approaches a steady state in regions away from layers:
0=FU,V)

(1.4)
0 =DV, +gU,V)

Al
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Since f is of bistable type for a fixed V as in Figure 1.1, U is attracted to either u = h_(v)
or u = hy (v) branch everywhere except in neighbourhoods of finitely many points {¢;}%_,

for generic data. Hence, to the lowest degree of approximation, (1.4) can be rewritten
as

0 =DVyr + Gop(V) (1.5)

with (1.3)p, where @ denotes a collection of layer positions {g;}? , (0 < ¢ < ¢ <

+ < ¢p < 1), and Gg(V) is equal to either G_(V) = gh_(V),V) or G (V) =
g(h4(V}, V), according to the chosen branch, on each subinterval partitioned by {edi.,
G+(V) (resp. G_(V)) is defined for v < V (resp. v > v), positive (resp. negative), and
strictly decreasing (see Figure 1.4 and Remark 1.1).

GUV)

Y
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<l

G.(V)

Figure 1.4.

Since Go has discontinuities at layer positions, we say that V is a solution of (1.5) if and
only if it satisfies (1.5) in a classical sense in each subinterval as well as (1.3b), and it
is matched in C'-sense at each layer position, i.e., the right and left limits coincide each
other up to first derivatives. The associated U/-component has jump discontinuities at
@i’s where two stable branches are switched. Note that (1.5), in general, does nof have
a solution for arbitrary partition @. In fact, even for mono-layer case (n = 1), @y cannot
be arbitrary close to boundary points 0 and 1, because |G.(V)] are bounded away from
zero (see Theorem 2.1). On the other hand, if (f, g) is of bistable type (Figure 1.1 (c)),
G4 has a unique zero respectively, and hence ¢; can be taken arbitrarily.

After the completion of outer dynamics, we move into the next stage: the process
of layer propagation. The diffusion term &%y, plays an important role. Once (x, v)
approaches a solution of (1.4) in outer region, it is supposed to be held rigidly there,
since we assume that layers propagate slowly. Therefore we can localize our analysis in
the neighbourhood of each layer position to derive the propagation dynamics. We shall
introduce the following stretched coordinate and slow time scale to study the dynamics
of u instde of thin layers.

Let ¢ be an arbitrary layer position and define a stretched coordinate y and a slow time
s

t (1.6)

-
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The «-neighbourhood I, = (p — k, @ + &) of x = ¢ is stretched to I, = (—«/g, «/é).
What we want to know is the time dependence of ¢, and it turns ont that ¢ becomes a
function of slow time s. In fact, noting the relation,

9 £8 1dpd a 19

________ d —— ——

8t 8ds edtdy ax £y’
the first equation of (1.1) becomes
8
Elts — ~@ildy = Uyy + f(u,V(p + &y)). (1.7a)

Here v is replaced by the solution V of (1.5). In view of the second term of the left-hand
side of (1.7a), we see that it is natural to regard ¢ to be a function of s instead of ¢.
Then (1.7b) becomes

Ells — Qsity = Uyy + @, Vip+ey)). (1.7b)
Taking a formal Limit of (1.7b) as £ | 0, we have
uyy + q)suy +f(u, V(ga)) =0 on R. (1 .8a)

The stretched interval I, becomes a whole line R in this limit and the boundary conditions
become

u(F00) = ha:(V(p)) ( resp. hx(V(9)) (1.8b)

if the outer solution to the right of x = ¢ is attracted to the branch u = & (V) (resp.
h_ (V) ). Bereafter we focus on the former case (h;-case). It is well-known (see, for
instance, Fife and McLeod {22] and references therein) that (1.8) has a unique solution
u = u(y; V(¢)) provided that

¢s = c(V(g)) (1.9)

holds, where ¢(-) is, what is called, the velocity function of traveling waves for the
bistable nonlinearity f. Typically ¢ is a strictly monotone increasing function of V and
has a unique zero at v = v* (see (A.2)). In fact, when f is given by

f@,Vy=u(l—w@m-yV), (1.102)

the solution and its velocity function with u(—o0) = 0 and u(oc) = 1 are uniquely
determined as

1
u(y) = %-:- > tanh (2%/5) (1.10b)
c(V) = V2V — %). (1.10c)

In terms of original time scale £, (1.9) becomes
€
@r = Ec(V(qp)), (1.1D)

which shows that each internal layer moves slowly compared with the relaxation time of
the outer dynamics (1.3) so long as ¢/§ = o(1) as ¢ | 0. Note that, when § = O(g), the
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motion of ¢ is not slow for small ¢, hence the associated dynamics becomes different
from (1.12) below. See the discussion in Section 5.

Summarizing the above discussion, the slow dynamics for 7 layers, to the lowest degree
of approximation, is given by

(@) = (=1 e(V(pi(s))) (1.12a)
DVix + G, (V) =0 (1.12b)

with the ordering property
0<o1(s) <a(s) <--- < gp(s) < 1, (1.12c)

where @,(s) = {@1(s), w2(s), -+ -, Pa(s)} denotes the locations of n layers. Here the
coefficient (—1)"~1 of (1.12a) comes from the assumption that Gg, (V) is equal to
G_(V) on the first subinterval (0, p;(s)). Note that (1.12b) has a unique solution for a
given @, (s) because of (1.22). '

As far as the number of layers remains unchanged, (1.12) can be regarded as a system

of nonlinear ODEs with respect to (;, 92, -+ -, ¢s). However (1.12) has several quite
different features from usual ODE systems. Firstly the definition domain for &, =
(p1,---, ¥n) is not a priori clear since the vector field (1.12), is defined only on @,
where (1.12b) is satisfied. In fact, as was remarked earlier, the solution of (1.12) does
not always exist for an arbitrary @, with (1.12c). However it turns out in Section
2 that (1.12) is well-defined for any type of nonlinearity in Figure 1.1 at least in a
neighbourhood of a critical point &}, defined later on, which is sufficient for the study of
local stability of it. Secondly the number of unknowns may decrease when time evolves.
Namely, two layers may collide with each other and disappear after that. This reminds
us what is called the coarsening process in solidification theory. In Figure 1.5 there are
four layers initially, however, after a finite time, two layers collide and disappear, then
approach two-layered solution. Figure 1.5(a) shows the orbits of (1.12) with n = 4,
and Figure 1.5(b) shows the u-profile of the solution to the original system (1.1) for the
corresponding initial data.
Despite this singularity, the solution is well-defined even at collision points, and can be
continuated after that, since the Cl-matching conditions do not break down at the hitting
time. Taking into account this reduction of layer number, we see that, when we start
with an N-layered solution, more natural definition domain for @, is given by

N
My =) Mp, (1.13)

n=1

which is finite dimensional, where M, is defined by
My = {®p} there exists a solution of (1.12b) for @, }. (1.14)
The whole space for (1.12) is apparently given by

o
Moo = | J M (1.15)

n=1
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which is an infinite dimensional space. Sometimes it is more convenient to consider
the pair (®,, v(®)) instead of only @, where v(®) denotes the n-dimensional vector
(V(p1), Viga), - - -, V(gn)), since the motion of each layer is determined by the value of
V there. We use the same notation as before for this new definition such as

M, = {(®,, v(P,))| there exists a solution of (1.12), for @, }. (1.16)

We call M, the slow manifold for n-layered solutions and My, the slow manifold for
(1.1). It may not be appropriate to call My, Moo *manifold”, since they are the union
of manifolds of different dimension. However we abuse this terminology to call these
objects. Note that the velocity of each layer is determined locally by (1.12),4, however
®i(s) have strong linkage with each other through the relation (1.12), for the controller
V, which is a nonlocal relation of them.

It should be noted that, for a given number of layers, there is a unique critical point
for (1.12). In fact suppose that @} = (¢}, -- -, @) is a critical point, then V(gp}) = v*
because of c(v*) = 0. By using a phase plane analysis for (1.12);, which is glued at

. dG . . .
V = v*, and the assumption -—&‘—f- < 0) , we can prove without difficulty that there is
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a unique orbit that rotates around (v*, 0) in the phase plane { g] (resp. [g-] and half)
times depending on n being even (resp. odd). We call this unique critical point ©}
the normal n-layered solution for the singular limit slow dynamics (1.12). The normal
layered solutions -are important, since they seem to form the attractor of (1.12).

Conjecture. After the coarsening process, any solution of (1.12) approaches one of
the normal layered solutions {@}}°0 .

When the number of initial layers is less than or equal to 2, this is true (see Nishiura
and Suzuki [48]).

Now we are ready to answer the question conceming the role of controller v. First
we consider the scalar equation (1.2). Since there are no controllers in this case, the
associated slow dynamics consists of only (1.12a) with V(¢;(s)) being equal to some fixed
value £, Recalling (1.10b), we easily see that internal layers cannot persist as a steady
state, since they steadily move with constant velocity unless & = 0. Even for £ = 0, they
are neutrally stable, becavse arbitrary positions are equilibrium points of (1.12a). Recent
progress on slow motions or metastable patterns (see Carr and Pego [9], Fusco and Hale
[26], and Alikakos, Bates, and Fusco [2]) which gives us a more accurate approximation
than (1.12a), shows that, when & = 0, layers are not neutrally stable but move with
transcendentally small velocities. In any case layer structure cannot persist without a
controlier V. Then the guestion is how the controller V stabilizes the layer structure.
The key for this lies in the slow manifold M, on which interfaces move around. In
order to see the role of the controller and slow manifold more clearly, we digress a little
bit from (1.12) and conmsider intuitively how we can stabilize a mono-layered solution
(Figure 1.6 (a)) of the scalar equation

Sty = 2ugy + f(u, V) (1.17a)

with f being given by (1.10a). Note that v* = 1/2 in this case.
A naive way to stabilize this layer is to control the area A = / udx so that it approaches

1
neither 0 and 1. To do this, we add the following auxiliary equation to the scalar equation
(1.17a) so that the scalar controller V = £ steers u toward an internal layer solution with
the assigned area A with 0 < A < 1.

df _ e 1
= (./!udx A) {3 2'), (1.17b)

Similar arguments to derive the slow dynamics (1.12) also work for this system (1.17),
and the resulting one is given by

@s = c(f) (1.18a)

3

—2¢~¢—A—§=0. (1.18b)
Since the area of the corresponding u-profile is equal to 1~ ¢, (1.18b) is easily obtained
by computing the right-hand side of (1.17b). One can regard the scalar relation (1.18b)
to be a slow manifold M in (g, £)-space. Apparently (1.18) is equivalent to the scalar
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Since the velocity function ¢ is strictly monotone increasing, we see from (1.19) and
v* = 1/2 that ¢* = 1 — A is a unique critical point which is globally asymptotically
stable ori M. Note that the area of the corresponding u-profile is equal to A as we
expected. Although the above introduction of (1.17b) looks very artificial, it is possible
to derive it in a natural way from (1,12). In fact, when D becomes sufficiently large, we
can show that V tends to be flat (see {41] and [30)), i.e., a constant function in spacial

direction, which is denoted by V = &(s). On the other hand j Gas)(V)dx = 0 always

1
holds because of Neumann boundary conditions. We, therefore, have the following
relatton

f{ Go)(E)dx=0 (1.20)

in the limit of D 4 oo instead of (1.12b). It is clear that, when g(u, v) = u—(v—1/2)—A,
which is one of the typical cases, (1.20) coincides with (1.18b).
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The above discussion is easily generalized to multi-layered solution; for instance, if
there are two layeres as in Figure 1.6 (b), then the asscciated slow dynamics is given by

(p1)s = c(8)
(@2)s = - c(§) 1 (1.21)
O0=(p2 — 1) — (5—5) - A.
A A1) . ) cxer .
Apparently (@1, ¢2;8) = (1 -3 1+ = 5) 1s a unique equilibnum point of (1.21),

which comresponds to double-layered solution. However, this is not stable, since any
translate of it with keeping ¢ — @1 = A and £ = 1/2 is again an equilibrium point,
Namely there exists a continuum of steady states for (1.21). This suggests that scalar
controller £ is not sufficient to stabilize two layers simultaneously. One may guess that
the controller should have n degrees of freedom in order to control n layers. This is true,
in fact, if we add another appropriate scalar variable 7 to (1.21) which controlls the sum
of ¢; and ¢, (the difference is already controlled by &), then the resulting system has
a vnique asymptotically stable double-layered solution. In view of the slow dynamics
(1.12), the controller V is a function of x (i.e., it has infinite degrees of freedom), hence
V has a potentiality to control arbitrary many layers. In fact, we will see in Sections 2
that all critical points {®;} of (1.12) are stable at least Iocally (although the discussions
in Section 2 is restricted to the double-layer case, the generalization to n-layer case is
straightforward by using the results in Section 3.).

Summarizing the above discussions, we can say that the slow manifold M, forms a
field for ® where the unique equilibrium @} sits at the bottom of the local basin.

Thus the singular limit system (1.12) admits the coexistence of infinitely many stable
solutions simultaneously. However, when £ becomes positive, this is no longer true, in
fact, the number of the steady states of (1.1) becomes finite for a fixed £ > 0, and so is
the number of stable ones, although it goes to infinity as & | 0. This reduction of number
is caused by the diffusion effect £2uy, which reduces the precision of discrimination of
different layers. To see more clearly, we consider the scalar reaction diffusion equation
of bistable type on R

Suy = szu.u + f(u),

where f is a cubic-like function such as (1.10a) with V being fixed to be a constant.
Note that this simplification is plavsible in the following discussion, since the controller
v is close to a constant in a small neighborhood of layer position. Set an initial data
up(x) which has several layers within O(g)-distance like Figure 1.7.

As time proceeds, these layers merge into a mono-layered travelling front (see, for
example, Fife and McLeod [22]). On the other hand, if the mutual distance of layers
are larger than ¢, say O(c|loge|), these, in general, stay apart. This suggests that the
resolution of layers for the original system (1.1) is proportional to the size of .

The arguments so far have been mainly focused on the singular limit system (1.12)
and the dynamics on its slow manifold.
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However, it is, of course, not obvious that how the dynamics of (1.12) is related to that
of the original system (1.1) for small £. As far as stability is concerned, the Singular
Limit Eigenvalue Problem (SLEP) method originated in Nishiura and Fujii [44] gives us
a satisfactory answer, in fact, we have a commutative diagram as in Figure 1.8. Namely,
a formal linearization of the singular limit slow dynamics at ®} gives us a rigorous
result about the stability of normal n-layered solution to (1.1) for small e. This not
_only supports the validity of the limiting slow dynamics conceming local flows near

equilibrium solutions, but also is quite useful in practical sense, i.e., formal stability
analysis of the limiting dynamics gives you a correct answer for the original system
(1.1). We shall illustrate this more precisely in Section 2. It turns out that perturbation in
outer region decays quickly, however perturbation at layer positions, essentially related to
shifting the location of layers, behaves more slowly and delicately, and hence needs more
precise analysis. Loosely speaking, the singular limit slow dynamics essentially describe
the locus of each fully developped layers after outer part settles down. Accordingly,
the linearized spectra at a layered solution to (1.1) is divided into two parts: noncritical
and critical eigenvalues, where critical ones tend to zero as ¢ | 0 and the stability is
determined by the behavior of finitely many critical eigenvalues, the number of which is
proportional to that of layers. The SLEP system corresponds to the limiting eigenvalue
problem for those dangerous perturbations concentrated at layer positions. Moreover
we will show in Section 2 that the formal linearization of the limiting slow dynamics
coincides exactly with the SLEP system.

The SLEP method is very close, in sprit, to the Lyapunov-Schmidt method in bifurca-
tion theory in the sense that it enables us to reduce the linearized problem of (i.1), which
is infinite dimensional, to the finite dimensional problem the size of which is proportional
to the number of layers. In other words, the entire problem is contracted to the one on
layers. In higher space dimension R", the problem can be similarly reduced to the one
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on the interface, which is a (n — 1)-dimensional hypersurface in R”, however it is no
more a finite dimensional problem. In fact it becomes a PDE problem associated with
infinitely many number of critical eigenfunctions. We shall discuss more about this in
Section 5.

Apparently the linearized eigenvalue problem of (1.1) at a layered solution (see (3.12))
degenerates in a singular way and its coefficients have discontinuities at layer positions
as ¢ § 0. Moreover the associated eigenfunctions with critical eigenvalues, which control
the stability properties and bifurcation, do not remain in a usual function space, say L2,
when £ | 0. Technically this is the main obstacle to overcome. The basic idea of the
SLEP method lies in that those dangerous critical eigenfunctions can be characterized
as distributions by means of appropriate ¢-scaling in the Jimit of ¢ | 0. Especiaily,
in one-dimensionai case, they become a combination of Dirac’s point mass distribution
on layer positions. The linearized eigenvalue problem is well-defined vp to ¢ = 0
by this characterization. Also the idea of the SLEP method is free from the forms of
nonlinearities, boundary conditions, and the space dimension (see Section 5).

There are several different approaches for the stability problems of large amplitude, es-
pecially, singularly perturbed solutions: One is the stability index developped by Alexan-
der, Gardner, and Jones (see [1] and [27]). Making use of a topological approach, they
presented a beautiful framework of counting the number of critical eigenvalues for a
general class of systems in one-dimensional space, however their method seems inade-
quate to keep track of the asymptotic behavior of the critical eigenvalues. It should be
noted that their approach is closely related to ours when the parameters of the system
belong to the regime of singular perturbation setting (see Suzuki, Nishiura, and Ikeda
[56]). Another nice work was done by Hale and Sakamoto [28] who showed existence
and stability simultaneously for the inhomogeneous scalar equation, i.e., f = f(u, x) in
(1.2). Then, Sakamoto [55] extended this to the system case based on the results of
Nishiura and Fujii {45].

Now we state the ‘assumptions for f and g (Figure 1.9).

(A.0) f and g are smooth functions of # and v defined on some open set & in R2.

(A.12) The nulicline of f is sigmoidal and consists of three smooth curves u = h_(v),
ho(v) and Ay (v) defined on the intervals J_, Ig, and I, respectively. Let
min/_ = v and max/, =V, then the inequality h_(v) < hg(v) < hy(v) holds
for v € I* = (v, V) and hy(v) (resp. h_(v) ) coincides with hg(v) at only one
point v =¥ (resp. V) respectively. -

(A.1b) The nullcline of g intersects with that of f at one or three points transversally as
in Fig.1.9. The critical point on u = h_(v) (resp. A+ (V) or hg(v) ), if exists, is
denoted by P = (u—, v_) = (h_(v_),v-) (resp. Q = (uy,vy) = (Ap(vy), vy)
or R = (ug, vo) = (ho(vp), vp))-

(A.2) J(v) has an isolated zero at v = v* € I* such that dJ/dv < 0 at v = v*, where

hy{v)
J(v) = / S (s, v)ds. Moreover we assume that v_ < v* < vy.
h-(v)

(A3) fu <O0on Hy UH., where H.. (tesp. H.y) denotes the part of the curve
u=nh_(v) (resp. hy(v)) defined by H_ (resp. H,) = {(u, v)|u = h_(v) (resp.
by () for vi < v < v*(v* < v <w;)}, respectively. Note that v_ (resp. v..) is
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replaced by v (resp. v ) when there are no critical points on the branch u = h_(v)
(resp. hy(v)). See thick solid part of f = 0 in Figure 1.9,

(A.4a) gly <0< gly,
(A.db) det (3_({_52) > 0.

o(u, v) H, UH..
(A.5) gvly LUH. S 0.

Figure 1.9,

Remark 1.1. Let Gi(v) = g(he(V), v) for v € 11. Then, the assumption (A.4)(]) is
equivalent to

4 6.0

o, < 0, respectively, (1.22)

Ha

since it follows from f(he(¥), v) = 0 and (A.3) that

d _ Sfugv — fv8u

-J;Gi(V) My fu Hs .

Remark 1.2. It holds that f, = 0 at (h (), V) and (h—-(v), ¥).

The outline of this paper is as follows. In Section 2, we study the slow dynamics
from a geometrical point of view and show that formal linearized eigenvalue problem
of (1.12) at an equilibrium point is exactly the same as the SLEP system in Section
3 derived from the original linearized problem for (1.1). In Section 3, we prove the
stability of multi-layered solutions for the original model] system (1.1), and show that
how the SLEP method is used to reduce the whole problem to a finite dimensional one. It
tums out that the resulting SLEP system is equivalent to solving the eigenvalue problem
of a tri-diagonal symmetric matrix. The signs of eigenvalues of this matrix determine
the stability, and lead us to the Main Theorem. In Section 4, we explain through the
intermediary of the shadow system (4.1) why the stability of layered solutions makes
a sharp contrast between the system (1.1) and the single equation (1.2). In Section 5,
we briefly discuss about the case of different scaling for reaction and diffusion rates
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(the third category mentioned at the beginning of this section), the higher dimensional
problems, and several related topics for which the SLEP method is useful.
We use the following notation throughout the paper:

CP(7) = the space of p-times continuous differentiable functions on 7 with usual
supremum norm.

C2(1) = the space of p-times continuous differentiable functions on T with the norm
P d\F
lulig= ) max (Ea‘;) u(x)

k=0
HP(I) = the usual Sobolev space of order p(> 0) in L2(/)-framework,
HE,(I) = the space of closure of {cos(nmx/|I DI, in HP(D),
Hg(l) = the space of closure of {sin(nmx/[I|)}32, in HF(I),
H=Y(I) = the dual space of HX (D),
< -, > = the inner product in L?(I)-space,

Ck , (D-topology = the compact uniform convergence in CX-sense in J, namely, the
uniform convergence on any compact sabset of I in C*-sense.

Acknowledgments I would like to express my gratitude to Hiroshi Fujii and Masayasu
Mimura for the pleasant collaboration and useful comments. Special thanks go to Hiro-
masa Suzuki for making numerical simulations and reading the manuscript carefully.

2. Intuitive Approach to the Stability of Multi-layered Solutions

— Slow Manifold and Formal Linearization —

2.1. Slow Manifold for Mono-layered Solution

As we observed in Section 1, the singular limit slow dymamics is finite-dimensional
when we fix a number of layers, and the dimension of it is exactly equal to the number
of layers. In this section we shall construct the slow manifolds for single and double
layered solutions, respectively, and study the flow on each manifold. Let us begin with
the mono-layer case (see (1.12)):

(©)s = c(V(p(9))) (2.1a)

DVx + Go(V) =0 with Vy=0 on 9/ (2.1b)

where

G_(V) on I_ = (0, p(s))
G (V) = (2.1¢c)
G+(V) on Iy = (g(s), 1).
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Figure 2.1.

For definiteness we assume that G.(v) take the form as in Figure 1.4 which is equivalent
to assume that (f, g) is of Turing type (see Figure 1.1 (b)). More precisely, (A.4) and
Remark 1.1 imply that

aG
(G.1) G4 (v) are smooth and satisfy d_vi <QOfory<v<vandy<v <y,
respectively, i.e., strictly monotone decreasing.

(G.2) G4+ (¥) > 0 and G_(v) < 0.

First we explain the geometrical meaning of C'-matched solution of (2.1b). We denote
a solution of (2.1b) on I* by VZ, respectively. It is clear from (G.2) that V= (resp. V1)
is strictly convex (resp. concave) on I~ (resp. I*) (see Figure 2.1(a)). Also we see
from (G.1) and the boundary conditions that V is order-preserving on I~ in the sense
that V;7(0) > V5 (0) implies V{ (x) > V5 (x) on 7™, and similar property also holds
for V* on I't. In view of Figure 2.1(b), it is apparent that, for a given ¢, (2.1b) has
a Cl-matched solution at x = ¢ if and only if V* and V— are tangent with each other
at x = ¢. We denote this solution and its value at x = ¢ by V,, and v(g), respectively,
which are uwniquely determined by ¢. The slow manifold M; = M{(D) for (2.1) is

defined by

M1 (D) = {(p, v(p))] there is a C* -matched solution to (2.1b) with 0 < ¢ < 1}.
(2.2)
In what follows we shall find an analytical expression for M) (see (2.7)), which is
more convenient to study the flow on it.
It is clear from (G.2) and the order preserving property that (2.1), cannot have C!-
matched solutions when D is small (see Figure 2.1(a)), in fact, there is a unique threshold
value D = D; such that there are no Cl-matched solutions for D < D;. Here Dy is
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defined by

D, : When D = D, (2.1); has two solutions V™ (x) with V™ (0) = v and
VH(x) with V(1) = 7 which are tangent with each other.
2.3)
Remark 2.1. When the nonlinearity (f, g) is of bistable type like Figure 1.1(c), we
have no limitation of D for the existence of C'-matched solutions. In fact, since both
G- and G4 have zero points, we can always construct C'-matched solutions of (2.1}
Jorany D(> 0) and ¢ (0 < ¢ < 1).

To be more precise, it is convenient to introduce the mappings d~ (g, v) and d* (1—¢, v)
defined as follows: For a given ¢(0 < ¢ < 1}, consider the boundary value problem

DV +G_(V)=0 on (0,¢) (2.4a)

Ve(0) =0, V(p)=v. (2.4b)

In view of the assumptions (G.1) and (G.2), it is easy to venify by contradiction that the
solution of (2.4), if it exists, is unique. We denote by d (p, v) the x-derivative of this
solution at x = g. Similarly d*(1 — ¢, v) is defined as the derivative at x = 1 — ¢ of the
solution to

DVyy+G4(V)=0 om (0,1—¢) (2.5&})
V:(0) =0, V(I—¢)=v. (2.5b)
Then the C!-matching condition at x = ¢ can be represented by
Flp,v) =0, (2.6a)
where
Flpvy=d (o,v) +dT(1 — ¢, v). (2.6b)

Using this expression, we can give an analytical definition for nthe one-dimensional
slow manifold in (¢, v)-space:

MiD)y={(g.v)| Flg,v)=0,0 <p < 1}. 2.7
Since
ad- adt dd— adt
dF = | — — e
F (8v+3v)dv+(6(p+aqo)d$’
and from (G.1) and (G.2), we have
dd~ adt ad~ ad+
-"37>0, —a-;'—'>0, —(T};}O’ —a?>0

at any sotution of (2.6). Let {gg, vo) be any solution of (2.6a), then by using the implicit
function theorem, there is a unique smooth curve v = ¥#(g) with vg = v(gg) locally near

(wp, vg) and ? < 0 holds. O

Using this result and continvous dependency on parameters of solutions, we can prove
the following.
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Theorem 2.2. There exists a unique Dy > 0 such that

(I} My(D)=¢ (empty set) for D < D;.
(2) For D > D,, there exist continuous functions ¢(D) and ¢(D) of DG < ¢(D) <
?(D) < 1) such that M (D) is a smooth one-dimensional manifold defined by

M(D) = {(p, viiv = ¥(p) for p(D) < ¢ < @(D)},

dv
dy
equilibrium point @ = (¢*, v*) is contained in M(D), then it is globally asymp-
totically stable on M (D).

Le., a graph on (p(D), (D). Moreover < 0 holds. Finally, suppose a unique

Proof. (1) is clear from the definition of D; (see (2.3)). As for (2), it follows from
the previous discussions that M; (D) is locally”expressed as a smooth strictly decreasing

curve v = (). In view of Figure 2.1 and Eg% < 0, we see that M;(D) is a graph on

the interval (¢(D), (D)) where @(D) is determined in such a way that V™ -solution with
V= (0) = v is matched with a V*-solution at x = §(D) (Figure 2.1 (b)), and similaly
for ¢(D). Global asymptotic stability of (¢*, v*) comes from the fact that M;(D) is
one-dimensional and (¢*, v*) is a unique equilibrium point with :—; < 0 everywhere, O

Remark 2.3. (a) M (D), in general, does not contain the equilibrium point (g*, v*).
In fact, the matching value of V= and V¥ is not, in general, equal to v* at D = D, ( see
(2.3) ) where (D) and §(D) coincide each other, then it holds that (¢*, v*} & My (D)
when D (> _I_)_ﬁ is close to D;.

(b) On the other hand, suppose that the nonlinearity (f, g) has an odd symmetry with
repect to the middle intersecting point R of f = 0 and g = 0, the equilibrium point

(¢*, v*) (¢* = -;—) always lies in M(D) for D > D;.

2.2. Local Slow Manifold for Double-layered Sclution

We shall construct a local siow manifold around the equilibrium point for the double-
layered case and study the flow on it. In this subsection we fix D to be an appropriate
value so that (2.8) has a unique steady state @] = (q:’;, ©3)- In view of (1.12), we see
that the slow dynamics for two layers can be written as follows:

(p1)s = c(Vip1(9)) (2.82)
(02)s = —c(V(pa2(s)) (2.8b)
0 = DVy; + Go (V) {2.8c)

V,(0) = Vy(1) =0 (2.8d)



Ll

Coexistence of Infinitely Many Stable Solutions 43

where

Go(V) = G-(V)[H(gi(s) - x) + H(x ~ p3())]
+GL(V)H(x —~ o1 () H(p2(s) — ),

YolX)

1II

0 O @2 1

Figure 2.2.

D(s) = (91(5), 2(s)), and H(§) is the Heaviside function i.e., H(£) = 1 (resp. 0) for
& > 0 (resp. < 0). Namely Gop = G_ in region I, III, and Gp = G, in region II (see
Figure 2.2). For a given ® = (@1, ¢), we denote the solution of (2.8c) and (2.8d) by
Vo (x).

Note that the dynamics (2.8) is valid for 0 < ¢; < ¢; < 1 and that V¢ is matched in
Cl-sense at layer positions x = ¢;(s) (i = 1,2). Let (Vg, @1, ¢3) = (V3, o5, ¢3) be the
normal 2-layered solution, i.e., the unique critical point of (2.8). Note that ¢} =1 — 7N

- holds because of symmetry. V, must satisfy V3 (p}) = v* = V3(93). What we have

to do is to construct the solutions (2.8c), (2.8d) for any (g;, ¢2) near (¢], ¢3) and
study the flow on it. Let (vy,d—(g1, vi)) denote the value of V and its derivative at
x = ¢ by solving (2.8c) in region I. Note that the derivative d—(g), v;) is uniguely
determined as function of (g;, v;) because of the Neumann boundary condition at x =
0 and the monotonicity of G_(V). Using this mapping d_., we have, for a given v,,
(v2, —d_(1 — @2, V7)) at x = ¢,. The minus sign in front of d_ is necessary, since we
solve (2.8c) from right to left in region III. Finally let (S..(v, d, x), d4.(v, d, x)) denote
the solution map of DV, + G..(V) = 0 for a given initial data (V, V) = (v,d) at x =

0. Because of symmetry, it is more convenient to make a C'-matching at x = 2 ; L4 .
the middle point of region I:
F1(e1, @2, vy, v2) = 0 (2.92)
Falor, o2, vi,v2) =0 (2.9b)
where
Filpr, e v1,v0) = 5s (1, d—(or, vo), £ 2)
(2.9¢)

-S54 (Vz, d-(1 — g2, v3), ﬁz__—z__f_o_l_)
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Faler, 92, v1, v2) =dy (VI: d_{;, v1), @2 "2- fpl)
(2.9d)
tdy (vz, d_(1— g, v), &2 = wl) |
At 2-layer solution, it holds that
'7:] (‘p?s ‘PE, V*, V*) =0
(2.10)

Fale], ¢35, v',v*) =0.

We show that (2.9) can be solved uniquely with respect to (v, v2) in a neighbourhood
of (¢}.¢}). The mappings di and S, are smooth and the next lemma holds in a
neighbourhood of (v, d, x) = (v¥, d_(¢], v*), ¢}) (in fact, it holds in larger region).

Lemma 2.4.
) A AN
(i) e > 0, 5 >0
. ad4 ad ad 4
(ii) P >0, 37 > ,-—a-x—<0
ad_ od_
(ii1) W > 0, . =0

Proof. These are the direct consequences of the fact that G4 (V) are strictly monotone
decreasing and take definite signs, respectively. O
Using Lemma 2.4, we have, at (v, d, x) = (v*, d_(v*, ), ¢]).

8F; _ 8y  85;8d

o, v, T 9d By 0

0F) 85S¢ 85y d_

= 0
vy dvp od dvy =

(2.11)
OFy _ 0dy | 3dy 3d_

= 0
dv; dvy od av =

8F, dd, ddy dd_
= 0.
dvo dvo + dd 0w ~

a(fliFZ)

——————== > (0, and hence, by the implicit function theorem, we obtain
v, v2)

This implies det
the fo]lowing.

Proposition 2.5. For arbitrary ® = (91, ¢2) near ®3 = (¢}, ¢3), there exist a unique
solution V = Vg (x) of (2.8); and (2.8)4 which converges to normal 2-layer solution in
Cl-sense when (¢, ¢2) tends to (¢}, ¢3). The values of Vo (x) at two layer positions,
denoted by vi(gy,¢2), v2{p1. @), are uniquely determined and smooth functions of
(91, ) in a neighbourhood of (¢}, ¢5).
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Using Proposition 2.5, (2.8a) and (2.8b), the vector field on a local slow manifoid is
given by

d
L= c(vy (91, 92))

(2.12)

g~¢z = —c(v2(@1, 92)).
b
Hence the original dynamical system (2.8) is contracted to two-dimensional nonlinear
ODE system (2.12).

Now it is straightforward to check the stability of critical point ®} = (¢, ¥3) by
computing the linearized matnx of (2.12) at ®3. Namely it suffices to find the signs of
the real parts of eigenvalues of

dc vy dc vy

dvy 3y dvy dpp
Jq,; = (2.13)
dc dvy dc vy

T B, 0p  0vy 0py o3

We shall show det oz > 0 and ttJp: < 0. From the differential relations,

oF oF aF aF
—_ —d —_— —— =
v, dvy + avy va + or de| + 50, dpy =0
aF, aF 4 aF 2 0T,
—=d —=d —=d —=dgy =0
v, V:+av2 v2+8¢1 §01+a¢2 7}
we have
0, AR\ [ 0 R
dvy 1 dvy vy 89 oo dor
) SR\ am e || _m _am |\ ap
(v1, va) dvy v dg; i)
(2.14)
It is obvious that (i, ) -component of the matrix on the right-hand side of (2.14) is equal
to ﬂ ie.,
3(0]'
-1
. HFE .
Bl (B, e
095 } i j12 (v, v2) 39 ] 1<ij<a
By similar computation to (2.11), we easily see that
oF
a—fl- >0, L. 0, 3F2 0F3

>0, and — <0,
dpy %73 0y 77}
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d F av; a
which implies 1. F2) < 0, and hence, det{—f-'—} < 0. Noting that = =
a{vy, v2) a{Dj ij=12 vy
E > (0 at @3, we obtain
BVZ

0
deth,- = — —f*
z 6v1

On the other hand, we have

2
det {ﬁ } > 0.
@ 00 J i j=1.2

{m - ?12_}
@3 dpy 9y
In view of (2.11), (2.14), (2.15), and (2.16), we easily see that LrJq;; < 0. Thus we
conclude that

oc

lIJ;_.

Proposition 2.6, The critical point (¢;, ¢2) = (9], ¢3) corresponding to normal 2-
layer solution is asymptotically stable equilibrium of (2.8) on the local slow manifold
constructed in Proposition 2.5.

In the rest of this subsection we consider the stability of @7 from more intuitive point

of view. Essentially there are two types of perturbation; symmetric and anti-symmetric
ones as in Figure 2.3.
The first case (Figure 2.3(a)) can be reduced to the mono-layer case. Namely, it suffices
to see only the half part because of symmetry, and hence it was already studied in
Section 2.1. The second case (Figure 2.3(d)), the anti-symmetric perturbation, where
the directions of the shifts of two layer positions are the same, is the main concemn here.
Recalling that the velocity function ¢(V) is monotone decreasing and c(V(g})) =0( =
i, 2) , we see that, in order to stabilize this perturbation, the v-value at left (resp. night)
layer must be up (resp. down) so that they recover their original positions. We will see
that this really occurs as in Figure 2.3(b). Arrows in Figure 2.3 indicate the directions in
which the perturbed layers move. Since the distance between ¢ and ¢, does not change
for the anti-symmetric perturbation, it holds from ¢} = 1 — ¢ that

@ — @) :—1—2@)’;. (2.17)

In order to know how v and v3 behave on the slow manifold, we consider the differ-
entials of (2.9):

_9Fy aF aF 0F _
dFy = oy dvi + ™ dvy + 50, doy + 30, dg; =0
(2.18)
9JF 3 aF 2 0F 1 0F 1
= —= = —=d —Zdpy =
dF, vy dvy + 5o vy -+ Ber o1+ 50n p =0

We compute the directional derivative of v; and v, along the line (2.17). Recalling the
form (2.9), we see that
oF oF oF aF
L_ %1 g 2 2

= —_— L = 2.19
dp1 A dpr  Op; 219
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vi

a
— =
Do Vo, .
] [} H ¢
1 1 1 i
P j L

s 5 bl uaah S
- Lo
X E Vo E E
] [ ] 1
Lo P
91 @ P P2

b (@1- 9D -(P2- 03y =0

Figure 2.3,

hold at (g1, @2, vi, v2) = (9], ¢3, v*, v*). Also, by a simple computation, we see from

Lemma2.4thatg-j—:—-1- > 0, a—f—1~ < 0, Q—'f—l- > 0, E >0,ﬂ > 0, holds. This
avl 3V2 3(01 Bv[ 31’2
combined with (2.18) and (2.19) implies that
D*vi <0and D¥v; >0 at (¢}, ¢3) (2.20)

where Dt denotes the directional derivative along the line (2.17), i.e., (1,1)-direction.
This is what we expected before.

2.3. Formal Linearization

In this subsection we shall derive a formal linearized equation for the singular limit
equations (2.8). The reason for this is that the resulting linearized eigenvalue problem is
exactly the same form as the SLEP system which will be derived from the original system
in a rigorous manner in Section 3. This is important since formal analysis gives us a
correct answer for the original system. As was mentioned in Section 1, the dynamics has
two steps; first, the outer dynamics, and then slow layer dynamics. So is the linearized
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problem. We will show that the linearized problem for cuter dynamics is quite stable,
i.e., all the spectrum have strictly negative parts, on the other hand, the one for the layer
dynamics, which corresponds to the SLEP system, is subtle and needs more computation.

A. Outer Part
The dynamics in this region is given by

3, = fW,v)
1 (2.21)
Ve = ;Vxx + g, V3,

where we replace D by 1/o for later convenience. Let (U3, V3) be the normal 2-layer
solution associated with @3, i.e., V3 is the solution of (2.8c) and (2.8d) with @ = @3,
and U3 is the associated « -component through the relation u = h4.(v). In Section 3 we
will write this solution with superscript o as in Corollary 3.9, however we omit it here
for simplicity. We set U = U} + MW, V = V3 + ¢MZ where (W, Z) is a perturbation
in outer region which become zero at layer positions. Substituting this into (2.21), the
resuiting linearized problem becomes

W = fiwW+fiZ
1 (2.22)
AZ = ;zxx + S:W + 8,2,

subject to Z, = O at x = 0,1, where fj = fu(U3,V3) and so on. Since f; < 0
(see (A.3)) we can solve the first equation of (2.22) as W = —f;Z/(f}; — 5A) which is
well-defined as far as A varies in

Cy={rI|Reb)>—p, 0>—p> inf fu,U3(x), 3D}
XF193

Clearly this restriction does not affect our stability analysis. Substituting this into the
second one of (2.22), we obtain

" -
AZ = ézn + ("}%ﬂ + g:) z (2.23)
It is known that this problem exactly coincides with the eigenvalue problem for the
noncritical eigenvalues (see Section 2 of [44]). Typically, f; <0, g > 0,and g; <O
(for instance, f(x,v) = u(l — u)(u — a) —~ v and g(u, v) = yu — ov with y > 0, o > 0),
hence the coefficient of Z on the right-hand side of (2.23) is strictly negative. Making
a bilinear form, we easily see that all the spectrum of (2.23) have strictly negative real
parts. Thus there are no dangerous eigenvalues coming from the outer part.

B. Layer Part

Using the slow time s = &t/8, the layer dynamics was given by (2.8). (V,¢1,¢2) =
(V3(0), ¢}, ¢3) is the normal 2-layer solution. Recall that V3(¢7) = V3(¢3) = v* and
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c(v*) = 0. We derive the linearized equations at (V3, ¢}, ¢3) by setting

V. = Vi) + e h(x)
o= ¢ ey (2.24)
@ = ¢—eSh

Here we employ 7 = Ad/e as the eigenvalue parameter, since we adopt the slow time s
instead of #. Note that we put the minus signin front of &y in order for ¥; and ¥
to have the same sign for anti-symmetric perturbation (see Figure 2.3(b)). Substituting
(2.24) into (2.8), and linearizing it in a formal way, we have

—t¥1 = ) {— 2@ + h(rpl)} (2.25a)
d avi
e = —E‘C;(v*) { dx2 (3, + h(¢3‘)} , (2.25b)
1 dG-- E e
0= ~hyy + ——(VI{H(g] — x) + H(x — ¢5)}h (2.25¢)
o av
dG,.

t VO{HG — ¢ H(g; — x)}h
+G_ (V)81 — 8 ¥2)
+G 1 (V3) @y Y1) H (g3 — %)

+G+(VH(x — 1)y ¥
where dg¢ is the Dirac’s § -function with support at x = ¢f. Using
H(gz — x)8g 91 = Sy, H(x — ¢)8gs Y2 = 843 Y2,
and

{G+(V3) — G_(VD Py ¥i = [g1r Vi (i=12),

where [g] = g(h (v¥), v*) — g(h_(v*), v*}, i.e., the jump of the value of g from lefi- to
right-branch at v = v*, (2.25¢) becomes

T*%h=(g] (351 +bg3%2) , (2.26)
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where

1 d&  dG.-
T = Te 2 '——“‘(V?_){H(fﬂl "x)+H(x“¢2)}

dG
—x —5F VDH(x ~ ¢DH(5 — x).

d
Since Gi(s) is strictly monotone decreasing (see (G.1)), i.e, SV 0, 7 has a

well-defined inverse K*%0 : H=1(I) — H}(I). Hence it follows from (2.26) that

= (K™ (8391 + 83 ¥2) @.27)
This leads to the expression:

B@D = UK (853 + 8302) L 8¢p)

r@3) = [BUK" (8t +8gs¥) , )

Substituting these into (2.25a), (2.25b), we have

de , avy . o
~ty = 07 {-——dj @1 + 1K™ (5 + 8502 , 8y >}
(2.28)

dvy
= S0 *){ 2 ()0 + MK (Bt +8439) . 8 .)}

In order to compare (2.28) with the SLEP system (3.75) in Section 3, we need the
following equalities. For the definitions of notation, see Remark 3.7, Lemmas 3.15 and
3.22 in Section 3.

Lemma 2.7,

v}

(v*) (@T)=— (v*) 2(;02)—@”' )

d "
— 5 Mgl = = ()5 (i)

1

L2

7

Proof. See Appendix A. O

-
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Using Lemma 2.7, we can rewrite (2.28) in an equivalent form:

(K", 8g2)  (K*080s, 800)

* ¥
€)C2

()2 + (@ —o¢"NI ( Vi ) =0. (2.29)
(K*'U'ana;- 350;) (K#,U,O%;, 5¢5) .

/)

This is exactly the same as the SLEP system (see (3.75)) for 2- layered case. According
to Theorem 3.24, (2.29) has two negative real eigenvalues, which implies the stability
of normal 2-layer solutions. In a similar way, but tedious, we can derive the same result
for the n-layered case by linearizing the singular limit slow equations (1.12), We leave
the details to the reader.

Remark 2.8. In view of the above computation, the form (2.29) does not depend on
the behavior of & as far as it belongs to the regime €/6 = o(1) as € | 0, although the
asymptotic form of the resulting critical eigenvalues depends on § (i.e., it behaves like
O(g/8)). It should be noted that, when 8§ = o(1) as ¢ | 0, u reacts much faster than
v and hence the system belongs to the third category according to the classification in
Section 1. This suggests that more careful classification is needed depending on the
asympiotic regime of § and ¢. In fact, as we saw, as far as stability properties of steady
states are concerned, there are no drastic change in the regime of ¢/ =o(D as € | 0,
however when § becomes comparable 1o €, the system behaves in a quite different manner
(see Section 5).

Remark 2.9. Although, for 2-layer case, we treat only the local dynamics near ®,
the global picture has been clarified recently for the bistable case (see Figure 1.1(c)) by
[48]: (@1, @2)-space is divided into three regions by two separation orbits and @} lies
in one of the domains, say €¥}. If the initial data belongs to C, the orbit tends to @3
as t 1 co. If not, one of the layers hit the boundary and disappear at certain finite time,
then it approaches a mono-layered solution.

3. The SLEP Method for the Stability of
Normal N-layered Solutions

In the previous sections we derived the singular limit slow dynamics (1.12) which ap-
proximates the dynamics of the original system (1.1) after layers are fully developed, and
proved that all the equilibrium points {®}},,—; are locally asymptotically stable. However
we do not know in a rigorous sense that how the total dynamics of (1.12) is close to
that of (1.1). We shall show in this section by means of the SLEP method that, as far
as local stability is concerned, the formal linearized stability analysis for (1.12), which
was done in Section 2, becomes a true criterion for the original system (1.1). In fact
(1.1) has an e-family of the normal n-layered solutions (Corollary 3.9) which tends to
@y as ¢ | 0, and they all become stable for sufficiently small ¢. This immediately leads
us to Main Theorem and the commutative diagram (Figure 1.8) in Section 1. Note that
linearized stability implies nonlinear stability for the semilinear parabolic system (1.1)
(see, for instance, Henry [29]). This section is a detailed version of the paper Nishjura
and Fujii [45].

In what follows, we use the notation 1/c instead of D for the diffusion coefficient of
v, and assume that § = 1, since, for general §, a similar result can be obtained by obvious
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modification (see Remark 2.8). The model system and its stationary problem become

= Uy +fu,v)
(3.1)
1
Vi = —Veet+g,v)
o4
and
0 = gugy+f,v)
1 3.2)
0 = ;Vxx+g(u,v),

respectively. The boundary conditions are always Neumann ones unless otherwise stated.

The core of the SLEP method lies in the asymptotic characterizations of critical eigen-
values and the associated eigenfunctions which are valid up to £ = 0. To do this, the
study of the spectral behavior of the singular Sturm-Liouville operator L% (see (3.12b))
is basic. We start this section with the definition of the normal n-layered solution (Figure
1.3).

3.1. Normal N-layered Solution

In this subsection we briefly mention about the construction of, what we call, the normal
n-layered solution to (3.2) which converge to the equilibrium point @}, of (1.12) as & | 0.
This solution consists of two parts; the outer and inner parts. The outer one is determined
by the formal limiting system of (3.2) (see (3.3)), and the inner one is essentially, after
stretching, the stationary front of (1.8) with V(p) = v* which compensates the jump
discontinuity of u from h_-branch to hy-branch. Here we simply collect necessary
results for later discussions. For the detailed proofs of them, see Fife [16], Mimura,
Tabata, and Hosono [39], Ito [32], and Nishiura and Fujii [44; appendix].

First we construct a mono-layered solution, which we call the basic pattern, then apply
the folding wp principle (Proposition 3.8) to it to obtain the normal n-layered solutions.
The solution of the following reduced problem becomes the first approximation to the
basic pattern in outer region. '

fu,v) =0, (3.32)

(u, v) € L2(I) x {HX () n HY (1)),

1
gvn + g(u, v) =0. (3.3b)

Since we are interested in the solutions of (3.3) which are the limit of those of (3.2) as
g {0, we take

h_(v) for v <v*,
u=h'()= (3.4)
iy (V) for v=v*
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as a special sclution of (3.3a), i.e., u has a jump from h_-branch to A -branch at v = v*.
The reason why we take this special value v = v* comes from the fact that the velocity
of the inner front must be zero in order to have a stationary solution (see (1.8), (1.9),
and (3.10)). Substituting this into (3.3b), we obtain the reduced scalar equation for v:

St GO =0, ve RONHYD, (3.5)

where G*(v) = g(h*(v), v). Since G*(v) has a jump discontinuity at v = v* (see Figure
1.4), the solution of (3.5) has to be matched in C!-sense at this switching value.

Lemma 3.1. There exists a uniquely determined positive constant o} such that mono-

tone increasing (resp. decreasing) C'-matched solution V3°(x) (resp. V*°(x)) of (3.5)
exists uniquely for 0 < o < o}. Moreover, we have ﬁf(} V*9(x) = v* in Cl-sense.
(12

For definiteness, we only consider the monotone increasing case and write simply
V*9(x) instead of V}?(x). In view of (3.4), the first approximate solution takes the
following form:

U*(x), v:9(x)) for 0 <o <o, (3.6)
where U*%(x) = K*(V*°(x)). We call (3.6) the reduced solution for the basic pattern,
Corollary 3.2. The matching point x}(o) is well-defined by
V*(x} (o) = v* 3.7

due to the monotonicity of V*°(x). Then x{(0) becomes a continuous function for
0<o<o].

Applying the singular perturbation techniques to (3.6), we have the following existence
result for the basic pattem ({16], [39], [32], [44]).

Theorem 3.3 (Existence Theorem for the Basic Pattern). For any og with 0 < o <
o}, there is an sy > O such that (3.2) has an (g, 0)-family of solutions Dl (e, o) =
! (x; 8, 0), vi(x;8,0)) € C2() x C%(T) for (c,.0) e Q' ={(c,0)|0 < e < e, 0 <o <
ool Dl(e, 0) are uniformly bounded in C2(T) x C*(T), and satisfy

]ilg ut(x;e,0) = U (x) uniformly on I\I, for any x>0 (3.8a)
E

and
liig vi(x; e 0) = V(%) uniformly on 1 (3.8b)
1

where I, = (x}(0) — «, x](0) +«). Moreover, Dl(e, o) depends continuously on (¢, 0) €
Q' in C2 x C2-topology, and continuously on (¢,0) € Q' in L? x Cl-tapology.
Using a streched variable y defined by

x—xi(0) yel= (_ xj(0) 1— x‘f(cr))

?
£ & €

i

y
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the inner part of D (e, 0) behaves as

lim(@7(), #%°0)) = @ ), V) in 2, (R)-sense, (3.9)

where (559, 759) are the stretched solutions defined by
7 (y) = u' (x} + ey; ¢, 0), E9) = v (] + ey; 6, 0).

i*(y) is a transiate of the unique monotone increasing solution of

(2
-&-?ﬁ +f@,v*) =0
f(00) = hy (v*) (.10)

L #0) = ho(v*),

and v* is the unique zero of J(v) (see (A.2)). Here we use the convention of Remark
3.5 for the stretched functions. Note that the limiting function of (3.9) does not depend
on o.

Remark 3.4, The convergence result for ¥ (see (3.9)) comes from the following
fact: Let ¢°(x) € o for 0 < & < &g, and ||¢"llc2(ry be uniformly bounded with respect
to . Suppose that ﬁf& ¢*(x™) = a holds at some point x* € I, where « is a constant.

&

Then the stretched function & (y) at x = x*, ie., F ) = ¢°(x* + &y) satisfies
Im@(y) =« in C2, R)-sense.
£y0

Remark 3.5. For a given stretched function $(y)(y € I), it is convenient to extend the
definition domain from I to the whole line R in a smooth way so that ¢ = 0 for large
|¥|. We use the same notation for the extended one.

Corollary 3.6. Let F(u,v) be a smooth function of u and v. Then, the composite
function F(@5°, V%) converges to F(@i*, v*) in C%, (R)-sense.

d
Remark 3.7. Differentiating (3.10) by y, we see that E;ii* (> 0) is a constant multiple

of the principal eigenfunction of the following eigenvalue problem associated with the
principal eigenvalue & = 0:

-~

d? ;- .
= 4% =16 on R, $el’®. (1))

We denote by tﬁ; and 5}"' the L2-normalized principal eigenfunction and the positive L1-
normalized principal éigenﬁmcrion, respectively, i.e., | fﬁ(“; lzzgy= 1. / @5dx = 1. The
R

interrelation among these gquantities is given by

* L 7 ¥
%= c* dyu



Coexistence of Infinitely Many Stable Solutions 55

o1 = c*dp,
where

c* = 1611z

Y =1/ ) = B_(V)).

Multi-layered patterns called the normal n-layered solutions are easily constructed by
applying the next proposition to the basic pattern.

Proposition 3.8 (Folding Up Principle). Suppose W(x; d) is a solution of (3.2) at
d = (£2,57"), then R*(W)(x) is a solution of 3.2) at d/n® = (¢%, 0~V forn=1,2, - .-,
where (¢, &) = (§/n, n*5). Here

Wn(x — i/n); d) i= even,
R'W)(x) =
Wh(l/n—(x—i)/n);d) i = odd,
Jorifn<x<(@(@+1/n(i=012,---,n—1).

Intuitively speaking, R"(W) can be obtained by flipping W n-times and normalizing
the length of interval to one.

Corollary 3.9 (Existence of the Normal n-layered solution). Lez W = D! (&, 3) (¢, &) e
Q') in Proposition 3.8, then D'(g, 0) = (u™(x; £, 6), V(x; £, 0)) defined by R*(D' (%, 6))
becomes a solution of (3.2) with n interior transition layers for (¢, 0) = (§/n, n?5) €
Q" = {(s,0)|0 < £ < gp/n,0 < nzcrg} (see Figure 1.3). We write the reduced solution of
D*(s, 0) (i.e., the L?-Iimit of D™(g, 0) as € | 0) as UX°(x), V2 (x)). D™(c, o) is called
the normal n-layered solution or simply n-layer solution.

3.2. Asymptotic Behaviors of Critical Eigenvalues and Eigenfunc-
tions of L57

We shall study the siability properties of the normal n-layered solutions D(s, ¢) in
the following three subsections. Since our model is a semilinear parabolic system, the
stability is determined by the spectrum of the following linearized operator at D*(z, o)

£.0 w _ 159 ﬁ.cr w _ w
(D)= ) (2)=2(¥) o

w, 2)' € (H*() N Hy (DY

where

L = —— + fo° (3.12b)
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£,0 1 d?' £,0
M™% = ;Ex—z 4+ 85, (3.12¢)

and all partial derivatives are evaluated at D*(g, o) = (*(x; ¢, 0), V*(x; £, 0)), ie., 7 =
Fu@"(x; &, 0}, v¥{x; &; o)) and so on.

A naive way to find the spectral behavior of (3.12) as ¢ { Oistoput ¢ = O in
(3.12), however it tums out that the resuiting system is exactly the same as (2.22) in
Section 2. Namely just the formal limit of (3.12) tells us only the behavior of noncritical
eigenvalues which govern the behavior of solutions in outer region, and does not inherit
any information from layer part. As we saw in Section 2, the most subtle part of spectral
analysis comes from the layer part. The reason for this is that it is related to neutral
(zero) eigenvalue of translation invariance. More precisely, rewriting (3.12) by using
a stretched coordinate y = (x — x7)/¢ at any layer position x} and taking a formal
limit of & | 0, we see from Theorem 3.3 that (3.12) restricted to the i-th subinterval
Ii = ((i — 1)/n, i{n) becomes

2
E‘%w F Ful@®, VY Fy @, V)E = A
y€R (3.13)
d? _
22t =0
dai*

It follows from Remark 3.7 that (3.13) has zero eigenvalue with (w, Z) = (Fy-, 0).

This observation suggests that (3.12) has an eigenvalue which approaches zero as ¢ | 0
associated with each layer. In fact the number of these critical eigenvalues (i.e., those
which tend to zero as ¢ | 0) of (3.12) will be proved to be exactly equal to the number
of layers (= n) and their precise behavior will be clarified by solving the SLEP matrix

which eventually leads us to the main result (Theorem 3.25).
In view of (3.13), we see that each zero eigenvalue coincides with that of the limiting

(streiched) Sturm-Liouville operator, hence L% itself is expected to have n eigenvalues
going to zero when ¢ | 0. In fact, we shall show in Lemma 3.10 that there are n positive
critical eigenvalues of L%, and the rest of the spectrum is strictly bounded away from
zero. The asymptotic behavior of these critical eigenvalues will be investigated in Lemma
3.15. Note that we use the word “critical” both for eigenvalues of L**? and the full system
L5,

The supports of eigenfunctions associated with the critical eigenvalues of L%7 are
concentrated on layer positions when ¢ | 0, in fact, after an appropriate scaling, each
eigenfunction tends to a combination of Dirac’s point mass distribution on layer positions
(Lemma 3.22). This seems very singular, however, we will see that it is equivalent to
say that the stretched eigenfunction at each layer position approaches a constant multiple
of the principal eigenfunction of the limiting Sturm-Liouville problem (3.11).

The next lemma tells us the number of critical eigenvalues of the Sturm-Liouville
problem:

L5% =t on [
(3.14)
e HONHND, |19 lzg=1.
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We denote the complete orthonormal set of (3.14) by {£7, ¢;'°}. Throughout this sub-
section we omit the superscript ¢ like L%, 7, ¢¢ in the proofs of lemmas.

Lemma 3.10. The first n eigenvalues of L tend to zero as ¢ | 0, and the rest of the
eigenvalues of L% is strictly negative up to & = 0.

Proof. We first consider the behavior of the principal eigenvalue of (3.14). Since a
normal rn-layered solution is obtained by folding up a mono-layered solution n-times, the
principal eigenfunction of Lf is also obtained by folding that of L restricted to the first
subinterval 7, = (0, 1/n)

L*¢g; = &5%0 on I

. (3.15)

6 € HUDNHNUD, I 81 hzgy=~.

where £j is the principal eigenvalue of (3.14) and ¢f, denotes the restriction of the
associated principal eigenfunction to /;. Using a stretched coordinate y = (x — xy)/e,
(3.15) becomes the following with a new normalization :

2. i )
2’“2“‘?’51 + fufb1 = $o%61 y €l
7 (3.16)

¢, € H2 () nHy(y), 1l 8§ lzgy=1

where [} = (—£/e,r/e) with £ = x}, r = 1/n — x], and @§, (> 0) is the normal-

ized stretched principal eigenfunction. In view of Corollary 3.6, we see that liJlB &=
£

Fu(@*, v*) in C%_u_ (R)-sense. Recalling the behavior in outer region (see Theorem 3.3),
we can find a finite interval /g and positive constants g and y such that

—y<fo<—pn<0 y e IT1\I 3.17)

holds, where Iy, u, y are independent of (g, o) € Q.
First we give a lower bound for &g. It is clear that £ is characterized by

=_  sup (= By &) + (Fady. By))- (3.18a)
é € Hy(), | 8 llzgy=1

We know from Remark 3.7 that

0= sup (—(By. ) + (Fady ) (3.18b)
FeH'®, 18 lizg)y=1

- d o
which is attained by ¢q (: {;E)—’ﬁ*) . Taking a constant multiple of ¢f, (restricted to

T1) as a test function for (3.18a), and using the facts that lifa o =7t in C2, (R)-sense
E

d
and —c—l;i'z* decays exponentially as |y| — oo, we see that, for arbitrary small § > 0, there

exists g5 > 0 such that
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GH>~—08 for 0<e<egs

holds. Also it is clear from (3.18a) that & < mﬁx f&. These inequalities imply that

o) =Ffu— 8 (3.19)

also satisfies the inequality (3.17) for small &. Using this property, we can show the
exponentially decaying property of ¢,

8611 < Cexp(—Cily), (3.20)

which will be proved in Lemma 3.11 in more general setting. Multiplying ¢§, on
both sides of (3.16) and integrating over I;, we see from (3.19) that || ¢§; lig )<
M independently of s, which implies via Sobolev imbedding theorem that ¢¢; has a
convergent subsequence ¢§, (hereafter we use the same notation for subsequences) on
any compact subset K(C R) in CO(K)-topology. Using (3.16) again, this becomes a
convergent sequence in C2(K)-topology. Using a diagonal argument on an expanding
sequence of compact intervals to R and recalling the boundedness of 5, we can find
a convergent subsequence (@5, ¢5) in C2, (R) x R-topology. The limiting function
denoted by (B5,, ) satisfies

dZ

d_yg‘f’ﬁl + fa®5y = 5% (G2
‘We shall show that
gg(&sl, &) = ($5. 45 = @3, 0) in  C*(R) x R-sense. (3.22)

Here we use the convention of Remark 3.5 for 1,531. First, because of (3.20), we see
that @5, % O and satisfies (3.21), moreover ¢, > 0 since all ¢f; are positive principal
eigenfunctions. On the other hand, we know (see Remark 3.7) that (3.21) has zero as
the principal eigenvalue with 63 being the associated eigenfunction. Hence, because of
the simplicity of the principal eigenvalue, we obtain (3.22) in C2, ®) x R-sense for a
chosen subsequence. Apparently the limiting function does not depend on the choice of
the subsequence, and taking into account (3.20), we can conclude that (1531, £o) itself
converges to (65, 0) in C3(R) x R-topology, which completes the proof of (3.22).

All the above discussions remain valid when we change the boundary conditions to
Dirichlet ones (with replacing HL(71) by H}(f}) in (3.16)). In particular, the principal
eigenvalue &f; , of (3.15)p (or (3.16)p) also satisfies

im =0, 3.23
AT Eo1p (3.23)

where the subscript D represents that the concered quantity is considered under Dirichlet
boundary conditions. Note that, by comparison theorem,

&ip < & for &> 0. (3.24)
We denote by ¢4, , the principal eigenfunction of (3.15)p.
Y @1 p the pnncipal eig
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Now we return to the problem (3.14) for n-layered solution. Flipping ¢§, of (3.15) n
times in an even way, the resulting function (denoted by ¢;) defined on /, becomes a
principal eigenfunction (i.e., nodal zero) of (3.14). Note that the eigenvalue £§ remains
the same as before by folding operation. On the other hand, by flipping ¢f;, n-times
in an odd way, we obtain the eigenfunction (denoted by ¢% _ 1, p) of (3.14)p which has
n — 1 nodal zeros inside of 1. Hence &j,,, becomes the n- -th’eigenvalue & _1p of Lf
under Dirichlet boundary conditions. Making use of the comparison theorem and the
nodal property of Sturm-Liouville operator, we see that

ff;—l,n=¢3m<§£—1 <'“<§'5

holds, namely the eigenvalues &7, - --, §;_; are sandwiched by ¢§ and &5, ,,. The asymp-
totic behaviors (3.22) and (3.23) lead to the first part of Lemma 3.10. O

As for the second part, first note that the second eigenvalue ¢, (nodal one) of (3.15) is
equal to the (n+1) -th eigenvalue ¢}, (nodal n) of (3.14). Since the principal eigenvalue
&g of (3.15), which is simple up to & = 0, converges to zero as ¢ 0, &%, and hence &
must be strictly negative for small &. This completes the proof of Lemma 3.10.

In order to know the precise asymptotic behaviors of if T ({i=0,---,n~1), we need
to find the asymptotic forms of ¢5*° (z =0,---,n—1). As we saw in the proof of

Lemma 3.10, the stretched funcuon ¢g (on umt submterval) converges to the princi-
2

pal eigenfunction of (3.11). Noting the relation f % dx = [ ltfalzdy between a
I]_ I 1

function ¢(x)(x € 1) and its stretched one ¢(¥)(y € I1), we see that the L2-pormalized

function ¢ 7(x) has a sharp peak of height O(1/./), and decays quickly outside of this

peak as ¢ ,l, 0. Hence it is indispensable to use stretching to characterize the asymptotic

behavior of critical eigenfunctions. Since there are n layers, it is convenient to introduce

the following notation.

¢3a - f-"]lj ; restriction to the subinterval I; of the i-th eigenfunction,
¢;° = 8;°() = 6% (x] + ey); stretched function of y € [},
where y = (x — x)/e and I; denotes (—¢/e,r/€) or (—r/e, £/5). 1t holds that
/ 1657 dx = Z / 16512 dx = 2 / IVed; P dy. (3.25)
j=1
We define ¢ by
°0) = ey’ yel (3.26)

We call 6:‘;” the normalized j-th stretched function of ¢;°. It is obvious from (3.25) that

f |65 1Pdx -Z / |85°12dy (3.27)

j=1
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A key result for the critical eigenfunctions is that, for any i and j, JJZ" converges to

. d _, . .
a constant multiple of ‘—i;ﬁ* in C2(R)-sense as £ | 0 (Lemma 3.12). Namely, if we
look at a critical eigenfunction in a stretched form, it is very close to the derivative of

the stretched layer function #*(y) of Theorem 3.3. To this end, we need the following
lemma.

Lemma 3.11 (Exponential decaying property). Let 43;” be the normalized j-th stretched

eigenfunction of $"°(0 <i <n—1,1 < j < n). Then there is a finite interval Iy, which
is independent of €, 0, i, and j, such that

& g0
dyk ij

<Cexp(—Cilyl), yeljp (3.28)
hold for k = 0, 1, 2, where C and C are positive constants independent of €, 0, i, and j.
Proof. In view of Lemma 3.10 and (3.19), we have for small £

—y<fi-F<—-u<0, ye I\, (3.29)

where u, y, and /g are same as in (3.17). We decompose I into three parts (see Figure
3.1 fj = ij,ﬂ Ulhu 'fj‘r.

L]
]
i
i
1
]
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]
1
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1
]
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< I, ;
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! t

, T ‘-Llj T.

e > "
Figure 3.1

Without loss of generality, we prove (3.28) on the interval [;, = (v, r/c). We consider
the problem on the extended interval Ig = I;, U Ijyy¢. If I}, is the right-end interval,
we extend everything to the right in an even manner. Note that f£ — £f has reflectional

symmetry at y = r/c and (3.29) holds on 7z. By using (3.29), it is not difficult to show
that there exist two linearly independent solutions ¥4 (y) and ¥—(y) of

2
dde"—b HF-D)F=0 (3.30)
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on I'p satisfying

d
¥+(00) = 1, E;W(y&) =0, (3.31a)
dk

Crexp(—yy) < d—ykn!r+(y) <Cyexp(—py), £=0,1,2, (3.31b)
V- =y Qr/e~y), yelg, (3.31c)

where y = 2r/e — yp, C2 and C3 are positive constants independent of ¢, 0, i and j.
Here we use the fact that f% — 7% has reflectional symmetry at y = r/¢ which implies that
¥ (y) defined by (3.31c) becomes a solution of (3.30). It is convenient to introduce the
following pair of linearly independent solutions:

= —(¢'+ +v-)
(3.32)
= —('I’-:- v-)

where ¥ (resp. ¥,) is an even (resp. odd) function at y = r/e. $§ can be expressed
by

‘osf; =c¢s¥s+¢cg¥a on Ip. (3.33)
Since || &; ll;2¢y= 1, we see from (3.27), (3.33) and (¥;, Wa)y, =0 that

j l¢g|2dy = cs " ‘PJ ||Lz([) +ca H ‘Pa "L.'Z(f )< l

It is clear from (3.31b), that

my <j| ¥s lle(fR). and || ¥, "L’(fg)< my,
where m;(i = 1, 2) are positive constants independent of ¢, o, i and j. These two inequal-
ities lead to the following

lesl,  leal < M,

where M does not depend on parameters. In terms of ¥y, ¢5 can be written as ¢‘3 =
(cs + ca)¥/2 + (cs — ca)¥—- /2, where the coefﬁments are bounded due to the above
estimate. This implies the required estimate for ¢q, since we see from (3.31) that o, (and
its derivatives) decays exponentially and the contribution of ¥_ on I-j;r is exponentially
small. O

Now we are ready to prove the following.

Lemma 3.12 (Precompactness of ¢ %). There exists a subsequence {qb"’" 00| with
lim &, = 0 from {¢5°} such that
mtoo 4

lim gbe"” =i

mtco 1

o in C*(R)-sense (recall Remark 3.5) (3.34)
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hold _simultaneously Joralliand j(0 <i<n—1,1<j<n). The resulting vectors
{c*K ‘;‘;01 defined by

MR =, -0

ct= "‘f’zﬂu(k)

form an othonormal set in R, ie.,

n
) ek =sp, Lkel0,1,---,n~1}, (3.35)
j=1

where 8¢, denotes the Kronecker’s 5.

Remark 3.13. The coefficients ICJ', in Lemma 3.12 except i = 0 may depend on the
choice of subsequence, however it does not dffect later discussions. In fact we will see
in Section 3.3 that the final form (3.75) of the SLEP system is independent of the choice
of subsequence. It is conjectured that ﬁfja has a unique limit and x} does not depend on

subsequences.

Proof. Using Lemma 3.11, the proof of (3.34) for a fixed i and j proceeds in a quite
similar way as in the proof of Lemma 3.10 where (631, &5) was shown to converge to
((55, 0) in C2(R) x R-sense when £ | 0. However, because of the lack of knowledge about
the convergence of || cﬁz fl 12(7) @i = 1) as ¢ | O (although it is uniformly bounded), we

have to choose a subsequence, and this cause the above anbiguity, i.e., x; may depend
on the choice of subsequence. Using a diagonal argument for i and j, we can find a
subsequence £,, such that (3.34) holds for all i/ and j. The orthogonality (3.35) comes
from that of the eigenfunctions of the Sturm-Liouville operator, i.e., (¢, gb_‘;f') =§;. O

Corollary 3.14.
f 1651dx = LiCe, o)z,
I

where Li(g, o) is a positive continuous function in Q" and satisfies

n
L= ”13?:30 Li(em, 0) = Z Ik, (3.36)
j=1

Progf. On each subinterval I;, we have

[dhax = vz [ Jediay
1 f
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On the other hand, it follows from (3.34) and f &3}: =] that
R

li pildy = || [ @td
gi’g‘/i}l¢uly I]IL¢Ly

Il

(3.37)

I

Hence

n
Gildx =5y / 1851d.
1 =177
We define L;(e, o) by

Lie,0) =2 ) f 151y

j=1 Y

Since the integral term behaves continuously for ¢ > 0, so does L;(g, o) in Q. the
equality (3.36) is a direct consequence of (3.37). D

Lemma 3.15 (Asymptotic Behaviors of Eigenvalues of L%). Ler {{77, ¢57)2, be
the complete orthonormal set of eigenvalues and eigenfunctions of

[50 = (82__‘__1_2__ +f£,a) ¢ _ §'¢
- dx? “ T

subject to Neumann boundary conditions, where fy° denotes the partial derivative f,
evaluated at the normal n-layered solution. The first n eigenvalues £5°, - -+, £2%, (667 >
s> Cfl'_‘_’l) are critical eigenvalues of L*°, which are positive for & > 0 and satisfy the
asymptotic formula as ¢ | 0 (see Figure 3.2)

£ = Ei(e, 0)eo + ei(s, ), (3.38)

Here £;and e;(i = 0, - - -, n—1) are positive continuous Junctions in Q" (see Corollary 3.9
and Theorem 3.3) which are continuously extendable to ¢ = 0 and satisfy the following:

A

&M = Eﬁ}lfi(& o)

(NP )
— L) " xofnt yxofnd
— n(c*) dv(")fo g(U v )dx>0.
jeite. )| < Cexp (L), (340

where y* and c* are positive constants defined in Remark 3.7, (U*'“/"Z,V*"’/ "2) is

the basic pattern in Theorem 3.3 with replacing o by o/n?, and C and y are positive
constants independent of (¢, 0) € Q" and i. Note that the asymptotic limit £*° does not
depend on i (0 < i < n—1). The rest of the eigenvalues £;'°(i = n) are negative and
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uniformly bounded away from zero with respect to small e, namely, it holds that
0>—A*>§§'“>;ﬁfl > ..

for small &, where A* 'is a positive constant independent of (g, o) € Q"

C J\ Ed

0
£, 0

t
o]

0 g
A

Eg

11

Figure 3.2,

Remark 3.16. Lemma 3.15 also holds under homogeneous Dirichlet boundary con-
ditions without essential changes. In particular, the asymptotic limit £*° remains the
same as the Neumann case.

Proof. Let ¢£(0 < i < n— 1) be the L?-normalized i-th eigenfunction of L, and recall
that

50) = Vedi(f +ey), yeli= (—-E 1) :

s
£ £

i.e., the stretched function of ¢f with center at x}‘ on j-th subinterval (1 <j < n), and
witax= [ 1#Pay.
I; I;

It is clear that “:':'j satisfies

& . »
;1;2"1’% +fuby=¢id  om I (341
and from (3.34)
Ef& ¢ =k in C2(R)-sense (3.42)

holds for an appropriately chosen subsequence. Here we keep the notation ¢ instead of
£m, Since thq final result (3.39) does not depend on the choice of subsequence. We take
j such that x} = 0. On the other hand, the y-derivative of the stretched normal n-layered
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solution satisfies

d* . .. . .
Zi_y?u; +fuly = —fy¥,  yel; (3.43)
Multiplying &5, on both sides of (3.41) and integrating by parts twice, we have
d £ e £ -s
‘J's fv ) ud uy ;-E(¢u' . (344)
Y -t/

Here we use (3.43) and the fact that @) =0 at y = —£/e, r/e. Using Lemma 3.11, we
see that

[the second term on the left-hand side of (3.44)] < Cexp (—-E) , (3.45)

where C, y are positive constants independent of ¢ and o. In order to compute the first
term of (3.44), first note that ¥° satisfies

2

d
o dy =7 +e 20, ¥°) = 0. (3.46)

Integrating (3.46) from —£/¢ to y and using ¥#(—£/¢) = 0, we have
¥ = —oei(y), (3.47)

where

y
Gor=c [ g #ap.
~€fe

Here é:f () can be obtained by stretching the following function at x = xJ:

X

i (x) = / g@®, v¥)dx.
~Etxy

& is C! for & > 0 and its C-norm is uniformly bounded with respect to &, and hence

we see from Remark 3.4 that &(y) converges to a constant function as & | 0. More
precisely,

x?
lim B (y) = / T gUr, Vhyda. (3.48)
&40 —l+x;

holds in C2, (R)-sense, where (U%, V¥) is the reduced solution of the normal n-layered
solution. In view of Lemma 3.12 and Remark 3.7, we see that

d
hm¢q - xl¢L _ y d
(3.49)

umﬁf-—c—*é*
g0 7 0
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hold in C2, (R)-sense. Substituting (3.47) into (3.44), & is expressed by
& = &is, o)oe + eie, 0), (3.50a)

where

i
(5,00 = — L 3.50b
$i(e, 0) @5, (3.50b)

ei(s,0) = — 85"y 165, %) (3.50c)
It is clear from (3.45) that ¢;(¢, o) satisfy (3.40). We compute the asymptotic form of
£i(s, o) as & § 0. Using (3.48) and (3.49), we have

. +00 d
(755,50 = v [ pa vy
—00

(3.51)

*

%
X / g(Ur, Viydx.

-!.-i-xj

Note that #*(y) is strictly monotone increasing (resp. decreasing) depending on the
quantity (3.48) being negative (resp. positive). For the increasing case, we have

+00 d [0

d
@, Vv —atdy = — (s, vV)ds
—oo f\' dy y dv h-(v‘!) f

(3.52)
dJ .

For the decreasing case, the sign becomes opposite. On the other hand, we have from
Remark 3.7 and (3.42),

(C“)2

o
Substituting (3.51), (3.52) and (3.53) into (3.50b), we finally obtain for the increasing
case

hm(&, ,85) = (3.53)

imbe oy (LY o [T e s
& =Eﬂ)"$’(8’ o) = (c* =07 o gy, Vp)dx. (3.54)
]
For the decreasing case, the integral part should be replaced by / gUk, Viydx
—r+x

x*

J
which is equal to — f ! gU}, Vi)dx. However, the sign of -g;(v*) (see (3.52)) also
—8+x}-‘

changes at the same time, hence Ej‘ is equal to (3.54) in either case. Recalling Proposition
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3.8, we see that R*U*®/"™) = U* and R*(V*9/""} = V*_ and hence we have
n n

L

X Ho/n?)
/ ! g(U* V*)dx — % / / g(u*,ﬁlnz, V*’”""z)dx,
—E&4-x? 0

which completes the proof of (3.39). The final part of Lemma 3.15 was already shown
in Lemma 3.10. O

3.3. Derivation of the SLEP System

The most delicate and crucial part of the linearized spectral analysis for layered solutions
is to find ali critical eigenvalues of (3.12) and clarify their asymptotic behaviors as £ |, 0.
The SLEP method gives us a unified tool to deal with this problem. The basic idea of
it is to find a nice scaling which blows up the degenerate sitnation of £57 (see (3.12))
as ¢ | 0. It turns out that the study of asymptotic behaviors of critical eigenvalues is
reduced to solving a linear eigenvalue problem of n x n symmetric matrix called the
SLEP system, although (3.12) is not self-adjoint. The aim of this section is to show how
the linearized problem (3.12) is reduced to the SLEP system with respect to the scaled
critical eigenvalues. Without loss of generality, we can restrict the region of A to A
defined by

A ={A|Red > —puy > max(—A*, —p)) (3.55)

for some fixed p1 > 0, where —A* and —u are negative constants appeared in Lemma
3.15 and (3.17). First note the following lemma.

Lemma 3.17. The first n ecigenvalues (£5¢ af Sturm-Liouville aperator L%Y do
not belong to the spectra of L5 for small s.

Proof. See Appendix B. O

Remark 3.18. Lemma 3.17 combined with Lemma 3.15 implies that, if . € Ay is an
eigenvalue of L5°, the resolvent (L5 — &)~ exists for all small e.

Solving the first equation of (3.12) with respect to w and substituting it into the second
equation after expanding it by using the complete orthonormal set of L5, we have the
equivalent eigenvalue problem containing only z:

Lire+ i St g0t + g8 - N (570 + 872 = Az
A €A,

(3.56)

where the reduced resolvent (L& — 2)1 is defined by

£,0
@ -t =Yool ey 9’ ) 607 L20) > PO, L L0 (3.57)

i>n 7t
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It is clear from (3.57) that (L57 —A)T is uniformly L2-bounded operator, more precisely,
we have

Hase -t i< Fal:ﬁ (3.58)

for A € A;. Note that the denominator |5 — A| is strictly bounded away from zero (see
Lemma 3.15 and (3.55)). On the other hand, recalling Lemma 3.15, all the denominators
of the second term of (3.56) must go to zero as &£ | 0 if A is a critical eigenvalue of
(3.12). Hence more careful treatment is needed to handle this term. Let us begin with

the study of the reduced resolvent.

Lemma 3.19 (Asymptotic Limit of (L& —2)T). (159~ )T is & uniform L2-bounded
operator with respect to & and becomes a multiplication operator ir the limit of £ | 0.
Namely,

F*h

T

. 80 _ s \Trmeony —
l;ig( MW (Fh) =

in strongly L%-sense for any h € L*(I) N L™°(I), smooth function F(u,v), and A € Ay,
where F&9 = F(D" (g, o)) and F*? = FU»°(x), V3% (x)) (i.e., evaluated at the reduced
solution of D™(e, 0)). Moreover, if h belongs to H'(I), the above convergence is uniform
on any bounded set in H n.

Proof. Let S5(x) be a smooth cut-off function defined on I satisfying

1 i x> 82
Ss(x) =
0 if jxj<é/4

with

i

2 550)

S <M (=1,2),

0<Ss(x) <1, sup
xel

where M; is a positive constant which tends to 400 as 8 | 0. We assume for simplicity
that F&% = 1, A = 0, and h is smooth. It is not difficult to extend it for the general case
by using approximation and density argument.

Define S% by Sg = S5(x — x}), then

hs=S}-S3-.-S%-h

is a punctured function of & at layer positions, i.e., s = 0 in a small neighbourhood of
xf@ =1,---,n). In view of (3.58), we see that it suffices to prove the lemma for 4;
since hs approaches h in L2-sense as § | 0. In order to show that hs/f;°, which we
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denote by us, is equal to liig(Ls)Thg, we first apply L9 to u;:
&

at [ b
Ls"’u,s = zdx ( )+ff: (*a)

£,0 ¥, F
“———(f“ “fu )hs + e Hj,

(3.59)

d? . .
where H; = ) (f}??) Note that Hj; i1s well-defined since h; becomes zero in a
X "

neighbourhood of each xf. Applying (L"""'r)'r to both sides of (3.59), we have

Ga” —1i%)

u

n--1
us— 3 (up, 65N = @A) by + (@)1 {

ks +£2H5} (3.60)
i=0

Recalling Corollary 3.14 and 13 = 0 in a neighbourhood of each x}, the second term on
the left-hand side tends to zero in L2-sense as s | 0. Since f5° — £ goes to zero in
L?-sense as ¢ |, 0 and H; remains bounded in L2-sense, the second term of the right-hand
side of (3.60) also tends to zero when ¢ | 0. Hence we cbtain

= Lim(L>%) T 5.
Uus Ejloi( Y hs

The final part of the lemma can be proved in the same way as in the proof of Lemma
2.2 in [44], so we omit the details. O

It is convenient to classify the spectrum of (3.12) into two classes; the critical eigen-
values which tend to zero as ¢ | 0, and noncritical eigenvalues which are bounded away
from the imaginary axis for small &. Making use of Lemma 3.19, we can show that
noncritical eigenvalues are not dangerous to the stability of D"(s, o), namely, they have
strictly negative real parts independent of .

Proposition 3.20 (A Priori Bound for Noncritical Eigenvalues). Let Bs be a closed
ball with center at the origin and radius 3 in the complex plane C. Suppose that A is an
arbitrary noncritical eigenvalue of (3.12) which stays outside of Bs for all small e. Then
there exist positive constants u* and 5 such that

Reh < —p* <0 for 0<¢ <eg;, (3.61)
where u* does not depend on 8 and e.

Proof. There is no essential difference in proofs between mono-layer and multi-layer
cases. So we delegate it to that of Proposition 2.1 in [44]. O

Now we can concentrate on the behavior of critical eigenvalues. Let A = A(£) be an
arbitrary critical eigenvalue of (3.12), and assume that A varies in the ball B = {A||A| <
8} for some § > 0. We shall specify the size of & later. In view of Corollary 3.14,
Lemma 3.15, and 7z € H}V(I), we see that both the denominator and the numerator of
the second term on the left-hand side of (3.56) tend to zero as £ | 0. Here the scaling
technique comes up to convert it into more tractable and nondegenerate form. Before
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that, we first rewrite (3.56) in the form of a finite dimensional eigenvalue problem by
using the following operator K&%,

Lemma 3.21 (Operator K5%*). Let B5%* be g bilinear form defined by

FoAE, ) = —leh ) — (a8 @~ DT (A7) + g7 ~ 1, )

for ZeHYD(E=1,2).
Then, for a given h € H™1(I), the equation for z € H ,{,(I)

B (1, y) = (b, ¥) forany e HY()

has a unigue solution z = z(h) for small ¢ (including ¢ = 0) and L € Bs. Define the
mapping K&%* by

K59 h = z(hy; YD) — HyO).

K&% is a bounded operator from H -1 (I to H}V(I), and depends continuously on (g, o)
and analytically on A in operator norm sense, respectively. The limiting form K90 =
hfaKs"’ 0 is given by (3.68) and (3.69).
E

Proof. See Lemma 3.1 of [44]. O

Applying K&%* to (3.56), we have

_ €,0
7= Z fe ~ i Fe O (8. (3.62)

This shows that z is a linear combination of K*%*(gi%¢”) (i =0, ---,n— 1) yielding
n—1
z= Z‘ o KS (g5:9¢57), (3.63)
=0 -
where a = (a, - - -, @z—1) is a real vector. Note that K% (gZ%¢%) (i=0,---,n—1)

are linearly independent since {¢;*"}-) are linearly independent. Substituting (3.63)
into (3.62), we obtain an n-dtmenswnal mairix eigenvalue problem:

(&7 = Mag
M*%a = , (3.64)
@f,'f — Aoy

where M5° = {(~f&o¢57, K& (g5 7¢7 ) e Yimo- Note that M*“ also depends on A
through K%%. This problem is highly degenerated, since all the elements of M%7 and
&%—=Ax(i=0,---,n—1) tend to zero as ¢ | 0 (recall Corollary 3.14, Lemma 3.15,
Lemma 3.21, and that A is a critical eigenvalee). The following characterization of
the asymptotic form of ¢'” by /¢ -scaling plays a key role to unfold this degenerate
situation.
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Lemma 3.22 (Asymptotic Form of ¢{"°/.,/€). Let {¢;™")°2_, be an arbitrary conver-
gent sequence in the sense of Lemma 3.12 on each stretched subinterval [;(j = 1, - -+, n)
forie @, --,n—1). Then it holds that

- ¢ LA
"111& -—f Emi0 ,:/— = = c]A; =¢} ;x}&(x — x}-’ (@), (3.652)
¢§m0' n
1 Em\ 0 — A, — *
dm e = ahi=c g"}ﬁ(x = xj (@) (3.65b)
-1 dar . ~ . ,
both in H™ (I -sense, where ¢} = — wVrea= Y {ghe v, v*) — g(h_(v%), V1)),

and 8(x — x}‘(cr)) denotes the Dirac’s S-function at x = x}?(a). The vectors k! =
&, -, id) (=0, -, n— 1) satisfy the orthogonal relation (3.35).

Proof. Recallng (3.26) and Lemma 3.11, we see that this is essentially a restatement
of Lemma 3.12 in the original x-coordinate. The only difference is the coefficients
¢} (i = 1, 2) which appear due to the existence of —f5™ and gi™°. To show (3.652), it
suffices to compute the integral

00
iy | VETr sy = [ ferediiay

—00

o S, | d*
= [ A

. ()
= _YK; fV(s7 V‘)ds

h_(v*)
; d
— —xt .—.-_J *
= c}'lc},

which implies (3.65a). Similar computation leads to (3.65b). O

Hereafter, we fix a convergent subsequence {¢{™°/./€}° |, and for simplicity of
notation, we simply write ¢ instead of &, keeping in mind that £ actually means a
discrete parameter &y,. In view of Lemma 3.15 and Lemma 3.22, we see that £-scaling
is the most suitable to blow up (3.64). In fact, dividing (3.64) by ¢ on both sides, we
have

(o7 /e — A/6)ag
M&%a = : , (3.66)

(Cplife— Afe)an 1
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where M9 = {(—f578{°//&, K™ (g5;°¢;'° //EN )72 The problem (3.66) is non-
degenerate and well-defined contisuously up to £ = 0. In fact, in the limit of ¢ | 0, we
see from Lemmas 3.15, 3.21, and 3.22 that (3.66) becomes

(%% 4+ (29° — af*%Y)a* = 0 (SLEP system) (3.67)

where M%7 = lif& M5% = {cjc5 (A, K*'”Aj)}g'}:lo, K*0 = g000 o - liﬂ}l(s)/s,
£ £

of*? = ]ifg e (i=0,--,n~1),and a* = lif&a. Here we use the fact that the
& £
critical eigenvalue A = A(¢) can be written in the following form:

Lemma 3.23. Anj critical eigenvalue A must have the form
A = e1(e, o),
where T is a bounded function up to £ = 0. The problem (3.66) depends on t smoothly.

Proof. Suppose that there is a critical eigenvalue A (¢) which tends to zeroe strictly
slower than O(g). Then the associated eigenvalue problem (3.66) must have an arbitrary
large (in modulus) eigenvalue when ¢ | 0. However this is not possible since both M*¢
and £%° are uniformly bounded and have definite limits as £ | 0. This also implies the
boundedness of 7 up to £ = 0. The last part is clear from Lemma 3.21. D

The limiting problem (3.67) is called the SLEP system of (3.12) with respect to the
scaled eigenvalues ™. From now on, we focus on the SLEP system (3.67), since all
information on the asymptotic behaviors of critical eigenvalues for £ > 0 can be derived
from (3.67). However the only defect of (3.67) is that it does not look free from the
choice of the subsequence, i.e., M*° may depend on A;. In order to get rid of this
ambiguity, we shall apply a change of bases to M*“ which depends on {A,-]‘;.:(Jl. It
turns out that the resulting matrix denoted by Gy is independent of the choice of the
subsequence and has n real distinct eigenvalunes, which Jeads to our main result (Theorem
3.25). For this purpose, we introduce the Green function Gy = Gn(x, y; o) associated
with the operator K*%0 (see Lemma 3.21) defined as follows:

K*90% = (Gn(x,y;0),¢), forany ¢ e H(). (3.68)
More explicitly,

h(0)k(y), O=x<y=<l,

Gn(x,y;0) =— X (3.69a)
WO B | k), O<y<x<t,

where » and k satisfy the equation

1 d> det?
("EF - S ) ¢=0, ¢eH( (3.69b)
U
with the boundary conditions

RO) =1,K(0) =0 and k(1) =1, k(1) =0, (3.69c)
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where det*? = fir%g5? — %0 > 0 (sec (A.4)) and W(k, k) denotes the Wronskian
of 4 and k. Note that h (resp. k) is strictly positive and increasing (resp. decreasing),
respectively, since —det*? /£ is strictly positive from (A.3) and (A.4). It follows
from (3.68) that

(8(x — xF (o)), K**03(x — x}(©))) = G (x} (), xj (0);0).

H
Therefore, recalling that A; = Z K}S (x—~ x}‘(a)), we have
J=1

(Ai, K27OA)) = KIGNK, (3.70)
where Gy is an n X n symmetric matrix with positive comaponents defined by
Gn = {GNn(x] (0}, %} (@) O} jt - (3.71)
Let us define matrix P by
P=c*ad k!, ... k™) (3.72)

which becomes orthogonal from (3.35). Then the matrix M* in (3.67) can be rewritten
as

M = {ct'KGK)

1,1—0
€ics ¢
= s PGNP (3.73)
= ‘PGyP,
where
_ cicl
Gy = (;*)22 Gn.  (SLEP matrix) (3.74)

This shows that M* is an orthogonal transformation of the real symmetric matrix Gy
which clearly does not depend on the choice of the subsequence, and hence neither do
the eigenvalues of M*. We reach the final form by multiplying both side of (3.67) by
P:

Gy + (7 — of"Ib* = 0, (3.75)

where b* = Pa*. This is, what we call, the normal SLEP system of (3.12). Since the
normal SLEP system (3.75) is the commeon limit of all subsequences, the eigenvalues of
(3.66) (without taking subsequence) converge to those of (3.75) when & | 0. Moreover,
since Gy has 7 real distinct eigenvalues (see Theorem 3.24), the associated eigenfunc-
tions as well as eigenvalues of (3.66) are uniquely determined as continuous functions
of & by usual regular perturbation. What we have to do is to show that Gy has n distinct
real eigenvalues and determine their signs. Especially, we are interested in the miniroum
eigenvalue of Gy, since it determines the maximum value of the scaled critical eigenval-
ues 77 If the maximum value of v is negative (resp. positive), the normal n-layered
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solution becomes asymptotically stable (resp. unstable). We bave the following result
for the eigenvalue problem (3.75), the proof of which is delegated to Section 3.4.

Theorem 3.24 (Eigenvalues of the SLEP System). The set of eigenvalues of Gy
GnO =0 (3.76)
consists of n real distinct positive eigenvalues
O<pp1 <p2<-<w (3.7
Namely, in term of v7, (3.75) has n distinct real eigenvalues
<< <00, (3.78)
where 1'% = o£*% — y; (0 < i < n— 1). Moreover, it holds that
™9 < 0. (3.79)

n—1

Theorem 3.24 leads us to the following main resuit by a regular perturbation. Asymp-
totic forms of critical eigenfunctions are also given in the next theorem.

Theorem 3.25. There is a positive constant € such that the critical eigenvalues of L5
consist of n real distinct eigenvalues Aj(€), - - -, A _,(€) which are simple and continuous
for 0 < e < £ satisfing the asympiotic relanons (see Figure 3.3)

M@y ~2%, k=0,---,n-1

as € | 0, where rI 7 (k=0,---,n~1) are given in Theorem 3.24. The associated
critical eigenfunction DOk(e) =1 (w"(s) 2%(£)) has the following asymptotic form

( kg i kpt,0,05 \
o 2415 Jm'czzqf" x;
. w j=1 i j=i
lim®@* @) =o* = = . (3.80)
el0 Zk' n
k z*,0,0
\ % Z 9 K* 7 }
j=!
where q* = (q’l‘, — ‘i‘n) (||q" I = 1) is an eigenvector of Gy for Yi, and we use the

simple notation 6y, instead of é(x — x;‘(o)). The rest of the eigenvalues, i.e., noncritical
ones, have strictly negative real parts uniformly for0 < e < &,

Remark 3.26. Note that asymptotic forms (3.80) are free from the chosen subsequence
in Lemma 3.22.

Proof. Since we know from Theorem 3.24 that {z; Aad ":0 are real and distinct, the first
part of the theorem is easily obtained by applying the implicit function theorem to the
characteristic equation of (3.66) with replacing A by er. In fact there exist £* and «*
such that (3.66) has a unique e-family of solutlons {rk(s o)}i=} for 0 < & < &* and
|t — | < k* satisfying hin (8, 0) = Tk Tk =0,-,n— 1) Conversely we can

find g, (< &%) and &y (> ]ro ?D) such that any solution of (3.66) with 0 < £ < i
and 1| < xp must coincide with one of {1;(z, 0')}"“1 Let § = gx,Kg. Then, taking
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A A
0 ::E
Ai(e,0)
As.a(E,0)
Ag(e,0)
Figure 3.3,

8 = § in Proposition 3.20, we see that noncritical eigenvalues of (3.12) satisfy (3.61) for
0 < & < & where £ = min{gy,, £;}. Simplicity of each critical eigenvalue can be proved
in a parallel way as in the proof of Theorem 3.1 of {44]. The only remaining thing is to
show (3.80). Denote by O = (q°, - - -, ")) the orthogonal matrix which diagonalizes
Gy, i.e.,

‘QGNQ = Dy, (3.81)

where D, = diag(yp, ¥2,- -, Yn-1)- Recalling that the matrix Gy is represented wnth
respect to the base {c;K™ °'0(81,)}';‘_1 (see (3.63), (3.72), (3.73)), it is clear that z** =

c5 Zq}K’ “Oé‘xj is an eigenfunction associated with y; (and hence ¢ k %). As for the
i=l
w-component, we have the expression for w by solving the first equation of (3.12)

¢£U

n-1 {Z, _feo' £,0
'\/_ ¢ £,0 ]
= E — N (=Fe 3.82
w i ffa, NG + ( ) ( 2)- ( a)

Using Lemma 3.19 and 3.22, we see that w&' can be represented as

n—l o o
c y A v "
"=yl 1(" i)y fi'azk . (3.82b)
i=0 i u

Substituting the above expression of z¥ into (3.82b), we obtain

- (Z gi K03y, Ex',ax,)
=€ CZZ = Ev 0 A;

*cr"

_sz* = Z qj K* UOBXJ
j=0

(3.83)
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Since we want to have an asymptotic form independent of {k'}}-}, we rewrite the first
term on the right-hand side of (3.83). First note that G; = (K*o08 x;»8x,), we see from
(3.81) that the numerator becomes

n
cic D Gugfkh = (Vi ) aixi.
Jj€=1 =t
Hence the first term on the right-hand side of (3.83) becomes
)y ki
FFo_ o D dikidy.
i k ije=i

Recalling that P'P = I, where P = c*(, -- ., kK*1), this is equal to

n
Z q}‘ 8x;-

j=1
Here we use the relation &9 — *t:z"Jr = y;. Combining the above results, we conclude
that
n O n
k* k *JV k 4,00
W= gl g ) g i K 0y,
j=1 i

which completes the proof. O

Combining Theorem 3.25 with Corollary 3.9, we obtain the following result which is
equivalent to Main Theorem in Section 1.

Theorem 3.27. For any fixed o and positive integer n with 0 < o < oy, there
exists ep(c) > 0 such that the normal n-layered solution is asymptotically stable for
0 < £ < g,(0), where €,(0) depends on n and o with l%m en(0) = 0. Hence the number

nyoeo

of asymptotically stable normal multi-layered solutions tends to infinity as € | 0.

3.4. Eigenvalue Problem for the SLEP Matrix

We shall prove Theorem 3.24 by sequence of lemmas. A key trick is to consider the
eigenvalue problem of the inverse of Gy, not Gy itself. The main feature of (},‘,,1 1s
that it is a tri-diagonal symmetric matrix (Lemima 3.28), which is well studied, and a
general theory (Lemma 3.29) can be applied to GR.‘ to conclude Theorem 3.24 except
(3.79). In order to show (3.79), which is crucial for the stability, we need to introduce
the auxiliary matrix Gp which is similarly defined as Gy with replacing the Neumann
boundary conditions by Dirichlet ones. Namely,

clc3 = cics
(c*)? (c*)?
where Gp(x,y;0) is the Green function of the operator (3.69b) under homogeneous

Dirichlet boundary conditions. A key observation for G is that the minimum eigenvalue
of it is equal to ¢¢*, or, in terms of 759, the maximum eigenvalue of (3.75) with

Gp = {Gp(x}(0), x}(0); DN}y (3.84)
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replacing Gy by Gp is equal to zero (Lemma 3.31). This comes from the fact that the
x-derivative of the normal n-layered solution is always an eigenfunction of (3.12) under
Dirichlet boundary conditions associated with the zero eigenvalue, i.c.,

Lo + 57V = 0
MEOVE + g2%ul = 0 (3.85)
W, =0=v; - on 9l

A comparison between components of G! and G5! (Lemma 3.32) leads to the conclu-
sion (3.79). In view of (3.74) and (3.84), it suffices to compare Gy' with G!.

Lemma 3.28 (Inverse of the SLEP matrix). The inverse of Gy exists and Gy} is a
tri-diagonal real symmetric matrix such that

(a) All diagonal elements are equal except (1, 1)- and (n, n)-components.
(b) Every other off-diagonal elements are equal.
(c) All diagonal (resp. off-diagonal) elements are positive (resp. negative).

More precisely we have

( _hz/hl 1 \
Az A2
_ A 1
Aj2Az3 Aoz
k
Gl = W(z, ) ,n: even, (3.86)
R
Az
_ha/hk
\ Ay /
( mhg/h] 1 \
Az A2
Ajgj i
Al Aps
W(h, k
Gyl = (a ) .1 odd, (3.87)
: 1
Ax
_kn—I/ku
\ Axj J
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where

hi = h(x}(0)), ki=k(x](0)) (see (3.69a) and (3.71)} .

Exactly the same formulae hold for GB] with replacing h;, k; by hf’, kf. Here h?, kf are

the correspondents of the Green function for the Dirichlet boundary conditions.
Proof. See Appendix C. O

The following result is basic for the study of the eigenvalue problem of tri-diagonal
matrix. For the proof, see, for instance, Wilkinson [60; chapter 5].

Lemma 3.29 (Eigenvalues and Eigenfunctions of Tri-diagonal Symmetric Matrix). Let
T be a symmetric tri-diagonal matrix with non-zero off-diagonal elements of the form

(0!1 B2 ' \

o

B oy .
T= - . . . Bi#0.
. . ﬁn

\ ¢ . Brn—1 | an)

Then, T has n real, distinct, and simple eigenvalues Ay < Ay < --- < A,. The corre-
sponding eigenvector x¥ = (xX, .-, xk) to Ay is expressed by

=1, = 0"""p 1)/ Babs- - Br R < <), (3.88)

where p.()) denotes the leading principal minor of order r of (T — AI) with py(3) = 1.
Finally, the polynomials po(A),p1(A), - - -, pn(X) satisfy the Sturm sequence property.
Namely, let the quantities po(), pi{w), - - -, Palit) be evaluated for some value of .
Then s(u), the number of agreements in sign of consecutive members of this sequence,
is equal to the number of eigenvalues of T which are strictly greater than p

Corollary 3.30 (Positivity of Eigenvalues of Gy). All eigenvalues of Gﬁl (and hence
Gy also) are strictly positive. This is also true for GBI.

Proof 1t suffices to show that the minimum eigenvalue of G;l is strictly positive.
First, noting that all elements of Gy are non-negative, we see from the Perron-Frobenius
Theorem (see Varga [59; chapter 2]) that the largest eigenvalue ymax of it is real, simple,
and positive with a positive eigenvector. Hence .. must be one of the eigenvalues of
G}}I. On the other hand, the only eigenvalue of Gy’ which has a positive eigenvector is
the minimum one, say A;, because of (3.88) and the Sturm sequence property of Lemma
3.29. This implies A} = yr;z{x > 0 and completes the proof. O

We need two more lemmas to prove (3.79) of Theorem 3.24. The first one is a
restatement of the remark at the beginning of this subsection.
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Lemma 3.31. The minimum eigenvalue of Gp is equal to o8*°. In terms of t°, this
is equivalent to say that the greatest eigenvalue of the problem (3.75) with replacing Gy
by Gp is equal to zero.

Proof, 1t is clear from (3.85) that 6% (i.e., v = 0) is one of the eigenvalues of Gp.
The only thing we have to prove is that it is the minimum eigenvalue of Gy. To do this,
note that Lemma 3.29 also holds for G5!, and therefore, the eigenvector associated with
the largest eigenvalue has no agreement in sign of consecutive numbers of components.
On the other hand, it is not difficult to see that the eigenvector of Gp associated with
o&*° also has the same property, since the original eigenvector (uE, v&) of (3.85) can
be generated by flipping the unit form on the first subinterval (0, 1/n) by (n — 1)-times
in odd symmetric way. Hence the largest eigenvalue of G5! must be (6£%)~1, which
implies from Corollary 3.30 that o£*° is the minimum eigenvalue of Gp. O

A direct consequence of this lemma is that (3.79) is equivalent to

Minimum eigenvalue of Gy > Minimum eigenvalue of Gp = of*7. (3.89)
In view of Corollary 3.30 this is equivalent to
Maximum eigenvalue of ("},‘vl < Maximum eigenvalue of Gr;! , (3.90)

which is more convenient for us. To show (3.90), we make a comparison between the
elements of G5! and Gp!.

Lemma 3.32 (Comparison between G5! and Gp'). It holds that
(i) All the components of Gh‘,l and GBI are equal except (1, 1) and (n, n) components.
(ii) For (1,1) and (n, n) components, the following inequalities hold

Gyhn < 6phu

and (G n < G pYa

Proof. See Appendix C. O
Now we are ready to prove Theorem 3.24.

Proof of Theorem 3.24.

It is clear that Lemmas 3.28, 3.29, and Corollary 3.30 imply all the results of Theorem
3.24 except the stability inequality (3.79). Recalling the variational characterization of
the principal eigenvalues of G5! and G, the inequality (3.90) is a direct consequence
of Lemma 3.32. Finally the inequality (3.90) combined with Lemma 3.31 leads us to
the inequality (3.79). O
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4. Recovery Process of Stability
— From the Shadow System to the Full System —

In Section 3 we showed that, for a fixed o > 0, all normal n-layered solutions are stable
for small ¢ > 0. However their stabilities are subtle in the sense that they have n real
negative critical eigenvalues which tend to zero with order ¢ as ¢ | 0. On the other hand,
a single reaction diffusion equation has also similar normal n-layered solutions, but they
are all unstable as was mentioned in Section 1.

A naive question is that “Can we somehow interpolate these two opposite results from
spectral point of view?” A key ingredient for this is the shadow system (see (1.16) and
Section 4.1) which is obtained as the limiting system when o | 0, i.e., the diffusivity of
the controller v is extremely high, and hence v is reduced to a constant function v = £(2)
in spatial direction. The shadow system is an intermediate system between the full system
and the single equation, and plays a pivotal role to answer the above question. Namely
the spectra of the linearized problem (3.12) converge to those of the shadow system as
o} 0, and if the scalar controller £ of the shadow system is fixed to be a constant with
respect to time, it reduces to a single reaction diffusion equation.

In Section 4.1 we shall prove that the normal n-layered solutions to the shadow system
have (n— 1) real positive eigenvalues which tend to zero exponentially as £ { 0, and the
associated eigenfunctions belong to the D”-symmetry breaking space (see Lemma 4.3).
In Section 4.2 we shall show that the (n — 1) critical eigenvaiues {A{ (e)}’;:'__{ for the full
system (see Theorem 3.25) converge to the above positive ones as & | 0. The only one
exceptional critical eigenvalue Aj(¢), which belongs to the D™-symmetric space, does
not change its sign when o | 0, because the scalar controller £ is enough to stabilize the
perturbation in this D"-symmetric space. It is clear from this that spatial variation of the
controller v plays a key role in stabilizing multi-layered solutions. We shall study this
transition of stability throngh the analysis of the SLEP matrix #/5? as o | 0.

4.1. Instability of Multi-layered Solutions for the Shadow System

We consider the limiting system of (3.1) when o | 0, i.e., the diffusivity of v is extremely
large. As o | 0, the second component v approaches a constant function in spatial
direction under the assumption that (x, v) remains bounded in C%-sense for all time
which is guaranteed from our assumptions for (f, g) (existence of invariant rectangle).
On the other hand, integrating both sides of the second equation of (3.1), and using the

Neumann boundary conditions, we have

j vdx = f g(u, v)dx,
! !

which holds independently of o. Thus we have the following limiting system as o | 0
(see [41] and [30] for more precise derivation);

w = Elugy+flu, k)
4.1)
& = /, g(u, E)dx
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subject to u, = 0 on al, where £(r) is a constant function.

We call (4.1) the shadow system of (3.1). 1t is known (see Appendix 1 in [44])
that (4.1) has a unique e-family of normal »-layered solutions (#"(x;e, 0), £%(¢)), and
D'z, 0) = (u'(x;s,0), vV}(x;¢, 0)) converges to this solution as ¢ | 0 in C% x C2-
topology. Since the degree of freedom of the controller § is equal to one, (4.1) cannot
stabilize the normal n-layered solutions (n > 2) as observable ones. In terms of the
spectral behavior, this can be represented in the next theorem. In this section we only
deal with the solutions of (4.1), so we omit the superscript O for simplicity like f2, Lf,

73, instead of £y’ 0 179, * 0,

Theorem 4.1. The following linearized eigenvalue problem at ((u"(x; ¢, 0), £*(¢))

L'w+ fin = Aw
(w,m) € HEDNHLD) x C

4.2)
Jigbw+ ni=xn
has exactly n critical eigenvalues {My(€), 2{(©), - -+, A5_,(e)} such that
A5 <0< i _1(6) <--- < Aj(e)
and satisfy
25 ~ e (% <0), (4.3)
A (e) < Cexp(—y/e) Gi=1,---,n-1) 4.9

when ¢ | O, where C and y are positive constants independent of i. All the other
noncritical eigenvalues of (4.2) have strictly negative real parts for small s. Moreover
the unstable eigenvalue l‘}' (¢) coincides with the i-th eigenvalue & of the Sturm-Liouville
operator Lf fori=1,---,n—1. The associared eigenfunction with Ay(€) belongs to the
D"-symmetric space X, and those for {A{(s) }" 1 are given by {(¢5, 0)}:‘__11 and belong to
the D"-breaking space X where ¢ is the eigenfunction of L® for & (i=1,---,n-1).
See Lemma 4.3 for the definitions of Xt and X~.
In order to prove this theorem, we need to show the following two lemmas.

Lemma 4.2. Let (&7, ¢{ )72, be the complete orthnormal set (in L2-sense) of L:. Then
&% has exactly i internal szmple zeros and the first n eigenvalues (g > ¢ > --- > &&_,)
are positive for ¢ > () and tend to zero exponentiaglly as ¢ | 0, i.e.,

0<§f§Cexp(—§) i=0,1,---,n—1, @.5)
where C and y are positive constants independent of i.

Proaf. The proof of Lemma 3.15 is also valid for this case. Since v = £ is a constant
function, the first term of (3.44) does not appear, which leads us to the estimate (4.5).
The details are left to the reader. D

Next we introduce the orthogonal decomposition of L2(7) which takes into account the
symmetry of normal n-layered solutions due to the folding up principle (see Corollary
3.9). A function u(x) € L2(I) is called D"-symmetric if it is generated by u(x)l0,1/n
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(restriction to [0, 1/n]) by flipping it (» — 1)-times in an even way. Apparently each
component of the normal n-layered solution is D"-symmetric. L2(I) can be decomposed
into D"-symmetric part and its orthogonal complement in the following way.

Lemma 4.3. The space L*(I) has the following orthogonal decomposition

n=xtex,
where
Xt = closure of span{$5,}32, in L*(D
X~ = closure of span{¢§}iznk in L*(D).

X+ consists of the D*-symmetric functions, in paticular, normal n-layered solutions and
constant function belong to this space. We call X* (resp. X™) the D"-symmetric (resp.
D"-breaking)-space. Finally we denote the orthogonal projection onto Xt by P,

Proof. Since the potential term f7 of Lf is D"-symmetric and from the nodal! property
of eigenfunctions, {¢],172, is generated via folding from a complete orthogonal base of
the restricted Sturm-Liouville problem Lf to (0, 1/n) with Neumann boundary conditions
at x = 0 and 1/n. This immediately leads us to the above lemma. O

Remark 4.4. Let L2(1) be an extended space of L*(I) defined by

L2(I) = {each element of L2(I) is extended to the double interval (0, 2)

in an even way and identify both end points}.
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Similar extension can be applied to X+ and X~, and we have an orthogonal decompo-
Sition

Po=x*ex.
Then the element of X* is characterized as a function which is invarians under D"-
action, i.e., reflection and 2r/n-rotation. Note that X is invariant under usual algebraic

operations such as addition, product and so on. For more systematic group theoretical
approach to our problems, see [24] and [25].

Proof of Theorem 4.1. The eigenvalue problem (4.2) can be decomposed as follows
by using the projection P onto X:
L'w* + fon = aw'
(4.6)
f (" + gmdx = Ay

Lfw™ = Aw™

/ gw dx =0,

where w = wt +w™, wh=Ptw e X+, and w™ = (I — PH)w € X~. Here we use the
fact that L® commutes with P¥, and that f¢, g2, g%, and 5 belong to X*. The system
(4.7) 1s equivalent to

@7

Low™ =aw™, 4.8)
since w~ (€ X ™) is orthogonal to g& (€ X*). Since each component of the decomposition
L xR=X" xR & X~ x {0}

is invariant under the linearized operation (i.e., the left-hand side of (4.2)). It suffices to
solve problems (4.6) and (4.8) separately.

First it is clear from (4.8), Lemmas 4.2 and 4.3 that the set of eigenvalues {:;"'},_1
L* are the required positive critical eigenvalues {A] (8)]:—1 in Theorem 4.1 and all the
other spectra of (4.8) are noncritical and strictly negative for small £&. The remaining
negative critical eigenvalue A3(¢) can be obtained by solving (4.6) in the following way.
Using Lemma 4.2, the first equatlon of (4.6) can be solved with respect to wt:

wh = @ -0
£ 4.9
%ﬁl@¢o + @ - nTsn,
0
£ T ( f vns ) 4
where (Lf — ) = Z ——ﬁ—qbkn, the reduced resolvent defined on X*, which
kn

k=1
satisfies all the properties in Section 3, especially Lemma 3.19. Also note that £ does
not belong to the spectrum of (4.6) for small £, which can be proved in an analogous

way of Lemma 3.17. Substituting (4.9) into the second equation of (4.6), we have after
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dividing it by »

(—f 5! ¢6) £ EsrE T £ £ —
— 58P0 T &u(L" — A () + gy p dx = A (4.10)
1l H—4
When 7 = 0, it follows from (4.9) that w = 0, hence it suffices to consider (4.10).
Suppose A is a noncritical eigenvalue. It follows from Corollary 3,14 and the fact that
the denominator is bounded away from zero that the first term on the left-hand side of
(4.10) tends to zero. In view of Lemma 3.19, we see that the second term of (4.10)

. *
approaches -—;E%_fi as ¢ | 0. Thus (4.10) becomes in the limit of € | 0

fa
det* —Ag) _
j;{—__—_j}—-l }dx_x, (4.11)

where det* = f}g¥ — g 3. Recalling the assumptions (A.3) ~ (A.5), one can show after
some computation that any solution A of (4.11) must have strict negative real part, which
is also true for small positive £ by continnity arguments. Thus noncritical eigenvalues
are not dangerous to stability.

We next consider the case where A is a critical eigenvalue. Since the same asymptotic
characterization of Lemma 3.22 and 3.23 also holds for the shadow system, we rewrite

it in the following form

f { =y 96//%) g2 g —entop% + 83} dx = er, (4.12)
I 6T &

where T = A/¢ and fﬁ = ¢{5/e. Note that Ef] tends to zero exponentially (see Lemma
4.1). Hence, when ¢ | 0, (4.12) becomes

* ok *
ctc det
IZI

dx =10,
L 1 T

which leads us to the expression

t I
C16

J(5)=

Recalling (A.3) and (A.4b), we see that 7y < 0. Multiplying &] — 7 on both sides of
(4.12) and applying the implicit function theorem to it, we easily see that (4.12) has a
unique continuous solution 7 = v(¢) up to £ = @ with 7(0) = 7 given by (4.13). This
compietes the proof of Theorem 4.1. O

(4.13)

1'5’ = .ls‘lf(;l (e) =

4.2. Recovery of Stability (From the shadow system to the full
system)
‘We shall fill the gap of the stability results between the shadow system (Theorem 4.1)

and the full system (Theorem 3.27) by studying the eigenvalue problem (3.66) in the
limit of ¢ | 0. The next lemma is a key observation for this purpose.
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Lemma 4.5. When o | 0, the operator K> defined in Lemma 3.21 converges to
K02 in operator norm sense, where K&%* maps h € H=(I) to the constant Junction
c(h) defined by

e =~ 1) [~ D+ g5 - a1 4.14)
For A =0, (4.14) tends to the following as ¢ | 0
()= 1) (4.15)

(det* /f5. 1)
Idea of proof. Although we refer the proof to that of Lemma 3.1 of [44], we give here
an intuitive idea. Roughly speaking, K%%* can be expressed by

£,0,) 1 42 80,160 T £,0 €,a -
K>%" = _;Ex—z—gu' L =D =f7) - +2 .

We decompose h as

h=7z+]hdx,
H

where the average of k is equal to zero, i.e., / hdx = 0. According to this orthogonal
1

decomposition, the operator K®%? is splitted into two parts; one acts on h-space and the
other on average-space. As o | 0, K£-°’-"| hi—space tends to zero in operator norm because

2y —1
of {—?}‘%2"} . Hence only the average part remains nontrivial which is determined
by

—c(h) f, {em@ - e+ g5 -2} dx = /J hdx.
This leads us to (4.14). O
Now we can prove the following.
Theorem 4.6. When o | 0, the eigenvalues of (3.66)
(/e — A/e)ag

M*7a = . (3.66)

(Cf!fl /3 - A/s)“n—-l

tend to the critical eigenvalues {Ay(€), Aj(€),-- -, AS_,(e)} for the shadow system in
Theorem 4.1.

Proof. The (i, j)-component of M*“ is equal to (—f3°¢5°/./E, Ks""’“(gﬁ'acbj‘?'a/ﬁ))
(see (3.66)). In view of Lemma 4.3, we see that both —f3'"¢5'? /./¢ and gﬁ'“:ﬁf‘“/ﬁ are
orthogonal to constant function for i, j # 0, i.e., their averages are equal to zero, while
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j 25:%(¢5° //)dx converges to a monzero constant as o | 0. Hence all components

except (1, 1) of M5 approach zero from Lemma 4.5 when o | 0. More precisely, we
have

m(g,A) - - - 0
ME0 = lim M5 = , 0 (4.162)
all .
]
where
m(g, 1) = <—f§¢3/~/5, - /’gi(ﬂf'ﬁlﬁ)dx//llgﬁ(ﬁ ~ 0T (=) +85 — l}dx>
(4.16b)
and
m(0, 0) = —cfcj / j (det* /) dx . (4.16c)
!

In view of the eigenvalue problems (3.66), (3.67), and the proof of Theorem 4.1 (see
(4.12) and (4.13)), the above asympiotic characterization (4.16) leads us to Theorem
4.6. O

Remark 4.7. In Theorem 4.6, we used (3.66) which may depend on the choice of
the subsequence, however the proof of it does not depend on such a choice. In fact,
the principal eigenfunction q%”/ﬁ is itself a convergent sequence and the orthogonal
property used in the proof of Theorem 4.6 holds for any subsequence.

5. Concluding Remarks

Up until now we have considered the reaction-diffusion systems (1.1) and applied the
SLEP method to the layered solutions to study the stability properties. The basic idea
of this method, however, has a wide range of applicability to various types of problems,
which essentially comes from the universal structure of internal layers of this class, In
what follows we shall discuss briefly about several topics to which the SLEP method is

useful.

(i) Systems with different scales of relaxation parameters

If the relaxation parameter & of (1.1a) is taken to be £7 (r = O(1)), then the dynamics
of (1.1) and its singular limit system drastically change. In fact, it is easily seen from
(1.11) that the propagation speed of the internal layer is of O(1) and no longer slow
compared with the outer dynamics. A similar asymptotic analysis as in Section 1 yields
the following singular limit dynamics:

i—-1

c(V(gi()) (5.1a)

(pi)e = -

Vi = DVyy 4+ Go (V). (5.1b)
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The dynamics of layers ((5.1a)) evolves simulianeously with that of the outer part
((5.1b)). It is plausible that, when r becomes small, the outer dynamics cannot catch
up with the speed of layers, and hence is not able to settle them down to a steady state.
This instability really occurs in the form of Hopf bifurcation for the original system (1.1)
with & = ez as well as for (5.1), and we have layer oscillations (breathers) (see [46] and
[42] for details). The well-posedness and asymptotic behaviors of (5.1) has been proven
by [30] for mono-layer case. For multi-layer case, the dynamics becomes more rich and
complicated such as synchronization, annihilation, and coalescence, the study of which
is under progress (see [31] for the case of two breathers). Finally, suppose we consider
the system (1.1) with § = &7 on the entire line R, instability also occurs for travelling
front solutions as 7 becomes small, however the structure of bifurcation is different from
the finite interval case due to the translation invariance. See [47] and [35] for details.

(i) Neumann layered solutions and separators

The Main Theorem in Section 1 shows the coexistence of arbitrary many stable steady
states in the limit of ¢ | 0, however, in order for the system (1.1) to be self-consistent,
there must exist other unstable steady states or invariant sets which play the role of sepa-
rators among stable ones. In fact it is possible to construct such unstable layer solutions
in a rather systematic way (see Fujii and Hosono [23], and Nishiura and Tsujikawa [50])
although it may not exhaust all types of unstable solutions. Typical profiles are illustrated
in Figure 5.1. These solutions consist of normal #-layered solutions plus Neumann layers
(ie., boundary layers satisfying the Neumann boundary condition), and play the role of
separators among normal layered solutions. For example, it is not difficult to imagine
that the solution in Figure 5.1 (a) is the separator between normal 1-layer and 2-layer
solutions (see Figure 5.2). More precisely, the dimension of the unstable manifold of
the Neumann layered solution is equal to one, and it is connected to 1-layer and 2-layer
solutions. However, in general, rigorous justification of the existence of these connecting
orbits remains an unexplored field compareéd with the scalar case (see Brunovsky and
Fiedler [5] and references therein). This is partly because of the lack of powerful tools
such as Lyapunov function and the lap number for the system (1.1).

(iii) Heteroclinic and Homoclinic bifurcations

Global bifurcation such as heteroclinic or homoclinic bifurcation is one of the most
important issues in dynamical system theory, and one can find many applications to
various fields. For instance, a creation of homeoclinic loop from two heteroclinic orbits is
quite interesting from a PDE view point, since it means that travelling pulse solutions are
born from a pair of front and back solutions (see, for example, Rinzel and Terman [54]).
However, when one tries to apply such tools to practical problems, one obviously has to
check several transversal and generic conditions along large amplitude orbits (see, for
example, Chow, Deng, and Terman [13}, Deng [14], and Kokubu [34]). This is usually
not an easy task without a gocd control of paramettic dependency of generating orbits
from which new kind of sclutions emanate when parameters vary. The SLEP method is
suitable for this purpose when such orbits can be constructed by singular perturbation,
since the usual transversal conditions are related to the spectral behavior of the linearized
problem at the generating orbits. In fact all the hypotheses imposed on heteroclinic
and homoclinic bifurcation theorem are rigorously verified by Kokubu, Nishiura, and
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Figure 5.1.

Figure 5.2,

Oka [35] for a system of bistable reaction diffusion equations with the aid of the SLEP
method. A relation between the stability of front (or back) solutions and the intersecting
manner of the stable and unstable manifolds is also given in [35].

(iv) Higher dimensional cases

The study of morphologies of interfaces in higher space dimensions such as dendrites in
solidification problem (Langer [36]) and spirals in chemical reaction (Fife {19}, Keener
and Tyson [33]) is a central problem in pattern formation theory. Such phenomena
can be modelled by reaction diffusion systems (see, for instance, Caginalp [6] and Fife
[20]) containing a small parameter £ which represents the width of interface, and inter-
facial patterns can be constructed as singularly perturbed solutions to the model systems,
Physically speaking, this singular perturbation could be explained as the introduction of
surface tension effect (see Pelcé [53]). Stability analysis and bifurcation in these inter-
facial problems are guite important, since they are directly related to pattern selection
problem. Unfortunately there are very few works on this issue, partly because it is, in
general, extremely difficult to show the existence of the singularly perturbed solutions
in a constructive way in higher dimensional space (for a single equation, see Fife and
Greenlee [21]). For special domains like channels or spherical shapes, it is possible to
answer, to some extent, for both existence and stability for reaction diffusion systems (see
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Chta, Mimura, and Kobayashi [52], Ohta and Mimura [51], and Taniguchi and Nishiura
[57]). To proceed further, it seems reasonable to assume, as a working hypothesis, the
existence of an e-family of singularly perturbed solutions which has a smooth interface as
¢ | 0. Then the basic question is that how one can characterize the stability or instability
of an interface by the geometry of it and outer solutions. And is it possible to derive the
singular limit eigenvalue problem contracted on the interface?

Let us consider the reaction diffusion system in Q c R*:

[ u = £2Au + f(u,v)
in QCR”?
! vi=Dav+ g v) 5.2)
ou av
| -5*’; =0= -a; on BQ,

where Q is a smooth bounded domain and 3/3n denotes the normal derivative, and
assume that it has an ¢ -family of singularly perturbed steady state solutions with a
smooth closed hypersurface I'y as ¢ | 0. It tumns out that the singular limit eigenvalue
problem on I'y is given by

d
e{As + H - ly+ ﬁ(V* Y{(W* - m)y+ [CUK* Gr, ® ). o)} =170 (5.3)
To

where A; represents the Laplace operator on I'g, H - is a bounded operator on L2(Ig)

which depends on the geometry of I'g but not on £, ¢(V) the velocity function as in (1.9),

V* the outer solution for v, [G] the jump of value of g at T'g, 8, the surface distribution

of Dirac’s é on I'y, K* a compact operator similar to X*°0 (see (2.27) and Lemma

3.21), (= liﬁ:)l A/€) the scaled eigenvalue as in Lemma 3.23, and y is an eigenfunction
&

in L2(Tg) (see Nishiura [43] for a formal derivation of (5.3)). We call (5.3) the SLEP
equation on I'g for (5.2). Apparently (5.3) is itself a singular perturbation problem
because of the first term on the left-hand side. The term eA;y cannot be neglected since
high frequency modes are stabilized by this term. It should be noted that the nonlocal
term [GI{K™(8r, ® ¥), 8r,} is responsible for the stabilization of low frequency modes.
On the other hand, the second term (VV* - n)y on the left-hand side is the principal pan
of destabilizing effect. Therefore only a finite band of modes could be destabilized in
this system. In fact it can be proved that any stationary pattern of (5.2) with smooth
limiting interface becomes unstable for small . Then what stable pattemns look like and
how they behave when € tends to zero? One possibility is that the characteristic domain
size of stable stationary patterns tends to zero as € |, 0. This implies that stable patterns
become finer and finer as € | 0. WE shall discuss more on these issues in Nishiura and
Suzuki [49].
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Appendix A
Proof of Lemma 2.7.
First we prove the equality
e 1T
dV(v )= . 5 dv(V ). 83
5.
It follows from (1.8) and (1.9) that
uyy +c(Vuy + f(u,V) =0 (2a)
u(£o0) = hy (V). (25)

Differentiating (2a) by V, we have

, d
Wy + W)@y +fulet, V) = ~ Wty = fo®, V)
du
where v = T Let V = v*, then
' N dc *
(u )y_y + fulu, viu = —W(" )"y — o, v¥). 3

Here we used c(v*) = 0. On the other hand, recalling Remark 3.7, —%ﬁ* satisfies

Wyy +fu(“,, V*)W = 0

2
with {|W;2 < o0, ie, -‘—%ﬁ* belong to the kemel of the operator ‘—g-z- + fx(W,v*) in

L%(R). Applying the solvability condition to (3), we have
dc

——=@")

dv

—i*

2 00 d
. ~k K ~%
p = /;o H@*,v )—dyu dy

d /h+(\") .
- = £, v*)du,
dv ho(v)

which shows (1).

Recalling the definitions of constants y*, ¢*, ¢} and ¢} (see Remark 3.7 and Lemma
3.22), (1) implies (ii) of Lemma 2.7. As for (i), using the fact that V7 satisfies

1
~(VDax + 8(U3,V3) =0

(V;)x = 0 a x= 0, 1.,
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it is easily seen that

-

avs 7
2() = ~a /0 g3, V3)dx. 4)

dx

Combining (1), (4), with Lemma 3.15, we obtain (i) of Lemma 2.7. O

Appendix B

Proof of Lemma 3.17.

We shall prove a slightly more general statement: There are no eigenvalues of £5¢
which have the same asymptotic behaviour as (3.39) of Lemma 3.15. Let us prove this
by contradiction. Suppose that there exists an eigenvalue A = A(¢) of £5? such that

im 26) _ pro (1)

el0 €

with the associated eigenfunction denoted by (w(g), z(¢)). Hereafter we simply write
(), w(e), z(¢) as A, w, z. Solving the first equation of (3.12a) with respect to w, we
have

n—1
w= 3 k(e 57 + (L5 — N (—f5), @

j=0

where

B0, 60
{ ;az;tf;i ) it A 250
ki(e; z) = f 3)

cj arbitrary constant if A = 37,
Note that if A = ;f"’, the solvability condition
(=372, ¢;°) =0 (G

must be satisfied. Also, if necessary, by choosing an appropriate subsequence of A(s)
(we use the same notation for this), we can assume without loss of generality that either
one of the cases of (3) occur when & | 0. In what follows we treat only the first case
since the second case can be dealt with in a similar way by using (4). Substituting (2)
into the second equation of (3.12a) and applying K%%* of Lemma 3.21 to it, we obtain

n—1 £,

z = KE-U-A' E ,\/Ekj(s: Z)gﬁ’a% . 3)

j=0

It is clear that not all k;’s are zero, otherwise (w, z) = 0. Without loss of generality, we
can normalize z as

Il z “Hi,g)’—" 1. (6)
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Recalling Lemma 3.21 and 3.22, we see as a necessary condition of (6) that ./zk; are
uniformly bounded and not all of them go to zero as £ § 0. In view of (3), we see that

Vel=fyz ¢77) = o(e) )

holds because |§,‘;'cr — Al = o(g) as ¢ | 0 from our assumption (1). Dividing (7) by &,
we have
£,a

hm(— 9, ‘fff) - forall j. (8)

Choosing an appropriate subsequence of 4/gk; (with keeping the same notation), we
obtain
NEkj(8:2) —> I’E}‘ forall j.

and the vector k* = (&3, ---, k_,) is not equal to zero. Therefore we have in the limit
ofe ] 0,

n—1
—1 _ px00 .
= lelig z(g) = K*~ (c§ E i&}‘Aj) . 9
=0
On the other hand, it follows from (8) that
(2*, A5 =0 for all j,
which implies
n—1
2%, Y kA =0. (10)
=0
Substituting the expression (9) into (10), we have
(K*0%* Ww*) =0, (11)
n—1
where w* = EE}‘A;. Using the positive definiteness of K*%° (sce Lemma 3.21),

j=0
w* = 0 from (11), and hence z* = 0, which is a contradiction. O

Appendix C

First we list up four sublemmas necessary to prove Lemmas 3.28 and 3.32. Recalling
(3.69a) and (3.71), we can write Gy = WG ) G, where G is a real symmetric matrix
defined by G = {h;k;}}._, with b; = h(x;-"(d)),and ki = k(x}‘ (0)). It suffices to consider

ij=
the inverse of G for the proof.

Sublemma 1. Let G be the matrix {h;k;}} =
(i, N)-cofactor of G. Then we have

detG = (—1)"A1g - Agg -+~ Ap—y - Pikn (@)

1 defined as above and let AGy; be the



* Coexistence of Infinitely Many Stable Solutions 93

AGi= (1) %A1 Aievipt - Aigrisa - Apin ke, i Ln  (b)

AGi = (=1)" 2403 --- Apy p - Bokn ()
AGnp = (=1)"2A13 -+ Ap_3.n-1 - hikp-) @
AGipri=(-D"Ap - Aiip1 - Aaein - hiksy, l<i<n—1 (o
AG; =0 (i, J) ¢ tri-diagonal, 12
where
hi k;
Ay =
hi  kj

and ~ means that the right-hand side of (e) lacks its term.

Sublemma 2.

hi kl

Ay = <, i<} (2
h; kj

Aij = Aj1a j42 )

Az = Ay (©)

Sublemma 3.
W(h k) W, 1%

= (a)
Az A%,
Wh, k) W, k%)
23 29
W k) W@, k%)
13 Als
Sublemma 4.
hy S
— < = (a)
hy h‘f :
1 K2
fod ey ®

kn kg
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Proof of Lemma 3.28.

The existence of Gﬁl is clear from Sublemma 1(a) and Sublemma 2(a). Since Gy is
real symmeiric, so is Gg,l. Tri-diagonality is a direct consequence of Sublemma 1(f).
Using Sublemma 1, it is clear that GK,‘ takes the form (3.86) or (3.87). Properties (a)~
(c) are the direct consequences of Sublemma 2. O

Proof of Lemma 3.32,
Sublemmas 3 and 4 imply Lemma 3.32. O

In what follows we shalil prove Sublemmas 1 - 4.

Proof of Sublemma 1.
We prove only (a) and (f). The remaining part can be shown in a similar way. Recall
that G takes the form

hky hky hks --- hkg
hiky hoky hoks -+ hokn
hiks haks h3ks --- h3kg
G= )
\ hlkn hnkn }

Note that although the original (Z, j)-component of G for i > j is given by h;k;, we rewrite
it as above by using the symmetry of G. Hence, at the i-th row, the subscript of 4 increases
up to the diagonal part and keeps the number i after that like (1,2,---,i,i,---,1). We
shall make G into a triangular matrix to compute its determinant. Dividing each i-th row
by A;, and substracting from the i-th column the (i + 1)-th column multiplied by k;/h; 4,
we obtain an upper triangular matrix whose product of diagonal elements gives

k hp_1k
detG = (kl—ﬁl"'z")(z—'%)"‘(kn—l_ "hl n)knx(hl”'hn)

n

= (=" 1ApAn - Ay n-hy -k,

which shows (a).
As for (f), it suffices to consider the case i < j. Let Gj; denote the submatrix of G
which lacks i-th row and j-th column. We decompose Gy; into four block matrices as

By B3
Gijj = ,
B3 By

where By is a square matrix of size j — 1. Dividing i-th row by ; (1 < i < j— 1),
we easily see that By can be reduced to zero matrix by fundamental transformations.
Moreover the last two row vectors of B; are linearly dependent, since they are of the
form

: kj—1
J=2: =y, by, -, hiy)

hiy
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.k
e R T SN TEE
J

Combining these two results, we can conclude (f). O

In order to prove Sublemmas 2-4, we need to prepare the solution of (3.69b) which
takes into account the periodic structure of the potential term det*? /f5°.

First let us define the fundamental solutions on the unit periodic interval (0, w), where
@ = 2/n (see Fig. A.1). Let Y1 (x) and ¥ _(x) denote the solutions of (3.69b) on (0, @)
satisfying

Y (O)=1=Y_ (o)
2
Y. (0)=1=Y_(w),

where / denotes d/dx. It is clear that Y (x) (resp. Y_.(x)) is strictly monotone increasing
(resp. decreasing) and satisfies

Yi(w—x)=Y_(x)

(3)
Y (@) = ~¥"_(0).

Y.(x)

0 )

Figure A.1.
Lemma A.1. There exist two linearly independent solution F +.(x) of (3.69b) such that

Fi(x) = e*Pp,(x), )

where p is a real positive constant defined by

Lol Lo

e =¥y & (V@ - 1), )
and p(x) are w-periodic C'-functions satisfying

PO =1=p-@.  pr(3)=p-(3) ©

P40 +p_(0) =0, M
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PH(3) +P-()=0,
p+(Dp-(x]) = p1 (33)p—(x3).

As a direct consequence of this lemma, we have

Corollary A.2.
Fi(0) =1, Fi(0)=%£p+p:(0)
F.O+F_ (=0
h(x) =l Fi()+cLF_(x)
k(%) = 2 F1(x) + EF_(3),
where

do( Yo L ({ FO
A )T Wr\ -FL0) )

e ()L Fw
il Wr \ —F (1) )~

Here W g denotes the Wronskian of F and F_.
K (x) = d\ Fy (x) + d L F_(x)

k4 (x) = d Fa(x) + d2 F_(),
al = di\ 1 (-F_(0)
"\ )W\ Fr0 )’

#=(#)=wm (7))
dz Wr F (1) )

where

Proof of Lemma A.l

We seek the solution of Floguet form (4) by using ¥4 and Y _:

F(x) = C+Y+ +c Y_.

Y. Nishiura

(8)

&)

@

(if)

(iii)

(10)
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We determine the coefficients cy. so that, after one period w, F and F’ are multiplied by
some constant y, namely

C+¥+(0) +c_Y (@) = Wes V4 (0) + c_Y_(0))
(1)
Y (@) + .Y (@) = Yy YL (0) + c_Y_(0)).

Using (2) and (3), (11) becomes

(Y+(w)—y 1—}’Y+(w))(c+) (0)
= . (12)
1 ¥ c— 0

Apparently (12) has nontrivial solutions if and only if y is a root of
¥ =24 (0)y+1=0. (13)

Since Y +(w) > 1, (13) has two real positive distinct roots y,. such that

1
v+ =Yi(w) £ (Y+(m)2— 1)I , O<y_ <1<y,
We define p by p = (log y+)/w, then we have
e =y e e PP = 2Y . (w). (14)

Computing the eigenvectors (¢4, ¢-.)' associated with y., the resulting solutions of the
form (10) become

Fu) = (Y@ —1)77 ey, (0 5 7-@))
(15a)
= e, (x),
where p (x) are defined by
pe( = (Fa@) ~ 1) 7 (2@ Dy, (1) £ F7Y_ (). (15b)

It is easy to verify that p+(x) are w-periodic functions of C!-class. The properties (6)
~ (9) are the direct consequences of the expression (15b) and the reflectional symmetry
of Y4 and Y_ at x = w/2, so the details are left to the reader. O

Proof of Sublemma 2.
(a) Since O < h; < hj and k; > k; > 0, it is clear that A;; = hik; — hik; < 0.

Properties (b) and (c) can be verified in a similar way with the aid of Lemma A.1 and
Corollary A.2, so we prove only (b) in what follows.

(b) 1t follows from Corollary A.2 that h; and k; have expressions as

h; = tcl - Ky, kj = 'c2 : Fj,
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where ¢ = (c},, c') and F; = ' (F:(x}), F-(x})). We rewrite Ajy2 42 as

hiya  kiy2 ‘et Fiyy '-Fiyp
Ay ja2 = = - (16)
hiya  kjya ‘e -Fipa ' Fiyp

On the other hand, we see from Lemma A.1 that
FH_Z = TF;‘ ) (17)

o
where T = ( eO e—(-)pw ) . Note that |T| = 1. Substituting (17) into (16), we have
tclTFl_ ‘CZTF,'

Ajpz 42 =
r(:I'I'Fj (2T Vi

l’cl
= ( ) T (F;¥;)
tc2

which completes the proof. O

Proof of Sublemma 3.
We shall prove only (a), since the remaining ones can be shown in a similar way.

First Wronskians are given by

h©O)  k(0) 1 k()
W(h, k) = = = k'(0),
H@©) k() 0 ¥(0)
d d d (18)
() B = (1)) 0 k%0
W, k%) = = = —k4(0).
By &) 1 (Y0
In view of Corollary A.2, we see that
K (0) = F,(0)(c} —c%) = (p+ pL (O))(ck — %)
(19

—kA(0) = —(d% + d2).
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Using Corollary A.2, (18) and (19), we see that

P Az _ 1
W(h k)  F O -

5 [P +eLp-Ga)

x {cAF4O3) 4+ EF_(x3)} — (ch Fo(x3) +cLF_(x5)}
x {AF+G]) + EF_(xD)

Afy 1 1 sy o gl «
Wi k@) — —m [{d+F+(x1) + d_F_(x])}
x |dGF1(x3) + d2F_ ()} — {dLFo () + dLF_(x3))
x {diF G +d2F_(xDY] .
Substituting the expression of Corollary A.2 into the /¥ and 72, we obtain

w = L
(FL()+ FL ()W

[—{F+ &) + F_(=D)}

x {FL()F1L () — FYy (DF- (D)} + (Fy () + F_ () (20q)

x {FL(F4(x}) — F.MF-ODY] .

1
(F+(1) = F_(1))Wx [(—FiGh) + F_(x))

X {=F_(DF+($) + Fo(DF_() — (-F1 () +F_(gy  @0D)
x {~F_(OF+GD+ Fr(DF-(D}] .

Next we shall express F4(1) and F} (1) in terms of p4(1) and p/, (1). Since wn/2 = 1,
we see from (4) that

Fi(1) = e*roni2p,(1)
(21)
FL() = $pe™ro"2py (1) + etronl2p!, (1).
Recalling the w -periodicity of p4 (x), we have from (6) ~ (8) that
p+(D)=p_(1) and p(1)+p_ (1) =0. (22)
Substituting (22) into (21), we have
Fi(1) = e**n2p (1)
(23)

F () = H(ops() +plL))etrons?,
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Inserting (23) into (20), we obtain

o= Ew_l—p [(F2 ) + FGDHePm2F 1. (33) + 2P _(53))

—{F4(x3) + F_(5He P 2F L (x}) + P 2F_(x1)}]

P = #[{mﬁ)_ F_ (D H—e ""2F (x3) + e*"2F_(53))

~{F4(3) — F-(DH—e " 2F, (x]) + 2 /2F_(x)]] ,
where E = ¢?¥"/2 _g—Pon/2_ Expanding these expressions, we easily see that both 7V and

1P are equal to {F4. (x})F_(x3) —F_(x])F + (x3)}/WF, which completes the proof. D

Proof of Sublemma 4.
We shall prove only (a). First noting that A(x) is equal to the fundamental solution

Y+ (x) on (0, w) (see (2)), we can write

by hGE) Y4
— — - 24
BTRGD YAt @9

We set for simplicity
a=Y1(x]), B=Yi(3), Q=Yi(). (23)
Since Y ;. is strictly monotone increasing, it is obvious that
O<a<f<Q)

By a simple computation, we easily see that A%(x) can be written as

R (x) = {~Y_(O)Y+(x) + Y- (x)}. (26)

1
Y (0)
Using this expression, we have

K R Y (04 () +Y_ ()

B ORGED T Y OV D FY_GD @D

Because of symmetry of Y4 and Y_ (see Figure A.1), we have Y_(x}) = 8, Y_(x}) = o,
and Y_.(0) = Q. Hence (27) becomes
K _«—Qp

e T p-Qe’

On the other hand, it is clear from (24) and (25) that hy/h; = B/a. Thus we have
K ok o= p

—_——

W B aB-o)

Noting that § - ¢ = Y’_(0)Ar% (x7) < 0 (see (26)), this implies the conclusion. O
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