

01 AIMR in the world Science Talk Live 2013 by WPI

3 スペシャル・インタビュー小谷元子
「碓信と，責任と」

07 Event Report
ナノツアース
料が変える未来の医療
づムの不思塏

08 特集

束北大学愿子

11 Spotlight Talk数学の新たな可能性を AIMRが教えてくれた

NEWS \＆INFORMATION

13 材料科学コラム
「ちょっと䓫り道MATERIALS」第3話

14．New Staff
ソフィー・ダンブロシォ

$\substack{\text { Eanor } \\ \text { quat }}$

「見る力｣を，「観る力」に。

主催

東系工業大学地球生命枅形

「雎信と，責任と」

数学への思いを胸に，革新的な材料科学に挑む
数学と材料科学の融合という革新的なビジョンのもと，
AIMRのトッブとして2年間走ってきた小谷元子機構長。
その取り組みのの確実な成果は，この1年の間に，
AIMRの研究者が相次いで栄誉ある覚を受覚するという形でも示されている。
AIMRへの思い，そして数学への思いを小谷機構長に聞いた。
Motoko Kotani
東東大学原子分子材科科学高等砋究機横長
東北大学大学院学学研究枓数授

（3）

「数学の導入によって予想以上の成果が挙がっているのは もちろん，特に若い研究者たちが楽しく研究に取り組んでく れていることをうれしく思います。」
2012年4月にAIMR機構長に就任した小谷元子は，この 2年近い日々をこう評価する。㓣立後 5 年を経たAIMRは，＂融合研究のさらなる推進＂という課題を前に，＂村料科学への数学の導入＂という新たな方向い舵を切る。その推進役となるべ く迎えられたのが小谷機構長だ。
「機構長を引き受けることに，もちろん迷いはありました。理学部数学科の教授として，こういう方向で研究を進めていこ うというビジョンもあったし，そこにいれば何も困ることのな い状況でしたから。その時，あらためて考えたのが＂数学の カ＂です。他分野と出会うことで，科学技術のブレークスルーにつながる新たな視点を提供するという役割を，数学は歴史上ずっと担ってきました。材料科学という分野に数学が深く関 わっていくことは，絶対に必要であり，正しい方向に違いない。自分自身の力に自信はないけれど，数学の力に対する確信があり，正しい方向に向 からチャンスがそこにあるのなら引き受けるごきだと考えたのです。」

材料科学と数学が

出合う意味
数学を入れることによって材料科学に新しい展開を開くという点に碓信 はあったが，一方で，AIMR自体が期限付きのプロジェクトであり，じっくり待って成果を得るというよりは，時間 を意識しながら成果を出していかなければならないという思い ああった，と小谷は語る。
「研究者としてのこれまでの経験から，物事はあまり早く形 にしようとすると小さくまとまってしまうと分かっていました。本来なら，じっくり待って収稪することが大切です。AIMRに ついて言えば，そこにはすでに 5 年間の実績があり，それを元 に新しい飛躣をめざそうということでした。ゼロからのスタート ではありません。そこで考えたのは，AIMRの強みを活かすの と同時に，新しく加わった数学メンバーがそれぞれの専門知識を生かせる融合研究とは何かということでした。1年間，数学者と材料科学者が垣根を取り払いじっくりと議論を行いま した。1対1での話もしました。そうして作り上げたのが 3 つの

ターグットプロジェクトなのです。」
数学的手法の導入により材料科学に新たな展開をもたらす というビジョンの実現のため，AIMRでは 3 つのターゲットプ ロジェクトを定めた。それが，「数学的力学系に基づく非平衡材料」，「トポロジカル機能性材料」，「離散幾何解析に基づく マルチスケール階層性材料」である。従来の材料科学研究で は，実験によって新たな現象を観測し，分析を基に理論的説明を得るという流れが主流たが，この流れを双方向にしよう とするのがターゲットプロジェクトにほかならない。
「数学的手法の導入という新たなアプローチではあっても，材料科学の研究所として最先端の機能性材料の創製をめざ すという点では何も変わりはありません。むしろ，この目的を強化する一つの試みと言えるのではな いでしょうか。今までと同じようなこと しかできないのなら，材料科学と数学 の新たな出合いを作る必要はない。数学を入れることで，今までとは違う新し い材料科学の展開，ブレークスルーと かパラダイムシフトとか言われる，非連続な飛躍をめざしているのです。材料科学の側にとってとても大切だけれど， なかなか解決できない問題，そして数学側からみても新しいチャレンジが あって，やりがいがある。そういうどち ら側から見ても面白い問題がみつから ないと，なかなかブレークスルーには つながりません。幸い 1 年足らずでその ような魅力的な問題がいくつか見えて きて，少しホッとしているところです。メ ンバーが一丸となって，通常では考元 られないくらい真剣に議論してきた，そ の成果だと思います。」
材料科学への数学の導入という独創的な取り組みを支え ているのが，世界各国から集まった若手の理論物理学者と理論化学者からなる＂インターフェース・ユニット＂だ。メンバー は特定の研究室に所属することなく，それぞれの興味で複数 のプロジェクトに参加し，数学者と材料科学者を結が掛け橋 となっている。
「私たちは，ターグットプロジェクトの設定に基づき，その テーマに興味のある研究者を世界中から集めました。それが インターフェース・ユニットです。若い研究者が自分で自由に問題を考えて，独立して動くことが当たり前だし，それが一番 いい成果が出ると私は考えています。それまでのAIMRのス タイルは，PI（principal investigator：研究責任者）の先生が

いて，その下に若い人がいるという従来型研究室体制でした AIMRでは，すべての研究者が自由な発想で自らの興味を追求することを奖励しています。数学ユニット，インターフェース・ ユニットのメンバーはもちろん，実験系の若手の研究者も，こ れまでにない環境で研究できることをやりがいがあると言っ てくれています。このようなオープンな環境を彼らに一定期間提供できたことは，それだけでも意味があるでしょう。」
毎週金曜日に開催される＂ティータイム＂は，学生や若手研究者が世界トップクラスの研究者と自由に議論し合う場だ。研究者がさまざまな制約に縛られることなく，自由に交流し， それぞれの能力を発揮する雰囲気がいまのAIMRにはある。「研究者が自由に交流し合える空間は，当たり前のこと。自分 の専門性を確立するとともに，外からの刺激を領欲に受けて自分独自のフィールドを作り出さなければ，研究者としてのや りがいはありませんから。」

数学への確信と責任を原動力に

中学生の頃から，本を読み，ものを考えて，自分が思いつい たことを人に説明するのが好きだったという小谷は，「そういう ことを一生の仕事にしたい」と考えていたという。当時はまだ研究者といら職業を知らなかったが，「一番好きだったのは数学だから，その頃から数学の研究者になりたいと思っていた のかもしれない」とも話す。
小谷は，数学の魅力をこう語る。「私にとって，我々の住む宇宙の本質に迫るもの，それが数学です。数学は，自然界の様々な現象をどういう文脈で見れば自然に見えるかを考えま す。複雑で乱雑に見えたものが，数学の視点で見ると統一が とれたすつきりしたものとして見えることがある。見えた瞬間 の快感が数学研究の醍醐味です。また，数学は，外からの要請ではなく，価値観や問題を自分で好きなように設定し，追求していく学問です。正しい設定を考えるのが数学であり，そ ういう意味でとても自由で面白いのです。」
AIMRの先頭に立ち，数学と村料科学の融合という独創的 な取り組みをリードする小谷。その姿はAIMRの多くのメン バーから「格好いい」と評される。中学生，高校生の頃は，リー ダーシップを発揮するというタイプではなかったという。
「本をたくさん読んでいたのは，人と付き合うのが得意では なく，一人でいる方が好きだったから。それは今も変わってい ません。大きなグループを率いて，みんなとコミニニケーション をとるというよりは，一人で静かに自分の世界にひたっている方が好きです。1 か月くらい他人と話さなくても平気じゃない と数学者にはなれないし…。とはい元，リーダーという立場に なれば，たくさんの人に対して責任が生じます。自分にできる

最大限の努力をする必要はある。また，数学の力に対する確信が私にはあると言いましたが，もし責任を果たさなければ，数学の力に対する人々の信頼をも崩してしまうことになるで しょう。背負いきれる力が自分にあるかどうかはわかりません が，数学への碓信と責任，その強い思いが私の原動力なのか もしれません。」

真のブレークスルーをめざして
機構長就任以来，インターフェース・ユニットの創設，海外 3 拠点でのAIMRジョイントセンターの設置，大学院生を対象としたサマースクールの開催，独自の財政基盤の充実を図 るAIMR基金の創設など，明確なビジョンのもと革新的な取 り組みを推進してきた小谷。その目にAIMRの今後はどう映っているのだろう。

「東日本大震災があり，この 2 年間はリフォームの時間でも ありました。それも終了しつつあるいま，真のブレークスルー を果たしたい。方向は見えてきたし，そこにはいろいろなアプ ローチがあります。大切なのは，研究者一人ひとりがそれぞれ の発想で自由に研究を進めながら，成果を共有し，全体とし て良い方向にもっていくこと。数学が何となく身近にあって，数学を使うのが当たり前という雰囲気はかなりできつつあり ます。それをもつと確実なものにしていきたいし，プロジェクト期間終了後もこの研究所は世界をリードする研究所として存続させます。一数学者としては，材料科学の側からいろいろな刺激をうけて，専門である離散幾何解析学の分野をさらに発展させたいと考えています。」

小谷元子 Motrefe Xotani

EVENT REPORT

 ト＂片平まつい2013＂の一謤として開候された AIMRの一般公開で，特殊大䟺钽镜を使つて原子てAIMRと書かれた写真を見た参加者から出た言葉だ。
今回の一般公開のテーマは「ナノツアーズ」

事がてもたりと，普段目にする事のできない
ノの世界を体感できる趣向た。それだけてなくなく， コムか磁性流体，コンビータを使った実酫 フースも配置され，村料の不思識な性質を楽し
「なから学ぶ事もできる。ツアー後半にある
ションガ披菑され，予測できない動きに参加者

も驚きの表情を浮がで
また，今回が初の試みとなった「こニトーク
ライブ」では， 10 名の研究者がそれそれの研爸分野についての講演を行った。研究者の話な んて閪いても分からないと思われないよう，発表を担当する事になった若まの研究者は，それ それに趣向を疑らしたスライトやや，実演を交え がら悪門分野について説明し
 とは何かを墭単に説明したあと，トマトかが滋石
小学生が「トマトの中の水が反発したから」と正解を答え，今度は所缚士がでつくりすると いつた一幕も見られた。
科学央酸を楽しむだけでなく，研究の現場 や研究者の話を聞けるなど，様々な解度から豦子分子の世界での研究を体感してもらったた今深く知ることができ大変㜞蚊になった。

つた声が聞かったた片平まつのは2年に一度 の開倠のため，次回は2015年に開2隹予定。

高機能で高性能，夢の材料

「金属ガラス」研究最前線
 半世紀来の謎であったがラス物質の原子構造が数学と材料科学の連措によつて解明された。 その研究は，今年7月に米Science詿に揭載された。 ここでは，研究の対象となった金属がラスの基硞知識から，原子構造に関する最新の研究までを解説する。
 平田秋彦＝x

材料が変える未来の医療

藤枝助教（早楾田大学理工学行院：＝AIMR助手）が，維創䜌か貼ってあるという䦭の場所 を指差すと，誰もか半信半疑でさされた場所 を見る。実際何も䀡っていないように見える
からだ。維捡言。実は通常の10万分ののの薄さ， ナメートルの薄さでできている。そのため，胞

料でできているため，手術の際に婁部を綘う事
なく傷口を塞くてとができます。

実際の手術映像を使つた藤柀助教の説 が進むにつれ，会場からは驚をと感心の声か

教が，アナノテク村料が拍く末来の医暴！」と し，先述のような蟲演を行ったほか，AIMR常
身の回のの村料の不思譩や，最新技術を目に
 た村料の奥深さを知った。」なせで医療の現場 に活かせるよう研究を進めてほしい」といった

ゴムの不思議

「世界は動いてい
という文字が，TV画面に大きく映し出された。 すべての物質は止まっているように見えてもも は原子は動いている。これは，中嶋淮教授の研九している」ムの珄質を解するための重要 なキーフードだ。
2013年 11 月22日（金），仙台市立連坊小路小学校てAIMRの中嶋迹淮教授による出前授業「ココムの不思識を体験しよう」が行われ た。 5 年生の㚆童へ間けて行われた今回の授業。中駃淮教授は，常温では弾まないように作

られたゴムボールを取り出し，お湯で温めた －液体坚素で朎やすことで，弾むようになる のを示す。温度の変化でコムのの性質が変わる事を実演を交えながら解説する中嶋淮教授の授業は，多くの览童の㤱味を引き，コムムの性算 こついて楽しみながら理解することができた

 かなく，もし浴けるようなな状想になるとししたら， それはゴムとしての特性を失っている状態であ るということを分かりやすく説明した。最先告

の研究に関わる研究者の言葉を受けて，丠童を ちはそれそれに思考を巡らせていた。

1
 金属ガラスとは？

金属ガラス研究のはじまりとこれまで
2012年，米アップル社からiPhoneの本体に採用する可能性が あるとの情報が流れ，世界で一躍注目を集めた材料がある。 それが「金属がラス」と呼ばれる物質だ。ガラスという言葉を聞くと，窓がラスのような透明な物質を思い浮がるがるもしれ ない。しかし，金属がラスは見た目は全くガラスっほくなく，普通の金属と同様な金属光沢を呈している（前頁の写真参照）。基本的には金属であるにもかかわらず，ガラスのような構造を併せ持っているため，普通の金属より強くてしなやかであると いう性質を持つ不思議な材料である。

金属がラスの研究は，1960年代にアメリカのグループによ る超急洽法を用いた金とシリコンの合金でガラス形成が発見 されたことに端を発しており，その後様々な金属の組み合わ せで合金探索が行われてきた。1990年前後には，東北大の グループによって3つ以上の金属を組み合わせて極めて安定性の高い金属がラスが作製され，今日に至るまで数多くの種類の金属がラスが開発されてきている。当初は金属がラスの作製には 0.001 秒間に $1000^{\circ} \mathrm{C}$ 以上下げるような超急冷技術 が必要であったが，現在では通常の金属と同様な鋳造法で作ることができるため，初期の頃には得られなかった非常に大きいサイズ（数 mm ～数 cm ）のものが得られるようになっ た。これにより金属がラスの特徴を生かした様々な応用開発 も進展してきている。

金属ガラスの原子構造解析の難しさ

金属の性質は，中の原子がどのように並んでいるか，その構造に強く影響される。一般的な金属の中では，原子は例えば ＂面心立方構造＂や＂体心立方構造＂のように規則正しく周期性を持って並んでいる。溶かした金属を泠やして固化させる と，普通はどうしてもこのような規則正しい結晶構造が自然に できてしまうのである。しかし，金属がラスの場合，試料全体 に渡って，原子が一見＂でたらめに＂並んでいるように見える。 このでたらめさが，金属がラスが普通の金属に比べて優れた性質を持つ鍵となっている。
さらに金属がラスの中では，原子がボールを箱に＂ぎゅう ぎゅうに＂詰めこんだような状況で並んでいる。もし原子が結晶のように規則正しく並んでいれば，このようなぎっしりと詰 め込む゙，いわゆる稠密構造を得ることは容易であるが，でたら めな配列を保ったまま詰めるのは意外と難しい。結晶構造以外に，ぎっしりと詰まった安定な構造をとる形として正 20 面体構造が知られており，古くから金属がラスは多くの正20面体か ら成る構造であるというモデルが提案されている。しかし，正 20 面体構造のみで3次元空間を除間なく埋め尽くすことは不可能であるという矛盾が解消されないままでいた。
実際にどのように原子が詰まっているかを調べるため，これ まで主にX線•中性子線回折を用いた数多くの実験が行われ てきている。回折とは，波が物質に衝突すると背後に回り込ん で緔模様ができる現象のことで，この現象を利用して，X線や中性子線を当ててできた回折図形と呼ばれる結模様から物質の構造を調べることができる。通常の金属材料は結晶であ るため，構造には周期性があり，回折図形にも同じようなパ ターンの繰り返しが明膫に锥察される。これをもとに基本単位 となる原子配列を決めさえすれば，自動的に試料全体の構造 を知ることができる。しかし金属がラスの場合，構造には周期性が無く，回折図形には少数の非常にぼやけた散乱しかか観察 されないため，試料全体からの平均的な構造の特徴しか得る ことができないのが現状である。このようなことから，金属が ラスの構造解析は原理的に極めて難しいものであった。

2 電子の針と数学で金属ガラスの構造に迫る

電子の針で構造を直接観察する

このようなね涀の下，我々は金属がラスの構造をより直接的 に権たいと考六，電子線フロローフをを使った実験を詞めている。電子線プローブとは，細い電子線を針（プローブ）のように用い

て物質の性質を探る実験である。電子は波の性質も持っている ため，X線や中性子線と同様に回折図形から物質の構造を調 べることができる。さらに電子線は，X線•中性子線と比ではる かに小さく絞ることができるため，ごく小さな領域からの回折図形を得ることが可能である。プローブを $4 \AA$（オングストローム， 1 Å＝0．1ナノメートル）以下まで絞ることにより，回折に寄与する原子の数は劇的に減少し，数十個程度にまで抑えることができ た。プローブを絞りすぎると散乱がぽやけて見えなくなってしま うため，最適な絞り度合いを見つける事が必要となってくるが， これまでのX線や中性子線の実験では試料全体，つまり10の 23乗個程度の原子を一度にまとめて観察していたわけであるか ら，これは劇的な違いである。

結果は予想以上にうまく観察できており，「これなら非常に小さい原子集団の構造を直接観察して議論できるかもしれな $い … 」 と$ 思った。
しばらくして，これまで金属ガラスのモデルとして議論され てきた正20面体構造を実際に観察してゐよう，ということに なった。しかし，いくら観察しても綺麗な正20面体対称の模様 は見られざ，その時はまだ我々の実験技術が十分ではないの だろうと考えていた。しかし，その後数ヶ月の間，データを繰り返し調べているうちに，頻繁に見られる模様がかなり歪んだ 20面体に起因することに気がついた。さらに，それは正 20 面体と結晶（面心立方構造）の特徴を併せ持ったような構造で あることもわかってきた。これなら3次元空間を稠密に埋める ことが可能である。実は綺麗な20面体が実験で見えないのは金属がラス構造の本質だったのである。
数学連携で変わる金属ガラス研究
今後，実験技術がさらに進歩して，たとえ全ての原子配列が完全に決定されたとしても，ガラスの構造を理解したことには ならない。その雑多な原子配列データから本質を抽出する必要 がある。例えば，局所構造の細かい遠いを調べる事ができる ボロノイ多面体解析という方法があるが，金属がラスの構造は

基本的にはでたらめなので，それぞれの局所構造の細かい違 いには目をつぶって共通する特徴をくくり出した方が，内在す る秩序を見るのに適しているかもしれないと考えた。幸い数学 では，幾何的な＂ものの繋かり方＂の特徴を代数的に表現する計算ホモロジーという分野が今世紀に入ってから発展してきて おり，多くの分野で応用され始めていたので，金属がラスへの適用も少しの工夫により可能であった。AIMRには，材料科学 の研究所であるにも関わらず数学ユニットがあるため，気軽に数学者と交流する事ができる。昨年より数学者である松江要助教，小谷元子教授との議論を重ね，計算ホモロジーの手法 を使って金属がラス内の 20 面体構造を解析したところ，試料全体で似たような歪みになっている事が分かり，電子線プロー ブによる観察結果とあわせて今年7月にScience誌だに掲載され るに至った。このように少しずつ金属がラスの違ら側面が見え始めており，数学との連㑺による今後の発展かか期待される。

A．Hirata et．al，Science 341，376－379（2013）

3 今後の展望

主に結晶の性質を扱う「金属物理学や「固体物理学」など の分野のスタート地点は，結晶構造である。構造が周期性を持つ，という特徴を前提に栐々な美しい理論が組み立てられ ている。しかし，金属がラスのような非周期構造の場合，この前提となる特徴が未だ明らかになっていないため，理論の構築が非常に困難である。このことから，非周期構造の解明は急務であり，古くからある確立された手法と，ここで紹介した ような電子線プローブ実験や計算ホモロジーなどの新しい手法とを組み合わせることにより，この分野の基礎科学をさらに発展させることができるよう研究を続けたいと願ってい る。さらにこれらの知見を，非周期構造を持つ相変化記録材料や二次電池の電極材料 など，金属がラス以外の材料 に対して応用することも現在検討している。

 のである。ここに記して感桷の意を表する。

平田秋彦 ${ }^{\text {Refifico offirata }}$

数学の新たな可能性を， AIMRが教えてくれた

本号の特集でも取り上げた，数学と材料科学との連携により金属ガラスの構造を明らかにした画期的な研究。その研究の数学側を担っていた松江要助教（現統計数理研究所）が研究成果がでるまでの道のりと，数学者から見た材料科学との連携に対する想いを語る。

統計数理矿究所統計思考院／数学協鱽フログラム特任助教

「大学院の博土課程では，純粋数学としてトポロジー（位相幾何学），特にホモロジーを使った解析の研究を行っていました。博士号取得後も，純料数学の研究をずっとやっていきたいとい う思いが強かったです。しかし東北大に来て，材料科学者と研究を進めるうちに，応用数学，つまり数学の知識を他の分野に応用する研究が，どんどん面白いと思うようになってきました。」
そう語る松江助教。実際に東北大着任後に，材料科学の研究者である平田准教授と共同で金属がラスの構造解析を行 い，今年7月にScience読に論文が揭載される。その成果をきつ かけに，着任からわずか2年あまりで統計数理研究所への異動•数学協働プログラムいの参画も決まった。順調に見える東北大での研究生活。しかっしすべてが最初からうまくいっていた訳ではなかった。
「ここに来てすぐのころ，チームリーダーである小谷教授に『がラスの研究をしている方と話をしてくれませんか？』と言わ れました。そのがラスの研究をしている方，というのが平田准教授でした。」

平田准教授から「がラス構造の解析に，トポロジーが使えな いかと思っているのですが」と相談を持ちかけられた。そこで直感的に，自分が專門としているホモロジー解析が使えるかも しれない，と思ったという。「ただ，実際にどうやって研究を進 めるのか，その時は全くイメージできていませんでした。ただ何 かできそうという，漠然とした印象を持っていただけです。」 そこからホモロジー解析の手法を使って金属がラスの構造解析が行えないか議論が始まった。特に，平田准教授との研究計画がAIMRのFusion Research Proposalに採択されてからは，集中的に議論を行うようになった。しかし研究の初期段階では， なかなか議論が堜み合ないもどかしさを感じたという。
「研究分野が違うと言葉が通じない，とよく言いますが，その意味をここで知りました。確かに言葉が違うのです。」もちろん お互い同じ英語，日本語を話すが，同じ単語でも，意味している内容が全く違うのだ。「例えば，数学者の使う位相とはトポロ ジーを指しますが，物理学者はフェーズ，つまり波の性質の意味 で使ったりするのです。」

このような言葉の相違に出会う度に，お互い説明し合って理解を深めていく。そんな作業を繰！返すうちに，今では物理の言葉の意味を少しずつ理解できるようになったという。「しかし単語の意味は分かっても，お互いの研究内容を理解するには，当然ですがさらなる困難が伴いました。」
松江助教は，そこであきらめる事なく，ひたすら材料科学者 に話を聞いて回ったという。「とにかく，自分から動かないと何 も始まりません。分からない事があるなら，聞きにいかないと何 も進みません。」
研究というのは，何度も何度も議論して初めて前に進むもの だが，それは他分野との研究でも同じだと気づいた。「他の分野

の研究者と話すのは，鬼角ためらいがちです。しかし，せっかく研究をやるからには，守りに入らず，あらゆる可能性を探すつも りで本気で問題に取り組むべきです。そういった熱意は，やが て人に伝わり，同じような想いの人が応えてくれる事をここで学 びました。」
特にAIMRには，若い理論物理学者と理論化学者からなる インターフェース・ユニットがあり，数学者と材料科学者の仲立 ちをしてくれることも役に立ったという。インターフェースの研究者に「こういうことかか知りたいのだけど，なにか知りませんかり と訪ねていくと，その分野に詳しい研究者を紹介してもらって一緒に話を聞いたり，時には彼ら自身と議論を行ったりした。
さらに，自らトポロジーの勉強会を主催し，材料科学者に数学のさまざまな手法を知ってもらら機会を作った。「そのような取り組みを続けていくうち，やがて材料科学者に，数学を使う と面白い研究ができるのではないかという思いが芽生え，自分自身も材料科学の研究を何度も聞いているうちに，だんだんイ メージがつかめてきました。」そして本格的に議論を始めてから半年後に，CHomPというホモロジー解析手法を金属がラスの構造解析に用いることを見いだし，先述の成果につながった。松江助教は，AIMRで行った材料科学との共同研究を振り返って以下のように語る。

「1つ大きな成果を出す事はできました。でも，まだまだ材料科学に数学が入ったとは言えないですし，逆に言えば，数学の力 はまだこんなものではないとも思っています。職場は変わります が，引き続き材料科学と連携して研究を進めていく事に変わり はありませんし，AIMRの方とも共同研究を続ける予定です。そ していつかは，物事を理想化するという，数学の得意とする力を使って，材料の違いを超えて適応できる法則を導きだしたいと思っています。さらに材料科学で得られた知見を数学分野に フィードバックし，例えば抽象的な仮定に意味を持たせられるよ うな取り組みをしてみたいと思っています。」

NEWS \＆INFORMATION

高山あかり博

ロレアルーユネスコより奨励賞受賞
高山あかわJSPS特列研究員（東北大学AIMR高橋研究室所属）が，2013
 この賞は，日本の苦手女性科学者が国内の教有•研究機関て研究活動 を継続できるよう奖的することを目的として，2005年11月，日本ロレアル によって日本ユネスココ国内委員会との協力のもと創設された。高山博さは世界最高分能能剆定によって，半道体－金属界面に巨大ラシュノ八効果を呼
賞となる。
9月11日にフランス大使公邢にて行われた授賞式では，クリスチャン・マ セ駐日フランス大使，クラウス・ファスベンター日本ロレアル株式会社社長，㚞まさこ女性活力，内閣府特侖担当大臣の䛈捘につづき，審査委員である

小柖子東京大学名誉教授が，覚賞理由となった高山浦さの研究について
「ちょうど100年前東北大学が日本で初めて女子学生への大学教等の道 を開いたことが今日の私の研究につながっています。女性形究者はまただまだ少ないですが東北大学女子学生入学100周年という節目の年に，女性研究
 ます。指導教員をはじめと する研究空の皆さん，今回

研究者への支援を統けてて られた東北大学の関係者の皆樣に感錷致します。」

シュルガ一主任研究者大和エイドリアン賞を受賞

AIMRのアレックス・シュルガー主任研究者（University College of London 教授兼任）が，大和エイドリアン覚2013を受賞した。本覚は，大和日英基金によって3年に一度，日英の共同研究于一ムの科学的研究を対象

として譄られる。シュルカー主任研究者は，日本との長年にわたるる共同研究 が諨侕をれての受賞となる。授買式は，英口イヤリンサエテイにおいて11月 27日に行われた。

Materialls

このコーナーでは，AIMRの研究分野である「材料科学」について，基礎的な事柄歴史，世界の研究動向，AIMRにおける先端研究，等々をエッセイ風に紹介していきます。
＊第3話＊
理論と実験

科学の世界では理論研究と実験研究があり，理論の研究者を理論屋，実験を主とする研究者を実験屋と呼んだりもします。小学校や中学校で夏休みの課題となる理科の自由研究では，まず実験をして実験結果を出しますが，考察のところでは，実験結果が何 を意味しているのかを明らかにするために，本に載っている既知 の法則を当てはめてみたり，頭の中で独自の法則を導いたりしま す。この法則を導くという思考過程は，理論研究をしていると言え るでしょう。すなわち，自由研究では理論研究と実験研究を同じ人 が進めていることになります。しかし，問題が複雑になればなるほ ど，理論と実験を同一人物がおこなうことは難しくなり，分業が必要になってきます。理論屋さんと実験屋さんがそれぞれの研究結果を共有し，議論し合うことによって，科学は発展していきます。 もちろん自由研究ではそこまでは求められませんが法則を導く というのは，現象を説明する数式を見出す作業でもあります。理論研究では，数学を用い，現象を数式で表していきます。数式にで きるとどんなメリットがあるのでしょう？例えば，1個の重さ（質量） が m であるりんご 2 個の重さは $2 m$ となります。この $2 m$ も数式で すが，2個で 2 倍になるのは直感でもわかります。しかし，その うち一方のりんごを高さんだけ持ち上げたとき，もう一つのりんご よりもどのくらい大きな位置エネルギーを得たか？となると直感 だけでは難しく，それがmgh（gは重力加速度）というシンプルな数式で表せることを見抜くためには理論的な考察が必要になり ます。ニュートンは，りんごの落下を見て，地球とりんごが引き合 うように，天体同士も引き合い，この関係が全宇宙でも成り立っ ていることを考えついたと伝えられています。このニュートンが発見した万有引力の法則を基にしてmghを導き出すことができ ます。このように理論研究によってひとたびmghという数式がわ かれば，どんな重さの物体でも，他の星（地球とgの値が異な る）での値も，mghに数値を代入することで，わたしたちは実験 することなしに位置エネルギーを計算で求めることができます。
こう書くと，理論があれば実験は不要にようにも見えますが，理論で考える前に実験で自然界の傾向，規則性を探る必要があり

また理論ができた後も，これを再度実験で検証する必要がありま す。1964年にピーター・ヒッグス博士によって「理論的に」予見され ていたヒッグス粒子の存在が2011～2013年にフランスCERNの大型加速器LHCを用いておこなわれた実験によってほぼ確定され ヒッグス博士と，同様の理論を導いていたフランソワ・アングレール博士にノーベル物理学覚（2013年）かか贈られたのは記滰に新しいと ころです。理論によって予見されたものか実際に見つかるというのは，何とも美しい科学の成果であると思います。研究は理論屋と実験屋 の共同作業によって深められ真理の解明へと進んでいきます。材料は多数の原子の集合体であり，その構成元素，構造の違い によって千差万別の性質が出てきます。このすべての性質変化を完全に記述できる理論はまだありません。しかし，AIMRの数学者，理論物理学者，理論化学者と実験材料科学者の最近のコラ ボレーションによって，一見複雉に思われる材料の構造の背後に シンプルな法則が潜んでいる事がわかってきました。例えば，結晶 （原子が規則正しく配列した状態）になる傾向の強い金属を原子 が無秩序に詰まったアモルファス状態（ガラス）にする技術は東北大学が世界に誇る研究成果ですが，ほぼ無秩序である原子配列 の中にもある規則が潜しでいる事を，AIMRの研究者は幾何学の応用によって明らかにしました。すべての性質を理論で予見するに はまだまだ時間がかかりますが，理論と実験，AIMRの場合は，数学者，理論物理学者，理論化学者と実験材料科学者の連携に よって，材料の構造と性質の関係を統一的に理解できる日がくる ものと期待されます。AIMRでは理論と実験が協力し合うだけで なく，更にそれに数学の視点を導入することで，さまざまな材料の背後に横たわる普遍的な仕組みを見抜き，理論に裏付けされた予見性のある材料科学を構築することを目指してます。

池田 進

\qquad
 （20．

ソフィー・ダンブロシオ

 sophie D．ambrosioなせ物理学の研究者にならうと思ったのか？
何気なく発したその質問に，彼女はしばらく悩んでこんな答えを返してきた。「とても難しい質問です。その問いに答え るには，私の過去，人生，あらゆることを説明した上で，＂私は誰なのか？＂という哲学的なテーマについて話し合わなけれ ばなりません。」
予想外の答えに少し困っていると，彼女は笑ってこう続け た。「でも，そうですね。とっても単純に説明するなら，＂物理 が好きだから＂です。」

この「好きだから」という感覚は芸術家のそれと同じで，研究者と芸術家の生き方に本質的な違いはないのだと言う。「例えばどちらの職業にも，創造性が求められます。創造性 を持たず，ただ大きな流れに身を任せ，他者の後を追らだ けだったら，仕事としてはむしろ楽かもしれません。そのか わり，アインシュタインが相対性理論を発見したように， ローリング・ストーンズがロックを創出したように特別な存在にもなれないし，世界を変えるようなものは何も生み出せないでしょう。」
世界を変える創造性。AIMRが，それを強く求めていると感じた。「数学と物理や化学，材料科学との融合を目指すこ とは，とても困難な挑戦です。でも成功すれば，すべての分野を横断的に考えられるようになり，劇的に研究が進むで しょう。AIMRは，この大きな挑戦を成し遂げるため，リスク を負って挑戦することを後押ししてくれます。それがいま，私 がここにいる理由です。

ソフィーダンブロシオ
AIMRホスドク形累

