(Relating attractors to the)
topological organization of
neural networks

Carina Curto
Penn State Math Dept
ccurto@psu.edu

Applied Algebraic Topology 2017
Hokkaido University, Sapporo
Aug 11, 2017



Plan of the talk

Attractors in neuroscience
Network structures/motifs
Threshold-linear networks, CTLNs
Early explorations...

Graphical analysis of fixed points of CTLNs



Plan of the talk

Attractors in neuroscience
Network structures/motifs
Threshold-linear networks, CTLNs
Early explorations...

Graphical analysis of fixed points of CTLNs



Memory states as attractors of a neural network
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storage recall without input
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Appendix E of Kandel (Seung & Yuste)

memory patterns <«—»> fixed point attractors



Classical model - Hopfield networks

memory patterns <«—»> fixed point attractors

famous Hopfield result: guaranteed convergence
to a fixed point for symmeftric interaction matrix
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Example: place cell activity in hippocampus

memory patterns <—> fixed point attractors 9%
(animal position) (“bump” attractors) o

Individual positions do not correspond fo fixed points, but sequences...



Example: place cell activity in hippocampus

memory patterns <«—»>  periodic attractors ?
(animal position)

Individual positions do not correspond fo fixed points, but sequences...



What other types of attractors are important for
neural computation?

Example: You want to remember Jenny's phone # 867-5309

projection
of activity

v,

X1

I I
8675309:8675309:8675309

Limit cycles are also useful for modeling central pattern generators (CPGs)
that govern respiration, locomotion, etc.



Evidence for memories as sequential attractors
(and the dangers of an overly large basin of attraction)

https://www.youtube.com/watch?v=HNRNHgi1RzU



Memory states as attractors of a neural network

static memory patterns «—  fixed point attractors
o T — (including continuous attractors/

l L “bump” attractors)

dynamic memory patterns «—  periodic attractors

- (sequences, rhythms)

/ 1/' ;-;\

P e T e ——— [other periodic attractors:
" o central pattern generators (CPGs) -
VAVAVACATATAY biological rhythms, locomotive gaits, etc.]

memory patterns <«—> chaotic attractors
?
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Recurrent vs. feedforward architecture

Recurrent motifs
(attractors)

cycle directed clique
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directed clique: there exists an
ordering on the nodes such that
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Feedforward motifs
(FF flow of information)

path FF graph
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feedforward graph: there exists an
ordering on the nodes such that
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Open access, freely available online PLOS BIOLOGY

. 2005
Highly Nonrandom Features o
e |ocal cortical circuits

of Synaptic ConneCtiVity e layer 5 pyramidal neurons

in Local Cortical Circuits e ratvisual cortex
e simultaneous quadruple whole-cell recordings
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Figure 2. Two-Neuron Connectivity Patterns Are Nonrandom
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Cliques of Neurons Bound into & frontiers

Cavities Provide a Missing Link in Computtational Newroscience
. June 2017 | Volume 11 | Article 48

between Structure and Function t

Michael W. Reimann ', Max Nolte'f, Martina Scolamiero?, Katharine Turner?,
Rodrigo Perin®, Giuseppe Chindemi’, Pawet Diotko*, Ran Levi®, Kathryn Hess?** and
Henry Markram'-3**

B Directed simplices
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Simplex dimension



Cliques of Neurons Bound into & frontiers

Cavities Provide a Missing Link in Computtational Newroscience
. June 2017 | Volume 11 | Article 48

between Structure and Function t
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Directed cliques associated with “feedforward” flow of information!




Recurrent vs. feedforward architecture

Recurrent motifs
(attractors)

cycle directed clique
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directed clique: there exists an
ordering on the nodes such that
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Feedforward motifs
(FF flow of information)

path FF graph
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feedforward graph: there exists an
ordering on the nodes such that
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Recurrent vs. feedforward architecture

Recurrent motifs Feedforward motifs
(attractors) (FF flow of information)
cycle path FF graph
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Threshold-linear networks

o & .CEJ
o\.f Threshold-linear dynamics
e o
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e

same as RelLU (rectified linear unit) in deep learning networks



Threshold-linear networks

9‘\}.\2‘ Threshold-linear dynamics

Wi, _ i,
/ O/ ’ dCEZ

N >%i = T | 2 Wi, + 6

g=1

4 multistability A
limit cycles

chaos

quasiperiodic attractors
N J

same as RelLU (rectified linear unit) in deep learning networks



Fixed points/steady states/equilibria

set dx; /dt = 0 for each i € [n]}

o % Fixed points:
.y, {
i
/u/o\;ox T
o< o / Z dtz = —I; +

Z Wijx; + 6

g=1

Fixed points arise when linear fixed points lie in the “correct”

chamber of the hyperplane arrangement.




Fixed points/steady states/equilibria

® = & Fixed points:
oV
/"‘\‘0 ) set dx; /dt = 0 for each ¢ € [n]
Wi,
T

.4‘/_. It = —T; + ZWijiCj—F@

g=1

d+

Fixed points arise when linear fixed points lie in the “correct”
chamber of the hyperplane arrangement.

There is at most one fixed point per support (subset of neurons):

supp(z) = {7 € [n] | #; > 0}



Combinatorial Threshold-Linear Networks (CTLNs)

o & oL
o\.f Threshold-linear dynamics
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Pyramidal neurons in a sea of inhibition

Network of excitatory
and inhibitory cells
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4 neural networks with matching degree sequence
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all graphs have the same
in/out-degree sequence:

(1,2), (1,2), (2,1), (2,1), (2,2)



examples of nonlinear network dynamics: limit cycles
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examples of nonlinear network dynamics: limit cycles
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examples of nonlinear network dynamics: chaos
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examples of nonlinear network dynamics: multistability
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firing rate

A single network can display multiple attractors of
different types
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Spontaneous state transitions in large random networks

spontaneous state transition

i

M &x LA

160 200

50 nodes

activity (a.u.)

s




ng rate

I

Spontaneous state transitions in large random networks
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Central Pattern Generator (CPG)

quadruped motion
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Patching together cyclic modules
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Important Facts about CTLNs

all nodes are identical
for fixed parameters ¢,90, 6, only the graph matters

many aspects of dynamics are invariant under
parameter changes

we can use this model to study emergent dynamics
as shaped by connectivity alone (the graph)

global properties of connectivity may matter more
than local features

mathematically tractable

displays a rich variety of nonlinear dynamics



A competitive network theory of species diversity

Stefano Allesina®' and Jonathan M. Levine®

*Department of Ecology and Evolution, Computation Institute, University of Chicago, Chicago, IL 60637; and *Department of Ecology, Evolution, and
Marine Biology, University of California, Santa Barbara, CA 93106

5638-5642 | PNAS | April 5, 2011 | vol. 108 | no. 14
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Fig. 1. (A) Species’ competitive abilities can be represented in a tournament in which we draw an arrow from the inferior to the superior competitor for all
species pairs. A tournament is a directed graph composed by n nodes (the species) connected by n(n — 1)/2 edges (arrows). (B) Simulations of the dynamics for
the tournament. The simulation begins with 25,000 individuals assigned to species at random (with equal probability per species). At each time step, we pick
two individuals at random and allow the superior to replace the individual of the inferior. We repeat these competitions 107 times, which generates relative
species abundances that oscillate around a characteristic value (S/ Text). (C) The average simulated density of each species from B (shown in lighter bars) almost
exactly matches the analytic result obtained using linear programming (shown in darker bars).



Discrete species competition model
A B Cs
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Fig. 1. (A) Species’ competitive abilities can be represented in a tournament in which we draw an arrow from the inferior to the superior competitor for all
species pairs. A tournament is a directed graph composed by n nodes (the species) connected by n(n — 1)/2 edges (arrows). (B) Simulations of the dynamics for
the tournament. The simulation begins with 25,000 individuals assigned to species at random (with equal probability per species). At each time step, we pick
two individuals at random and allow the superior to replace the individual of the inferior. We repeat these competitions 107 times, which generates relative
species abundances that oscillate around a characteristic value (S/ Text). (C) The average simulated density of each species from B (shown in lighter bars) almost
exactly matches the analytic result obtained using linear programming (shown in darker bars).

The CTLN model
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What would Darwin do?




Early facts about stable fixed points

Thm 1. If G is an oriented graph with no sinks, then the network has
no stable fixed points (but bounded activity).
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Early facts about stable fixed points

Thm 1. If G is an oriented graph with no sinks, then the network has
no stable fixed points (but bounded activity).

Thm 2. For any G, a clique is the support of a stable fixed point if and
only if it is a target-free clique.
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Taxonomy for oriented graphs on 5 neurons

Base graphs Every oriented graph with no sinks on n=5
can be built up and named using these
AA T base graphs:
1e—e?2 10— e?2
\l \l D , o
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3 40— 3
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Neuron numbering chosen to maximally align sequences in observed attractors



Dictionary of attractor types

VAV VL

"

Rep. graph D1[2,3,4], seq 15234. All graphs: D1[2,3,4], D1[2,3] (aka E2[3]), D1[2,4], D1[2]
(aka D2[3]), D2[1,3,4], D2[1,3] (aka E1[2]), D2[3,4], D3[4,%],

E1[2,3,4], E1[2,4], E1[3,4], E1[3] (aka F2[1,3]), E1[4], E2[1,3,4], E2[3,4], E2[3] (aka D1[2,3]),
E2[1,3] (aka E1[2,3]), E3[1,2,4], E3[1,4], E3[2,4], E3[4].

AT-11 (limit cycle)

1 Xo=[t 1000

VAV VYV VaVaVa Ve
\2

o‘ \ \ \ \ \ \ \ \
4. .3 100 110 120 130 140 150 160 170 180 180 200

Rep. graph T4[1], seq 1234. All graphs: T4[1,2,3], T4[1,2], T4[1,3],
T4[2,3]_seql (aka D1[4]_seq2), T4[1], T4[2] seql (aka G1[4]_seq2), T4[3]_seql, T4[3]_seq?.




Dictionary of attractor types

Using the taxonomy, we could identify 19 attractor types and
classify graphs based on which attractor types they exhibited -

this classification largely aligned with the taxonomy!

Attractor types include:

Limit cycles with simple cycles
Limit cycles with synchronous firing
Period-doubled limit cycles
Quasperiodic attractors

Chaotic attractors



Some things we learned...

1. 3-cycles supporting (unstable) fixed points yield attractors,
while others do not.



Some things we learned...

1. 3-cycles supporting (unstable) fixed points yield attractors,
while others do not.
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234 does not have
a fixed point - nor
a corresponding
limit cycle!



Some things we learned...

1. 3-cycles supporting (unstable) fixed points yield attractors,
while others do not.

2. Sources die - i.e., do not participate in any attractors.

firing rate
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Some things we learned...

1. 3-cycles supporting (unstable) fixed points yield attractors,
while others do not.

2. Sources die - i.e., do not participate in any attractors.

3. When two networks share certain common subgraphs, they
tend to have at least one attractor in common.

For n < 5 only 19 attractor types! (~200 observed
attractors)



Some things we learned...

1. 3-cycles supporting (unstable) fixed points yield attractors,
while others do not.

2. Sources die - i.e., do not participate in any attractors.

3. When two networks share certain common subgraphs, they
tend to have at least one attractor in common.

For n < 5 only 19 attractor types! (~200 observed
attractors)

4. Unstable fixed points are closely related to - and
predictive of - limit cycles and chaotic attractors



unstable fixed points in chaotic attractors

baby chaos: 4 attractors Lorenz attractor
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A word of caution

1 (unstable) fixed point
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Sequence 1234567
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A word of caution

1 (unstable) fixed point
1

limit cycle +
quasiperiodic

3 attractor!
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Graphical analysis of fixed points of CTLNs

L ¢

O\).‘Z‘ GOAL: Analyze the graph to predict the
/VX stable and unstable fixed points

o‘/
o >o (This gives insight into the dynamics.)

oo

FP(G) = {0 C |n] | o is a fixed point support }



How do we find the fixed point supports?

for i € 0,0 C [n]

' :—Cl?i—l- ZWMZEJ’—FH

j=1

7 = det(I — Wyigip)is 1)




How do we find the fixed point supports?

i~ dx;
7] %-
o<‘/— ° e

for i € 0,0 C [n]

Z Wijilij + 0

g=1

7 = det(I — Wyigip)is 1)

/Lemma (fixed point supports)

o € FP(G) < sgns] = sgn s

~

o
— SgN S

for any 7,7 € 0,k ¢ o

\ Fixed point is stable iff — ] + J}/_ is a stable matrix. j
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sgn sy = +/—
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fix pt supp
+ type
fix pt supp
- type
N\
dirClique +® @+
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fix pt supp
+ type

fix pt supp
- type

dirClique

FFgraph |

sgn sy = +/—
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fix pt supp
+ type

fix pt supp
- type

dirClique

FFgraph |

sgn sy = +/—
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A general principle: domination

simplest version: . k € o

k dominates j with respect to O if

1. ] =~k kA7
2.1 —j=>1—k foreach i € 0 \ {J,k}



A general principle: domination

simplest version: . k € o

k dominates j with respect to O if

1. ] =k, kA7
2.1 —j=>1—k foreach i € 0 \ {J,k}

o=1{1,2,3,4) / T

406——03 40301

2 dominates 1 1 dominates 2 and 3



A general principle: domination

Lemma: 7,k € o

If k dominates j with respect to 0 then o ¢ FP(G|,)
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If k dominates j with respect to 0 then o ¢ FP(G|,)

Some consequences: \

1. Fixed point supports cannot have sources /

- rules out paths



A general principle: domination

Lemma: 7,k € o

If k dominates j with respect to 0 then o ¢ FP(G|,)

Some consequences: \

1. Fixed point supports cannot have sources /

- rules out paths

2. FF graphs cannot be fixed point supports
(unless a union of isolated nodes)



A general principle: domination

Lemma: 7,k € o

If k dominates j with respect to 0 then o ¢ FP(G|,)

1
[ )

Some consequences: \
o2

1. Fixed point supports cannot have sources /

- rules out paths
4046———
2. FF graphs cannot be fixed point supports N

3
(unless a union of isolated nodes) \
0?2
3. Directed cliques cannot be fixed points supports
(unless it’s a full bidirectional clique) /)G
400



Recurrent vs. feedforward architecture

Recurrent motifs
(attractors)

cycle
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Feedforward motifs
(FF flow of information)

path FF graph
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More facts about (unstable) fixed points

If G is has uniform in-degree, it supports a fixed point
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More facts about (unstable) fixed points

If G is has uniform in-degree, it supports a fixed point

If a subgraph is a fixed point support, this fixed point may or
may not survive to the full graph!



More facts about (unstable) fixed points

If G is has uniform in-degree, it supports a fixed point

If a subgraph is a fixed point support, this fixed point may or

may not survive to the full graph!

.

Thm 3. G has uniform in-degree d.
Fixed points survives <=> no node outside G receives d+1
(or more) edges from G

~

J
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Which 3-cycles of the graph give limit cycles?
Those that correspond to surviving fixed points
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What can we learn using topology?

Make a simplicial complex from the network graph
by filling in directed cliques...



Supergraphs theorem

Supergraphs theorem: if we replace each node i in a graph G by a subset w; with the
same edges to obtain G, then ¢ € FP(G) if and only if 6 = U,c,7; Where 7; € FP(G|.,) for
each i € 0 and the index set o € FP(G). Moreover, type(d) = type(o) [ L., type(r;).



Summary

CTLNs have rich nonlinear dynamics that are shaped by
the graph of network connectivity

Fixed point supports appear to depend only on properties
of the graph, independent of parameters €, 0,6

We can prove many facts about which (sub)graphs support
fixed points, and when those fixed points survive to larger
graphs

Unstable fixed points are closely related - and predictive
of - limit cycles and chaotic attractors

A simplicial complex obtained by filling in directed cliques
has the potential to tell us something about the
attractors... if we figure out how to do it in the right way!



Thanks!

Collaborators:

Katie Morrison (University of Northern Colorado)
Caitlyn Parmelee (Keene State College)
Jesse Geneson & Chris Langdon (postdocs @ Penn State)

Anda Degeratu (Stuttgart)
Vladimir ltskov (Penn State)

m Funding: NIH RO1 EB022862, NSF DMS 1516881 /{5 b

National Institutes
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A general principle: domination

Lemma 4.1. k£ dominates j with respect to o if the following three conditions hold:
1. ifi — j theni — k foreachi € o \ {j, k},
2. ifj €o,thenj — k, and

3. ifk€eo,thenk 4 j.

Lemma 2.29 (domination). Suppose k dominates j with respect to o. The following statements
all hold:

(@) Ifj,k € o, theno ¢ FP(G|,).
(b) Ifj co,k¢&o,theno & FP(G|oumy)-

(c) Ifj ¢ o0,keco,ando € FP(G|,), then we also have o € FP(G|,u;).




A general principle: domination

Definition 2.28. We say that £ dominates ; with respect to o if the following three conditions
hold:

LY Walsfl = Y Wilstl,

teo\{j,k} iteo\{j,k}

2. if j € o,then W, > —1 (i.e., j — k), and

3. ifkeo, then W, < —1 (i.e. k4 j).

Note that condition 1 is always satisfied if W, > W, for all i € o\ {j,k} —thatis, if i — k
whenever i — j.

Lemma 4.1. k£ dominates j with respect to o if the following three conditions hold:
1. ifi — j theni — k foreachi € o \ {j, k},
2. ifj €o,thenj — k, and

3. ifkeo,thenk 4 j.



