

少子高魿化，労働人口の娍少，地域格差，経済低成長，災寈対策等，日本には解決すべき社会課題が既に顕在化し ている。政府は，世界に先駆けた「超スマート社会」 （Society5．0）を実現することによりこれらの社会課題と経済成長を同時解決しようとしている。このような社会変革には，科学技術イノベーションの果たす役割が きわめて大きいい。この施策の先導モデル創出を推推する高原氏と，数学者として科学技術イノベーションを目指 す水藤教授に，「科学技術にできること」と題して未来社会に対する展望を語っていただいた。

予想される2050年の日本社会

水藤：トヨタ自動車では持続可能な社会の実現に貢献する ための新たなチャレンジとして「トヨタ環境チャレンジ 2050」を発表されていますね。
高原：天然資源が少ない日本ではエネルギー制約のほかに も，未来社会に向けて少子高齢化，地域再生，自然災害対策といった多くの地域社会課題が顕在化してきています。 これらの社会課題の解決は個社では難しく，オープンイノ ベーションによる産学官連携によりソリューションを見出す取り組みが必要だと考えています。
水藤：それらの挑戦の中身を見てみますと，内閣府が第5期科学技術基本計画で策定した「Society5．0」と密接に関係 しているのですね。
高原：「Society 5.0 〕は，狩猟社会•農耕社会•工業社会•情報社会に続〈第5番目の「超スマート社会」を世界に先駆け て実現しようとする取り組みであり，私たちは，次世代自動車交通基盤の提言を通してモビリティイノバーションを社会実装することで「Society 5.0 のの実現に貢献したいと考え ています。
水藤：移動の道具としての自動車を作るということからは大 きく飛躍した取り組みのように思いますが，自動運転や燃料電池などの先進技術による地域社会課題の解決，あるい はIoTとAI活用による農業，保育，防災といった公益的社会基盤構築にモビリティイノベーションは大きな役割を担うの でしょうね。
高原：脱化石燃料に向けた電動化，自動運転技術の実装， さらに車両走行データの利活用など，現在の自動車に求め られる技術は，従来の「自動車工学」のみでは対応できず，異分野融合は欠かせないと考えています。将来，移動の自由や時空間制約からの解放を確保し，安全•自由・スムース に移動できる社会を実現させるためにも，数理科学は強力 で必要不可欠なアプローチとなるでしょう。
水藤：同感ですね。やはり，現代及び将来の課題解決に異分野の融合は必須です。私自身は約10年前から科学技術振興機構（JST）の数学関係の戦略領域で，さきがけや CRESTの枠組みを通じて臨床医学者との異分野協働研究 を進めてきており，その活動か現在のAIMRでの材料科学 との異分野融合研究の推進に繋がっています。AIMRは材料科学と数学のコラボレーションを拠点アイデンティティー として揭げていますが，数学が材料科学の御用聞きとなる のではなく，材料科学の未解決課題を通じて新たな数学を

創成する，いわば＂Mathematics inspired by Materials Science＂を目指しています。またAIMRでは，特に若手研究者の異分野融合研究をFusion Research制度と呼ぶ方法で強力にバックアップしています。これは，材料科学の研究者を数学の研究者が特定のテーマに対してタッグを組み ある程度の予算的措置の元に集中的に研究を進展させる制度で，多くの尖った研究がここから生まれています。高原：さきほど，「個社で解決が難しい課題」と説明しまし たが，異分野融合のみならず，異業種融合あるいは産学官融合が極めて重要であると実感しています。このため，トヨ夕自動車は筑波大学と共同で「未来社会工学開発研究セン ター（F－MIRAI）」を設立しました。AIMRと同様に異分野融合研究や他機関との連携で先進的な実績のあるWPI （World Premier International Research Center Initiative）採択拠点「国際統合睡眠医科学研究機構 （IIIS）」の棟内にセンターを構え，組織対組織の本格的な産学官融合拠点を目指し活動しています。

未来社会の実現に向けた人材育成

水藤： 2050 年の日本社会を考えると，当然ながら現在の私 たちの世代ではなく，今の若手が社会の舵を取ることにな ります。このためにも，次世代社会の担い手となる人村を発掘•育成する必要がありますね。
高原：「Society 5.01 でもこの点は重要視されています。高い專門性と広い視野に加えて，未来のルール形成力を持った人材が求められますね。このような将来活躍するであろう若手を育成するために，トヨタ自動車は本年度，東北大学数理科学連携研究センターが主催された「GRIPS （Graduate－level Research in Industrial Projects）－Sendai 2018」にスポンサー企業として参加させていただきました。水藤：このプログラムはUCLAのIPAM（Institute for Pure \＆Applied Mathematics）が2001年より開催し，その後，国際展開（編集者追記：2010年よりBerlin，2011年より香港） されている取り組みです。日本での初開催が東北大学で， AIMRを会場とすることになり，スポンサー企業様の協力 を得て実施に至りました。
高原：トヨタタ自動車からは「Design for the next generation energy and mobility platform」という研究テーマを提示さ せていただきました。
水藤：他に，NEC様もスポンサー企業として参画いただき，

「Reliable wireless networking systems for industrial Internet－of－Things」という研究テーマをご提示いただきま した。2つのプロジェクトに米国人学生4名，日本人学生6名 の計10名を8週間受け入れました。
高原：私たちのプロジェクトでは，自動運転が実現している近未来におけるe－palette（編集者追記：B2Bマーケットを想定した法人向けのEV。用途に応じてパレットのように仕様が変えられる特徴を有する。車両制御から自動運転など すべてが車両インターフェイスを介してクラウドサービスで統合管理できる）運用の最適化戦略を現実の移動データ を用いて検討•構築してもらいました。プロジェクト説明を させていただいたOpening Day，研究途中経過の報告を受 けたMid－term Presentation，最終報告のProject＇s Dayと， 3日参加させていただきましたが，研究期間中，参加学生た ちの様子は如何でしたか？
水藤：専門分野が全く異なる学生たちでしたので，開始当初はお互い手探り状態だったと思います。ただ，プロジェク トをまとめるリーダー的な学生も現れ，自ずと役割分担が できたように感じます。トヨタチームのメンバーは，期間中に トヨタ自動車さんが運営されているお台場の MEGA＠WEBを訪問し，未来のモビリティシステムに触れ る機会を得ることができたのも良い経験になったようです。 8 週間という研究期間の中では多少，煮詰まることもあった ようですが，何よりも若さと持ち前の明るさで乗り切ってく れました。
高原：確かに，Mid－term Presentationでは「課題を正しく伝 えられたかな？」とも感じましたが，最終報告では「期待以上によく頑張ってくれた」と実感しました。数学を共通言語 とすることで，学生の皆さんの発想の理解や対話につなが ることに，大きな手ごたえがありました。
水藤：プログラム終了後の学生各々の感想も，「違う分野の人と一緒に取り組むと，一人では不可能なことが可能になる ことを知った」，「チームワークの大切さと多様な考え方，そ して数学がいかに大切か学んだ。」あるいは「今は異なる分野に挑戦できると，自信を持てるようになった」といったポ ジティブなものでした。中でも特に印象的だったのか「「数学 がおもしろいと思った」でした。
高原：これは極めて素直な感想ですよね。「数学がわかるよ うになった」ではなく（笑）
水藤：この「面白い」は高校生が教科書の問題を解けて「面白い」と思うのとは本質的に違っていると思います。これら の学生は数学以外の専攻に属する学生でしたが，自分の

專門分野を持った上での，「数学があると，世界をこんな ふうに捉えられるのか！」といら驚きが新鮮だったと言って いました。数学以外の分野の人が，数学的な発想•思考•研究の進め方を「おもしろい！」と感じて，自分の分野に取り入れる。逆に，他分野の発想•思考•研究の進め方を数学者が取り入れる。これこそが，真の融合研究であり このような取り組みの目指すべきところだと考えています。
高原：ただ，このような取り組みによって「Society5．0」を実現しようとすると，継続的に取り組むことが必要であり，持続的な財政基盤が重要であろうと思います。このような点加らも，社会課題解決への数学応用を訴求して産学官全体でバックアップしたいところですね。

GRIPS． －仙台2018Project＇s day参加者

未来社会の実現に向けて科学技術にでき

 ること水藤：さて，人材育成についての継続的な取り組みについて の話題がありましたが，今後どのようなプロジェクトをお考 えでしょうか？
高原：今回のプロジェクトでは，現実の移動データが存在す る都市部を取り上げました。ただ，日本には里山に代表され る農村部があります。未来社会でモビリティイノベーション の社会応用が必要とされるのは，公共交通サービスが必要 な地方や農村部であろうと思います。
水藤：農村部をどのように？
高原：農村部を都市化することによって便利にしようと考え ているわけではありません。むしろ日本古来の農村水稲文化に根差した土地利用のあり方や法則性を尊重し，農村に調和できるモビリティを提案したいと考えています。水藤：前回のプロジェクトとは逆方向ですか？

高原：未来社会での地域とモビリティの調和という考え方 では同じ方向です。長年クラウンの開発責任者を務め，戦略的イノベーション創造プログラム（SIP）「自動走行システ ム」の初代PDだった故 渡邊浩之氏は，以前より「白川郷」 などであられる里山は「日本が世界に誇れるエコシステム」 であると注目していました。長年の営農により自然と一体化 した里山は，独特な生態系を有しています。里山に次世代 モビリティを導入し，空間的秩序を変容させることなく利便性を向上させることが目的です。
水藤：里山に対する研究の対象として具体的に考えておら れる地域はあるのですか？
高原：例えば，筑波山の東に位置する茨城県の旧八郷町 （現在は石岡市に合併）。アルファベットのC字状の盆地に囲まれ，水源豊かな農村が点在しています。このような独特 の地形学的条件から，昔ながらの文化が色濃く残っていま す。加えて，明治時代の地籍図が残っており，極めて古くか らそこに在る古碑，道標，寺院，神社，墓地など現存する照合点と現在の正碓な地図と重ね描きすることで，この地域 の人が連綿と受け継いできた土地利用の変化をデータ化す ることができました。
水藤：明治時代と現在の地図を比較してみて如何ですか？高原：明治，昭和，平成へとテクノロジーの変遷と関係法令 により，土地利用は変化しています。このデータから特徴値 を抽出して機械学習させ，2050年の未来の農村がどうなっ ているかを予測したいと思います。
水藤：お話を伺い，明治時代の地図を眺めていると，AIMR でも材料の特性解析に関して研究を進めているパーシステ ントホモロジーが適用できるのではないかという気もします。 また，文化の伝播は移流，拡散，反応の組み合わせでもあ るので，そこにも数学が関われるのではないかと思います。高原：この地域では現在，太陽光発電パネルを多数設置し たメガソーラーも建設されています。なぜこのような土地利用になったのか。土地利用の変化で人の移動はどのように変わったのか？空間的秩序を保全しながら，最新のモビリ ティを導入して利便性を最大限向上させるためには，どのよ うなモビリティを何台導入し，例えば，燃料電池車の場合， どこに？どれくらい？水素供給ステーションを設置すれば効率的で空間的秩序を乱さないか？極めて多くの課題とアプ ローチを数学応用から見出すことができるのではないかと期待しています。
水藤：私自身の現在までの研究では，数学•数理科学に基づ いて臨床医学者，環境科学者，材料科学者との協働を推進

してきています。今のお話から，人類の社会や暮らしのあり方に直接関わる社会工学にも新たな興味が涳いてきました。高原：このような狙いから「The order of space and new mobility service」というプロジェクトで，是非，2019年度も GRIPS－Sendaiに参画したいと考えています。さらに，今年度 の発展型でもう一つプロジェクトが提案できればと思います。水藤：ご提案ありがとうございます。私たち東北大学の数学系研究者にとっても，共催として会場を提供するAIMRの研究者にとっても，刺激的なイベントになると思います。是非，2019年度もご一緒に進めさせてください。

社会改革に必要なこと

水藤：現在は社会の変容するスピードが，過去に比べて急激に早くなっていると感じます。一方，社会システムを改革す るためには長い時間と多大な労力を必要とすることは変 わっていません。このような社会の変容に対応する社会シ ステムの変革には何が必要だとお考えですか？高原：やはり鏟学官の融合が重要で，大学•自治体•複数の企業群が地域未来の経済的•社会的課題に具体的な取り組 みを積み重ねることに尽きると思います。私たち産業界は，協調領域の拡大や未来産業形成に向けた長期的視点で産学連携を検討すべきであろうし，大学では産産学学でオー プンに連携し，競争力を意識したプロジェクト指向で離合集散方式のチーム研究を推進していきたいと考えています。水藤：このような流れで国の施策や科学技術政策をけん引 し，社会システム改革を促すのですね。
高原：産産学学のオープン連携の手始めとして GRIPS－Sendai 2019ではメンターの人数を増やして多面的 なサポートを実現したいと思います。具体的には，筑波大学 からシステム情報工学系 社会工学専攻長の吉瀬章子教授，同系社会工学域の谷口守教授と安東弘泰准教授，地域未

来創生教育コースリーダーの藤川昌樹教授にご協力をいた だく予定です。本日は，対談の後に㗽談いただこうと予定し ています。
水藤：我々としても引き続き注力してまいります。さらに社会改革に必要なことを挙げるとすれば何でしょうか？
高原：冒頭におっしゃられたスピードを注視する必要があり ます。欧米の大学は，産学連携の規模・スピード・ネットワー $ク \cdot$ 睇務など持続的な研究基盤に強めがあります。日本の産学連携は，欧米の後追いではない，イノベーションエコシ ステムを目指すことではないかと思います。
水藤：海外研究拠点との連携という点では，AIMRも強力 に推し進めておりますが，スピードの差を実感する部分もあ ります。
高原：私は，数学を軸として取り入れた材料科学の研究とい うユニークなAIMRの取 り組みに大きな期待を寄せていま す。今後も，トヨタ自動車あるいは筑波大学との連携を深 めていただき，未来社会の課題解決に向けた研究の発展 に貢献できればと思います。
水藤：AIMRとしても，GRIPS－Sendaiを足掛かりとして連携を深め，より良い社会を実現して参りたいと考えます。本日は貴重なお話しをいただき，ありがとうございました。高原：GRIPS－Sendaiの発展と継続にエールを送ります。今年もぜひ参画させていただきます。ありがとうございました。

高原勇

水藤䔈 Stirosfis Sutito

INDEX

01 ［巻頭］対談インタビュー「未来社会への変革」科学技術にできること
水藤䙾
高原勇

07 AIMR in the world Gateway to industry Introducing materials to market． Practical aspects
Alan Lindsay Greer

10 EVENT REPORT
－Total Energy and Force Methods
2018 WorkShopか開倠

11 ［特集］
生き物から学ぶ材料科学が
末来を拓く
蔜 浩

14 数学と私
弯藤国靖

15 蘇る研究室
塚田 捷

17 Fresh Eye
高野大輔

18 コラム
池田 進
${ }^{\text {Eadior }}$
酉山信行
Design Printing
Hi creative ing．

Gateway to industry ${ }^{n}$

Introducing materials to market．Practical aspects
国際研究拠点AIMRを支える人々の取り組み

ケンフリリッジ大学材料科学治金学科長教授
AIMR 主任研笕者

Alan Lindsay Greer

2018年1月7～12日，英国ケンブリッジ大学において ＂Gateway to industry：Introducing materials to market．Practical aspects＂と題したSELECTAウィ ンタースクールが開催された。本Schoolを主催し AIMR海外主任研究者でもあるケンブリッジ大学材料科学冶金学科アラン リンゼイ グリア教授に インタビューを行い，欧州での材料科学教育や，東北大学との今後の協力，大学の国際化について聞いた。
－まず，SELECTAプロジェクトについて教えてください。
このSELECTAプロジェクトは，欧州連合のHorizon 2020 プログラムから資金提供を受け，大学と企業との合同による約 15の研究機関を組織して，より環境にやさしい電着 （electrodeposition）に重点を置いているものです。環境にやさ しい電着とは，より安全な化学物質を使用して電着を行い，た とえば鉛が，電着でできた薄いフィルターなどに含まれないよう するために，違う材料を選択するということです。特に今回の特別ウィンタースクールは，4年間のプログラムの比較的遅い時期 に実施するため，参加する15名はアーリーステージ研究者と呼 ばれます。つまり博土課程の学生で，自分たちのプロジェクトを まもなく終了しようとしている研究者という意味です。私たちは，講座を構成する際に「模擬面接」を行うことが良い アイデアだと思いました。そこで3つの職を設けて学生を募集 しました。学術博士研究員，産業界での応用科学者，科学誌の

編集者の3つです。学生たちはどの職に応募しても構いません。 その後，全員が面接を受けました。学生たちは詳細な履歴書な どを提出する必要があります。また面接の最初の10分間では， プレゼンテーションをしなければなりません。その後，他の質問 やフィードバックセッションを行いました。全員がこの様子を見学しますから，学生たちはお互いに，それぞれの面接を目にして います。これは非常に興味深いことだとわかりました。私たちは全員が貴重な教訓を得られるように願っています。
－純粋な科学者というわけではなくて，3種類の職に就くわ けですね。

とは言っても，いずれも科学に関わり，科学的なバックグラウン ドを持つ仕事です。
－学術博士研究員と産業界での応用科学者については，将

来の仕事へとつなかっっていくものだと理解できます。しかし科学誌の編集者や科学に関するメッセージを伝える仕事が専門知識を生かすことのできる，将来の仕事のための何ら かの訓練になるのでしょうか？

これは学生にとって正式な面接とは言えないかもしれません。私たちは科学誌りの広告に注目しました。そこでは共同編集者 の募集広告を出していました。そして，少違ったことに取り組み たいと思っている，博士号を持つ研究科学者を求めていたので す。もう机上で科学に取り組むことはなくなる代わりに，科学に ついてよく知る必要があります。そして，もっと熟練した人村を求めていた材料科学の分野の専門家が特に指定されました この仕事には，編集者として論文を受領し，査読者を選定し， その報告の内容を判断することが含まれると強調されていま す。しかし，仕事の大部分は記事の執筆と科学的なニュース記事の作成でああります。そのような観点から，この仕事には2つ

の側面があるのです。私たちは，このことが学生たちの良い演習になるだろうと考えました。この仕事に就くことで，学生たちは どうしたら他の職業に就けるか，その可能性について考える練習になりますから。

－改めて伺いますが，スクールの主な目的は？

このスクールの目的は，実際に学生を訓練することにあります。 このため，これらのネットワークをトレーニングネットワークと呼 んでいます。そして，さまざまな科学的成果物が作られますが本当の成果物とは，科学的な成果ではなく，訓練を受けた人た ちなのです。私たちの仕事の中で最も重要な部分は教育であ ると，私はいつも言っています。大学が生み出す成果とは人な のです。実のところ，私は学校長ではありますが，初年度の学部生を教え，講義もしています。けれどもそれは，私の仕事の重要 な部分であると考えています。
材料科学は非常に広いテーマですが，材料科学の関係者に とっては，研究を始め，取り組んでいくのにはとても良い時代に なったように思います。それは，エネルギー供給，汚染の削減 リサイクルなど多くの課題が存在し，そのような課題を解決す るためには，材料科学といら学問が必要になるからです。だか ら私は，今の時代を，地球規模の主な課題を解決するための「材料の世紀」と呼んだ方か良いとさえ思っています。

－成果についてはいかがですか？

スクールの成果は，お互いを結が優れたネットワークを実際に構築する，十分な訓練を受けた人たちを育てたことです。私た ちは，いわゆる出向による研究プログラムに取り組んでいるの で，学生たちは別の研究所で $1 ~ 3$ 力月は過ごさなければなり ませんが，これが非常にうまく機能していて，他の場所ではど のように研究が進められているかを知ることができます。主な

プロジェクトとして，分子動力学モデリングに取り組んでいる人がいますが，物理的実験の感覚を味わらために，一定の時間 を実験室で費やしています。これはとても良い経験になると思 います。
今の若い人たちは，ネットワーク作りにとても関心を持っている ようです。何か知りたいことがあれば，一緒に研究をしたこと がある人と連絡を取ればいいとわかっています。ですから，プ ロジェクトが終わった時点で効果的なチームができたも同然 です。チームのメンバーは世界中に分散していても，今でもお互いに連絡を取り合っています。
－ケンブリッジ大学と東北大学との今後の協力についてお聞きしたいと思います。私たちの大学は指定国立大学に選出され，4つの研究分野を強化していきます。材料科学，スビ ントロニクス，次世代医療，災害科学という4分野です。材料科学がもちろん含まれています。Greer先生はケンブリッ ジ大学の教授であり，AIMRのPI（主任研究員）でもありま す。そこで先生が何か計画をお持ちでしたら，たとえば，私た ちの共同研究を強化する方法とか，何かアイデアがあるので したら…

以前に私たちが強調していたテーマですが，ケングリッジ大学 と東北大学でよく似ていると思います。トップレベルの教育機関であれば，パートナーを選ぶ際には細心の注意が必要です最高の中の最高を選ぶことが基準です。そのようなわけで，ケ シブリッジ大学と東北大学とが結びつくのは非常にうれしい偶然です。4つの分野において，東北が大きな強みを持っているこ とは周知のとおりです。材料科学分野では長期にわたる協力関係がありました。スピントロニクスに関しては非常に大きな発展があったと思います。ケンブリッジ大学の化学部門は急速に成長していますし，生物医学部はヨーロッパ最大です。そこで東北大学の医学部で何かをやるべきだと思います。その方向性 に従うのがいいでしょう。そして，辛いとは思いますが，東北大学の皆さんが専門としている津波災害などの災害科学など，興味深い分野がいくつもあります。これなどは，私の意見ですが ケンブリッジ大学が東北大学から多くを学ぶべき分野でしょ う。しかし，とても長い歴史が，協力する良い機会か数多くある ことを示してくれていると思います。
AIMRは既に優れた成果を出しているし，全体的に見て，東北大学がこの分野を支えていると私は思います。また，日本政府 の支援も見逃せません。優秀な施設ができていること，国際的 に見れば，本当に確かな成長を示しています。ですから，恵まれ たキャリアを得るための出発点としては完璧だと私には思われ ます。

一 日本の大学は国際的ではありません。海外からの学生や冶金学者や，スタッフの割合は非常に低く，また日本人は， Greer先生と同じ島国に生活しているものの，英国とは違つ て，日本人は共通する法則性を持っています。日本人の学生は非常に恥ずかしかりで，自分の意見を表現する訓練を受けてい ません。思考や文化の違いについて理解しておらず，とても国際的だとは言えないため，外国人にとつては，大学生活は非常 に大変なことです。私たち日本人はどうしたらいいでしょう？

そうですね，確かに一般的に言えば日本の大学は，他の国と比 べてそのようなところがあると思います。もちろんAIMRは，よ り国際的な態度を目指しています。それは確かだと私は思いま す。必要なのは，若い人たちを実際の学校に集めることだと思 います。私たちの研究プロジェクトのためにこのウインタース クールを設立しましたが，実際の学校には，講義や学習課題が あります。世界中の学生を集めて特殊な研究分野を扱う国際的な学習センターのようなものは良いことだと思います。学生た ちがお互いに，2週間集中して過ごせば，問題は，上級とベルの学部生を対象に学部しベルである程度は行えるかどうかという ことになってくるからです。
私は，若い人たちにとって日本を訪問する機会は非常に魅力的 だと思っていますから。博士課程のために日本に行きたいとは思わないかもしれませんが，短期間だったら喜んで行きたいと思うでしょう。その後で日本での博士号の取得や，博士研究員 などのことを考えるようになるかもしれません。
いろいろと……もちろんん，こうした問題を解決するためには，日本の外に出る必要があります。大きな違いはなくとも，少しでも違いがあることでしょう。ただしその場合，隔離されることにな ります。ケンブリッジ大学で私たちが目にした本当に困難な点 とは，日本の学生たちは，切り離された方がずっと楽だというこ とです。日本人同士一緒にいれば，日本のルールに従わなけれ ばなりませんが，隔離されることで，西洋のルールに従うことに なるからです。
－本日は多岐にわたる貴重なご意見，ありがとうございました。

EVENT REPORT

Total Energy and Force Methods 2018 WorkShopが開催

1月9－11日，ケンブリッジ大学セルレウイン・カレツジにおいて，「Total Energy and Force Methods 2018 ワークショッフ（以下：WS）が参加者約100名
 3について，「本WSは，隔年でミジどマキジを交互に開佺しています。マ キシWSはより多くの研究者が参加する会撞であっ，イタリアフriesteの国際 II論物理学センター（ICTP）主膗いで開倠をれます。今回のミニWSでは，材料分野コミュニティーに寄与するために密度関数，機珹学習や経路樍分と
 しいったAIMRが目指すところともも共通する点は多い
谪するためのカジュアルな場だと考えています。私たちから見て，とても年配 の科学者から，駇け出しの著い科学者まてかか常に一緒に居るように気をつけ
 るようにしています。階れるを場昕はありません。てききれば，誰もかお互いに話 をしてもらいたいてす。」とももす。
さらにWSの成果については，「成果がわかるのはもっと先のことですね。将来の研究のためのアアジェンタを決める役割を果たせたら良いのですが，，人タが，自

立ち去つて考え，「うん，これを本当に解決しなけれはなならない」と言つて，それか 55．6年後に管えを出してくれると期待しているのです。」と予測する。今後のAIMRとの劦力閉係については，「近い将来，私とAIMRとの間ての共同

 て切力する機会を得られました。小谷所長をしじめとするAIMR皆さんのヒ ジョンのおかがけす。私は理論物理学者です。そして，冶金学に始まわ，そこか
 しいています。これは材料科学の未来にとって重要なととではないかと思って ます。」と期待を察せた。
後に，今後の材料科学と数学のコラボレーションについては，このの分晁では涤わった。あとはは量子ココともし上げましょう。誰かが立ち上かって，＂すべてが ることがあります。しかにコーターや幾棫学習にお任せだと言うのを耼

 きれているのてす。」と意俗を語った。

AIMRジュ＝アP1 准教授

生き物をお手本に新しい材料」を創る。それか噗の研究の大きなテーマです。そのために「手に取れるもの。手で持て るものはを対象に研究を進めています。原子レベル，ナノレベルの村料科学の最前線を追究し続けているAIMRの中で マクロな視点で研究している僕しちようっと異色な材料科学者かっもしれません。そもそも，AIMRの多くの研究者のように物理や化学から材料科学に進んできたわけではなく，生物学から村料科学に進んできました。そういう意味でもこの研究所ではちよっと異色なのです。

一貫して高分子を研究するという姿勢

和歌山県で生まれて高校まで愛知県で育ち，大学は北海道大学に行きました。愛知から北海道に行ったのは「遠い場所に行きたかったから」。育った環境のカルチャーから逃れて，まっ さらな新天地に行きたかったからです。
大学では生物科学科に入りました。学部時代はタンパク質の構造解析や生体分子の解析教育を受けて生命科学者になり いと思っていました。大学院ではポリマーを研究している下村研究室に所属して，博士号は「化学」で取りました。我々の細胞はすべて分子の相互作用で組み上げられています。昔か ら人工の高分子でそれを再現しようという「分子組織化学と いう分野がありました。だから，今現在の研究は大学院時代に所属していた研究窒での研究からの発展なんです。僕自身は生物学から化学に移り，材料科学に進んで来ましたが，自分 は「一貫して高分子を研究している」と思っています。現在の研究室でやっている研究をいくつか紹介しましょう… まず，「ハニカムフィルムの擳水性表面｣。ハニカムフィルムは ポリマーで作った多孔体フィルムです。ポリマーのフィルムを作 る時は，ポリマーを溶剤に溶かして薄く塗布してそれを乾かし てフィルムにします。早く乾かしたい時は息を吹きかけたりする んですが，出来上がると，息をかけて乾かしたフィルムはいつ

も白くにごっている。この表面を顕微鏡で見てみると，無数の小さな穴が空いていることが分かりました。息の水分が表面に結露して，その部分が小さな穴になるのです。穴の形が八ニカム （蜂の巣状）になっているのでNニカムフィルムと言います。

ここからからちの研究室のオリジナル。ハニカムフィルムには球状の穴がたくさん空いていますが，内部では球（穴）と球（穴） が接している部分は繋がって空洞になっています。ある日，研究室の学生さんがハニカムフィルムの表面をパリッと剥がしました。 すると，フィルムは上下に分かれ，下のほうの表面は剣山のよう な形になりました。そこに水滴を落としてみると広がらずにコロ コロと水滴が転がるんです。「蓮の葉みたいだな」と思いました。䦊水性が高いわけです。それを論文にしたら国祭学会で賞をし ただきました。これをきっかけに蓮の葉の表面を意識したバイオ ミメテイックマテリアルデザインを研究するようになりました。

二カムフイルムムに光を当て

色を再現するバイオミメティックマテリアルデザイン
この美しい蝶…。モルフォ蝶というんですが，羽の表面が ギザギザになっていて青色だけを反射する構造になっていま す。一方，美しい色をしているタマムシの羽は膜をたくさん重ね た構造によってあの色を出しています。いろいろな方法で虫は色を発色しているわけですね。
タマムシは10層くらいの膜を重ねた構造なんですが，人工材料を使って再現しようとすると 60 層くらい重ねないとあの色が出ないので，なかなか人工的には実現できなかったんです。我々の研究室では黒い色素を組み合わせて反射を強くし，5層 くらいの膜でタマムシの色を再現することに成功しました。「色を再現するバイオミメティックマテリアルデザイン」ですね。 ミヤマハンミョウの研究もしました。これはまず虫を採取する ところからやりました（笑）。北大で研究会をやった時に皆で昆虫採集に行き，ミヤマハンミョウを取ってきました。木の上で暮ら すハンミョウはとてもきれいな青色なんですが，地上で暮らすミ ヤマハンミョウは茶色です。地上での保護色のような意味合い で茶色なのだろうと思います。この茶色の発色のさせ方がおも しろい。木の上で暮らすハンミョウはモルフォ蝶と同様，ギザギ ザの表面構造で選択的に美しい色を出しています。ミヤマハン ミョウも，茶色い色素で茶色を出しているのではなく，ハンミョウ と同じ表面構造で茶色を出しています。最初にこの表面構造が できて，その後，地上に降りるようになり，だんだん「茶色を出せ る群れが生き残って現在のようになったのだと思います。多層膜とミヤマハンミョウの話で報の論文を書きました。生き物に とって大事なことは「外の環境からの垍分の内部への影響をを できるだけ少なくする」ということ。そのために身体の表面に いろいろな工夫をしているわけです。生き物の表面構造を研究 することはとてもおもしろくて，いろいろなことが見えてきます。

検維にして美しい色をたたたるモルフ蝶

ミセルによりナノサイスイ化することで実現した透明性の高し願料分散液。生物の

生命科学，材料科学，数学。二段階の学融合を目指して

それから，ムール貝の話…ムール貝は足系というところから接着タンパク質（カテコール含有タンパク）を出して岩場に貼り ついています。非常に高い接着効果があって，海の中でもがっ ちりとくっついている。この機能を人工材料に組あ込んでやれ ば強力な接着剤ができるのではないかと思って研究しています。有機ポリマーにカテコール基をつけて接着剤にするのです。現在，企業の方々と一緒に模索していて，プラスチック材料金属材料の接着剤として使えるのではないかと考えています。

そして，最後は微粒子の研究。ハニカムフィルムを作る時に水と混ざる溶䧻を使うとポリマーが球のまま析出して微粒子 になります。最初はいろいろな材料で微粒子を作ってその性質 を調べていたんですが，ある時，「ウィルスのような構造の微粒子ができるのではないかりと思いつきました。これは生命科学出身ゆえの発想だと思います。人工高分子は「系まり」の ように複雑に絡んだ構造なのですが，ウィルスはとてもよく設計された構造になっています。たぶん，できあがる際の原理 が違うのだろうと思い，応用数学者の西浦廉政先生（当時• AIMR主任研究者。現•特任教授）とともに原理の解明に乗 り出しました。数学の視点を加えた解析です。原理を数学で記述できれば，ゆくゆくはウィルスの設計原理を人工材料に応用できるかもしれない。これはAIMRに来たからこそ，でき たことですね。生命科学から材料科学を研究して，それを数学で書き起こす。「二段階の学融合」です。一人ではできな かったことだなと思います。

ポリアー微精子の3次元構造を3Dフリリンタで出かしたもの。数学者との識論に

「科学と産業の接近・に向き合う研究者の哲学

うちの研究室の研究をいくつか紹介してきましたが…僕に とって研究とは，研究の広がり，可能性を見つけていくだけで はなく，「自分の新たな可能性を見つけるもの」でもあるのです。研究対象の可能性を通して「あ，僕はこんなこともできるんだ」 と実感できるんですね。やっていることは応用科学であり，実用科学ですが，常に「理学•的なこと，根源に迫ることをやって いきたいと思っています。
欧米に行くと，科学がとても産業寄りになっているなと感じ ます。しかし，欧米の科学者たちは産業に飲み込まれてしまう ことなく，産学連携的な研究の成果を根源的な科学に還元 していることが分かります。表向きは「産業化」しているように見えても，裏ではちゃんと「学術」という巨大な体系に延々と成果を組み込み続けているのです。彼ら，欧米の特にヨーロッパ の科学者たちは確固たる哲学を持って科学をやっています。 そうでなければ，「大学で研究をやる意味がなくなってしまい ますからね。
最近では日本のアカデミアも産業寄りになりつつありますね。産業界とコラボして「実用性」の追求に主眼を置いているよう にも見えます。しかし，アカデミアにとって有益な「科学と産業 の接近」とはそんな単純な話ではありません。日本のアカデミア は欧米の科学者たちを見習って，学術という巨大な体系を組み上げ続けるために，したたかにやっていくべきだと思って います。

総合科学が未来を創り出す
僕は北大での助手時代に，企業と共同で結露を発生させて ハニカムフィルムを作る装置｣の開発をやりました。これは視野 を広げるために大変良い勉強になりました。装置がうまく作動 しない場合に「こういう時は機械を直せば良い」とか「こういう時は材料を工夫すれば良い」といった全体を意識する癖が ついたからです。化学者としての意瀻たけを持っていたら，やはり材料のほうばかりに目を向けていたでしょうからね。あの時に「科学を実用化するためには「総合科学」として応用することが必要なんだ」と痛感しました。マクロな発想が必要だ，と。日本 では科学が基礎と応用に分かれてしまっていますが，基礎研究者もああいう経験をしてみると発想が広がると思います。基䃈科学者はもつと応用科学を意識すると良いし，応用科学者は もっと基礎科学を意識すると良い。基礎と応用に分かれてし まっていることは日本の科学が抱える問題のひとつなのでは ないでしょうか。そう考えると，少し前に騒がれた「大学の文系分野を縮小せよ」といった発想は出て来ないと思いますよ。基碟科学と応用科学の両方の根底にあるのが，文系の知も含めた教養なのですから。

研究者としての今後の展望は，まず，バイオミメティックマテ リアルデザインをどんどん広げていきたいですね。生物の良さと人工物の良さを組み合わせて，まったく新しいものを作りたい。現在，学内の先生らと共同で，ウェアラブルな電極をバイオミメ ティクスで作れないかといろいろと模索しています。
次に，ユニバーサルな法則を見つけたいです。材料科学には個別の対象を突き詰めていく即象がありますが，僕はその逆で， マクロな視点から法則性を見出したいと思っています
それから，これは僕にとって当然なことなのですが…今後も生き物から様々なことを学んでいきたい。生き物っつまり「自然」 をお手本にするということは「自然科学をを編み上げていく者 としてとても正しい姿なのではないでしょうか。そう確信して これからも日々の研究を続けていこうと思っています。

第2回

これからも数学という

弯藤 国䇎

AIMR（現：数理科学連搭研究センター）准教授

 11年トリエンジ学（オランタ）ボストリ研究員，理科学連撗形究センター兼任）。

数学：参照すべき，もうひとつのアプローチ

数学と私……ですか。数学者ではない私が語っても良いも のでしょうか。私は物理学者なのですが。
長野出身で大学は京都大学に行き，物理をやりました。高校時代から物理に神秘性を感じていて漠然とした憧れが あったのです。大学では当初，宇宙物理を目指していたので すが，修士課程からは粎体の理論を数値計算の研究」を始 めました。粉体，つまり「粉」の振る舞いの研究です。たとえば小麦粉を袋からバッと一気に出した時に粉が塊となり，その後，徐々に崩れて行きますよね。どのような動きで崩れていくかを シミュレーションしたりするのです。統計物理学と言うのですが， そういう「粉体の研究｜をずっと続けてきました。
物理学は「モデルの学問です。モノの変化のストーリーを作っていく科学なんです。数式を使った論理的なストーリー ミクロな現象から記述していって，マクロな現象を説明して いきます。だから，以前は「数学は記述するためのツール，手段 だ」と思っていました。一方，数学という学問は概念的なもの が根底にあって，そこから記述していきます。概念的なもの つまり「理論」。数学はいろいろな理論概念を持っているので「理論」という物理とは適うフィルターを通してデータを眺め，規則性を見つけていきます。数学は「規則性」を語り，物理学 は「変化現象」を語るものなのです。
AIMRに移って来てから，自分の中で数学Jの存在感は日々，大きくなり続けています。以前は，自分にとって数学は手段だったので物理学や化学の背後にあるもの」という イメージを持っていました。しかし，AIMRに移ってから，数学

者がダイレクトに材料（物質）の解析をやっていることを知り ました。材料を研究する方法として，物理で観る方法と数学で観る方法の両方があるということを知ったのです。物理学者 の私にとって，数学は「参照すべき，もうひとつのアプローチ方法」なんですね。
現在は，数学という「違う国」からやってきた友人と一緒に仕事をしているという感覚ですね。数学者と一緒にやっている うちに，徐々に，数学的アプローチを自分の中に取り入れて続けている。だんだん数学者に近づいてきているなと実感し ています。

自分にとって大切な数式ですか？
やはりこれだな……ボルツマン方程式。修士課程の頃にこの式と出会いました。統計物理学では重要な方程式で，流体方程式などはこの式から導き出せます。ミクロなところから最終的なマクロな出口まで䌘がっている式なんです。「ミクロから マクロへ」というプロセスと「動き」つまりダイナミクス……物理学者である私にとって，この二つが大切なことなんですよ
AIMRに来てから，私にとって数学は「手段」から「隣人」に なりました。これからはもっと数学者とのコミュニケーション を深めて，数学から物理学に「概念」を取り入れていきたい数学と物理の融合ですね。それによって，新しいジャンル新たな学間分野を産み出せるのではないかと思っています。

もつとも印象深い話しですか？やはりAIMRの事務部門長を拝命した頃でしょうかね…蘇る研究室」というより，軖る研究所」といった少し枠の大きな話しになるかもしれません。学位を 1970年に取得して以来，これまで 40 年間も研究•教育一筋で過ごしてきましたから…確か2012年の年も明けて間もなくの ある日突然，無経験で知載も無い運営や事務を統括する事務部門長を仰せつかって，まさに青天の霹䨟，「不安の塊」であった と記憶しています。
大学院博士課程を東大理学部物理学専攻で修了後，同大植村泰忠先生の助手となりミュンニン工科大学の博士研究員を 2 年間経験した後，分子科学研究所助教授を 5 年間務めました。私の専攻分野は物性物理学から出発しましたが，ドイツ滞在中 に当時勃興しつつあった表面科学の研究を研究対象に据えま した。分子研では物理化学分野の優秀な若手の研究者と知り合い，融合研究の重要さを実感しました。分子研の後，1982年 より再び東京大学で助教授，教授を2004年まで務め，無事に定年退官を迎えました。その間，電子状態を基磫にする表面科学第一原理法を中心とする計算手法の開発，電子遷移を伴う表面の動的過程，マイクロクラスターの物理，走査プローブ顕微鋴 の基礎理論，カーボンかご型ナノ構造の理論，ナノ構造と分子 デバイスの理論等の研究を，後進を育成しつつ行ってきました早稲田大学で客員教授としての務めを終えたところでAIMRに主任研究者として招㰾され，東北大学の一員として加わりました。 AIMRでのPI時代は，固体•液体界面の電子的•原子的素過程 の研究，原子•分子架橋系とナノデバイスの基類理論などを中心 として，若い研究者と共に楽しく研究を進めました。ただ，その後も科学に対する興味はつきることはありません。これまで理論研究者として，桜井利夫先生をはじめ，大島忠平先生，高柳邦夫先生，村田好正先生，青野正和先生，森田清三先生，山田啓文先生，大津元一先生，平川一彦先生，福間剛士先生，一杉太郎

先生等，多くの優れた実験研究者の方々とともに共同研究する機会に恵まれ，実に楽しくかつ刺激の多い研究生活を送ること ができたことを大変うれしく感じています。
ご存知のようにAIMRは，文部科学省のWPIプログラム（世界 トップレベル研究拠点プログラム：World Premier International Research Center Initiative）の下，初代の採択 5 拠点の一つとして「原子分子材料科学高等研究機構」として2007年10月に設立さ れました。私自身は2008年4月に主任研究者として参加しました物性物理学および表面科学理論をさらに展開して，分野を超 えた融合研究の推進を試みました。PI着任後の数年間，研究室の主要行事として隔月程度にWPI－Joint Seminarを企画し実験研究者と理論研究者とかか相互に交流し共同研究の芽を探る試みを続けました。これはその後，AIMRジョイントセミ ナーとしてAIMRの機構の行事として発展しました。このような分野融合で新しい材料科学のコンセプトを形成することが AIMRに求められておりました。一方でWPIプログラムの特色 でもある「世界から第一線の研究者が集まる，優れた研究環境 と研究水準」を達成するため，多くの外国人研究者を受け入れ て最善の研究環境を実現することにも腐心しておりました。
そのような中，2011年3月に東日本大震災が発生しAIMRも重大な被害を受けました。この打撃の少し前から，前機構長の山本先生より折に触れて機構全体の研究分野の方向性，アイデン ティティー明確化，について大きな脳みを聞かされておりました震災被害の復旧と並行して，5年経過による中間評価を控え AIMRのアイデンティティーを如何にすべきかに関して，多くの先生方と連日熱心に議論しました。この結果，「材料科学に数学 を導入する」という新たな試みを推進するとともに，2011年4月に小谷元子先生をAIMRの副機構長としてお迎えいたしました小谷副機構長を含む主要メンバーで「方針ミーテイング｣を重ね ＂木才料研究で蓄積された機能子群を数理の目で俯醐，再整理して

共通項の抽出，それらのメカニズムの解析，材料開発への新たな指針の提供（フィードバック）を行う＂というポリシーを共有する とともに，＂目的の機能（材料）を得るというのは，物質を解析 する従来の物質科学に対する「逆問題」。原子分子にまでさかの ぼらず，「機能子」を基本単位とすることで，この逆問題か数学的 に扱い易くなる。複雑システムの逆問題を解くということ自体に も新たなチャレンジがある＂という小谷副機構長の提案を基に村料科学と数学をつなぐ＂インターフェースユニットの設置＂ ＂ターゲットプロジェクトの導入＂，＂フュージョンリサーチの推進＂ ＂学内頭脳循環の導入＂というスキームを試行錯誤しながら確立 させました。特にインターフェースユニットという独立な若手理論家グループの導入はWPI委員会でも非常に注目をされました しかし，数学一材料科学連携というAIMRの新たなアイデンティ ティーの提案は，世界的にも研究所しベルでは始めての挑戦的 な試みであることから「仮免許？」での試行となりました。
これらのスキームを加速させ，次のフェーズへとAIMRを移行 させるため，2012年4月に小谷先生が機構長として就任されま した。これと同時に，私の研究生活も突然大きく変化しました。事務部門長として任用されたのです。おお恥ずかしなからら事務業務や研究拠点運営についての知見•経験もなく，「自分に何が できるのか？」毎日考えて過ごしたと記憶しています。最近読ん だ山極寿一先生，尾本恵市先生の著書「日本の人類学」（ちくま書房）の中に＂物理学の先生は世の中，特に人間のことをろくに知らない。彼らは物理のことしか知らないのです＂という記述を ふつけました。まさに，当時の私のことを表現している名言だと思いました。とても自分には，表面科学の世界的リーダーとして特色あるAIMR運営に尽力された桜井前々事務部門長，行政経験の豊富な岩本前事務部門長のようにはできない。ただ， つ々々の事案を丁寧かつ真摰に取り組むことが唯一の方法で あると心に決めました。文字通り「試行錯誤」を繰り返しながら日々の業務を精一杯遂行するのが日課となりました。幸い，多く の主任研究者の先生方が輩出される世界的な研究成果もあっ て，事前に確立したスキームを着実に実現できたと自負しており ます。「材料科学に数学を導入す る」といった新たな試みは，2014年 の委員会評価で合格点を頂戴し

ティティー＂を確立できたものと思います。ただ，思い起こして みると，私一人では到底実現できるものではなく，佐藤伸一前副事務部門長および池田進准教授（現：研究支援部門長）に多大な支援をいただいたと改めて認識しています。両氏には誌面 をお借りして厚く御礼申し上げたいと思います。
着実に卓越した研究成果を挙げ，当初の目論み通りの計画進渉を果たしたAIMRですが，2017年3月末に10年間の想定期間終了を目前として，研究期間の延長申請を行いました。しかし ながら，何分，前例の無いプログラム故にどのように申請を行う か？研究部門および事務部門が一致団結して頭を悩ませたこ とが強く印象に残っています。延長申請が認められるためには審査でS評価を得る必要があります。小谷機構長，池田准教授 をはじめとして全職員が最大限の尽力をしました。結果として A評価で，我々の期待していたS評価に至らず延長申請は叶い ませんでしたが，このA評価は極めて高いものとされています。 この時の小谷機構長の卓越したかじ取りと全職員の団結力が現在のAIMRの礎をなっていることは間違いないと思います昨年度は文部科学省のWPIプログラム拠点から卒業したWPI アカデミー拠点へと移行すると同時に，東北大学内の部局と して独立運営されることから，「材料科学高等研究所」と名称を リニューアルしました。
さらに喜ばしいニュースがあります。2017年6月，我が東北大学は最初の「指定国立大学•1校のうち1校として認定されま した。東北大学が強みとする「災害復興」，「先端医療」，「スピン トロニクス」，そして「材料科学」の四分野の更なる推進を前面 に打ち出した結果の賜物と認識しています。これら強みの一角 を担う「材料科学は，伝統ある附置研究所である金属村料研究所，多元物質科学研究所，流体科学研究所，あるいは多くの優秀な学生諸氏を社会に輩出した工学研究科，理学研究科，加えて深く関連する研究センター等がAIMRと軸として連携し「材料科学拠点」として相乗効果を発揮することを願ってやみま せん。2030年に東北大学が世界から尊敬される「世界三十傑大学｣の一員となるために，村料科学拠点が今後益々進展して

その一翼を担うよう，また，これか
その一翼を担うよう，また，これか
らの皆様の更なるご活躍を心から祈念いたしております。

海外の同世代の学生との発表や議論を通して，グローバルな視点を養い，また英語で コミュニケーションする意欲を喚起し，また表現力，行動力を育成することを主な目的として，2018年7月30日～8月5日の日程で「2018東北版日英ワークショップ」

が開催されました。AIMRへは，文部科学省よりスーパーサイエンスハイスクール （SSH）として指定されている福島県立福島高等学校と英国クリフトン科学トラストか ら選抜された高校生10名が来所され，二つの研究課題に別れて各々取り組みました。 このワークショップに参加した福島高校の高野大輔さんにお話しを伺いました

AIMRが

［みやぎ総文2017自然科学部門］の巡検地となりました
 （平成29年8月3日（木）巡検実施）

－まずは一週間，お疲れさまでした。早速ですが，ワーク ショップに参加された動機を聞かせてください。今年高校に入学し，今までとは少し違う環境で生活するよう になりました。その中で，まず海外の方と交流した経験がある という人の多さに驚きました。 しかし私にはこのような経験 がありませんでした。そんな中 で今回のワークショップのこと を耳にしました。今回の活動 は，科学を通して英国の高校生と交流できるということに魅力を感じ，参加しました。

来られてみてのAIMRの
印象をお聞かせください
まず始めに，研究所の自由な雰囲気に驚きました。
今回初めて大学の研究室の空気を味わったのですが，研究所はとても厳かでで，病院のようにいくつも部屋が並んだその一室で科学者が研究に取り組んでいるものだと思っていまし た。しかし，AIMRは玄関を入った途端，吹き抜けから光が差 し込んでいたり，広く落ち着いた雰囲気のコミュニケーション スペースがあったりと，とても開放的で自由な印象を受けまし た。また，受け入れて下さった熊谷明裁准教授の研究室でも，「部屋にある透明な仕切りに書いてある文字に意味はあるの ですか？」と尋ねた際に，「仕切りに気づかず，ぶつからないよ うにするため」と返答なさる程，自由で和やかな雰囲気でした。研究室内には，見たこともない装置や器具ばかりで，中には研究者の方が自作したものもあるということを伺いました。ここ で最先端の研究が行われているということを肌で感じること ができました。
－どのような研究課題に取り組まれましたか？私が参加した研究室では熊谷先生のもとで，原子一層分の厚 さの黒鉛分子（グラフェン）を作成する研究課題に取り組みま した。まず，スコッチテーブを使って黒鉛分子を薄くし，それを 2種類の方法を用いて分子が一層になっているかを調べました。

事前に予相されたとおりに研究は進みましたか？研究自体は順調に進めることが出来ましたが，結果としては3 ～4層の分子は見つかったものの，原子一層分の厚さの分子 を見つけることは出来ませんでした。スコッチテープを使って分子を層に分けた回数が少 なかったと推察しました。
－英国高校生とのコミュニ ケーションは？
参加当初は，正しい文法を使って，また日本語の文をそ のまま英訳しようとしたため言葉に詰まってしまい会話が うまく続けられないというこ とが多くありました。しかし少 しずつ，多少文法や単語に誤 りがあったとしても，ジェス チャーや表情などで十分にコミュニケーションをとれることが わかり，研究室へ向から電車の中などでは英国の高校生と科学の話をすることも出来ました。
－最後に，参加されての感想と，将来の夢を教えてください。今回の活動を通して英会話力の大切さを改めて実感しました。先ほどジェスチャーなどで十分にコミュニケーションできると述べましたが，それと同時に，科学の世界では正確な英語を話せる必要があると感じました。なぜなら，科学においては些細な勘違いが研究結果を大きく変えるということが大いに考 えられるからです。私も研究内容の説明を英語で受けた際に全く違う意味で理解していた事がありました。現在は同時翻訳の技術も発展してきてはいますが，英語の持つ独特のリズ ムや人それぞれの個性，そして会話に参加しようとする意志ま で表視できるようになりたいと思います。ですから私も科学を志すため英語の学習と今回のような実践練習を重ねていきた いと思います。この度はこのような貴重な経験をさせて頂き本当にありがとうございました。
－是非，高野さんの夢を実現させてください。ありがとうございました。

各都道府県を代表する高校生が各校で磨き上げた芸術•文化 を披露する文化の祭典，第41回全国高等学校総合文化祭（みや ぎ総文2017）が宮城県で開催されました。合唱，吹奏楽など音楽演奏，絵画や書道などの芸術作品展示，囲基•将棋，弁論，演劇，郷土芸能，その他文化系の多くの芸術•文化活動の成果発表が各開催場所に分かれて行われ，自然科学部門では8月2日 と3日午前中に石巻専修大学にて研究発表会を開催。3日の午後は，いくつかのグループに分かれ，石巻專修大学，東北大学石巻沿岸地域，伊豆沼，栗駒山他の巡検を行いました。東北大学には，約 360 名の高校生，約 45 名の引率の先生方が各 8 グ ループに分かれ，理学部，工学部（2コース），薬学部，農学部，医学部，災害科学国祭研究所，AIMRを訪問しました。訪問先の多くは進学に直結する各学部でしたが，災害科学国際研究所 とAIMRは，日頃のアウトリーチ活動でSSH指定校などの高等学校との接点も多く，研修地受け入れの体頼をいただきました。巡検当日AIMRでは，まず本館2階のセミナー室にて池田進副事務部門長がWPIプログラムやAIMRに関する概要説明を行
い，共通機器室の最先端装置群を見学した後， 3 グループに分 かれ，高橋研究室，折茂研究室，數研究室をそれぞれ 40 分間ず つ交代しながら訪問しました。

高橋研究空では，营原克明助教現准教授）か超伝道に関する講羲を行い超伝遵物質を液体窒素で浍却すると超伝遵状態となり電気抵抗が下がるご とや，その超伝道体の上に載せせ大磁石が宙に浮く現象（マイスナー効果）を実験で示しました。更に，最近营原助教が研究を進めているグラフェン（原子 1個分の厚さしかない崖素のシート状物質）の説明を行い，クララフェン（㬰際

校生もそれを体検，不思識さと驚をから钽声がよがりました。

折荿研究窒では，大口﨏之准教授か，水素を报う特殊な実験装置や理論計算をするための大型コンビュー夕など砳究設備を紹介した後，水素の電気気化
 で発雨されてモーターが回ることを碓認しました。またテスターを用いて発生電辰を測定したところ，電気化学反応の理論予測電原よりも低く，エネル キーを無䭾無く取り出すためには，まだ技術的な改善の余地がある，という ことを学びました。

龉研究空では數浩准教授ジュニニア主任研究者）が，生物が持つ特徽を学び材料に活用するバイオミメティクス（生体模做技術）の講義を行いました。発現する特殊な微細倳造になっていることがかかります。生物は注化にの過程 で，より有利な性質を得るためにそのような特殊な微細構造を獲得し，種の保存に生かしてきたのです。人間の想像力では思いもつかない特殊糗造と性質の関係を生物から学び，同様の構造を，自己組䜌化などの人工的手法 で作り込み，撥水効果や粘差力などの機能をもつ新材料を開発することが できます。高等学校では物理学，化学，生物学地学など，各々別の学問とし

 つことが重要，ということを高校生にも感じ取っていただけたようでした。

みやぎ総文2017自然科学部門部会長殿より正式に巡検地の要請を受け，宮城県内高等学校のご担当の先生方との議論を重ね，分野のバランスも考えて3研究室を訪問いただくことにな りました。AIMRを巡検地として推薦くださり，事前準備や当日 の運営も含めお世話になりました県内高等学校の先生方，当日 AIMRを詖問くださった全国各地からの高校生の皆さん，遠路引率くださった先生方，そして，訪問を快く引き受けてくださった高橋研究室，折茂研究室，敷研究室に御礼を申し上げます。

