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Memory states as attractors of a neural network


1594  Appendices

from sources outside the circuit. This situation corre-
sponds roughly to activation of a distributed pattern 
of neural activity in the brain by a sensory stimulus, as 
is often observed in neurophysiological studies. Every 
synapse between a pair of active neurons is therefore 
exposed to coincident presynaptic and postsynaptic 
activity, thus strengthening the synapses.

After this strengthening has occurred, a group of 
three neurons that are strongly coupled by excitatory 
synapses form a cell assembly (Figure E–5C). Neurosci-
entists generally use this term rather imprecisely. One 
must look to mathematical models of networks for 
more precise definitions, which generally have some-
thing to do with the presence of strong mutual excita-
tory interactions within a group of neurons. The word 
“assembly” emphasizes that the group did not initially 
exist but was constructed through the strengthening of 
its synapses, which in turn was caused by the simulta-
neous activation of the neurons in the group.

In effect, the information in the original activity 
pattern is transferred to the configuration of strong 
synapses in the cell assembly. Assuming that the syn-
aptic changes persist, the information is maintained 
even after the original activity pattern has ceased. It 
could be said that the network has learned an activ-
ity pattern by storing it into its synaptic strengths. 
Moreover, because of this, the resulting cell assem-
bly can recall the original activity pattern, as will be 
explained below.

Cell Assemblies Can Complete Activity Patterns

If inputs are limited to one neuron in the three-cell 
assembly, the neuron starts to generate action poten-
tials (Figure E–5D). Although the external inputs to the 
other two neurons do not change, they also become 
activated after a short latency because they are driven 
by synaptic input from the first neuron. This spreading 
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Figure E–5 Associative memory and 
persistent activity in a network of model 
neurons. Numerical simulations were done 
using the leaky integrate-and-fire model 
neuron described in Appendix F. This model 
neuron generates spike times but not the 
detailed shape of the action potential.
A. The synaptic connections between five 
neurons are initially very weak or nonexist-
ent, and here are not drawn at all. Neurons 
1, 3, and 5 are about to be activated by 
external input.
B. Input current activates the three neurons 
and Hebbian plasticity strengthens the 
synaptic connections between the neurons, 
a form of associative memory storage.
C. When the input current ceases neuronal 
activity also ceases. However, the pattern 
of activity in the synaptic connections 
between the three neurons is not abolished 
when activity ceases.
D. Input current stimulates just one of the 
original three neurons, but the excitatory 
connections complete the entire pattern. 
All three neurons of the pattern become 
activated. E. Even after the input current 
has ended, the neurons remain persistently 
active.
F. A nonselective inhibitory input to all the 
neurons (circuit not depicted) quenches the 
persistent activity pattern, and the circuit 
returns to a quiescent state.
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Example: place cell activity in hippocampus


memory patterns

(animal position) 

periodic attractors ?


Individual positions do not correspond to fixed points, but sequences...
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Highly Nonrandom Features
of Synaptic Connectivity
in Local Cortical Circuits
Sen Song1, Per Jesper Sjöström2,3, Markus Reigl1, Sacha Nelson2, Dmitri B. Chklovskii1*
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How different is local cortical circuitry from a random network? To answer this question, we probed synaptic
connections with several hundred simultaneous quadruple whole-cell recordings from layer 5 pyramidal neurons in the
rat visual cortex. Analysis of this dataset revealed several nonrandom features in synaptic connectivity. We confirmed
previous reports that bidirectional connections are more common than expected in a random network. We found that
several highly clustered three-neuron connectivity patterns are overrepresented, suggesting that connections tend to
cluster together. We also analyzed synaptic connection strength as defined by the peak excitatory postsynaptic
potential amplitude. We found that the distribution of synaptic connection strength differs significantly from the
Poisson distribution and can be fitted by a lognormal distribution. Such a distribution has a heavier tail and implies
that synaptic weight is concentrated among few synaptic connections. In addition, the strengths of synaptic
connections sharing pre- or postsynaptic neurons are correlated, implying that strong connections are even more
clustered than the weak ones. Therefore, the local cortical network structure can be viewed as a skeleton of stronger
connections in a sea of weaker ones. Such a skeleton is likely to play an important role in network dynamics and should
be investigated further.

Citation: Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3): e68.

Introduction

Understanding cortical function requires unraveling syn-
aptic connectivity in cortical circuits, that is, establishing the
wiring diagrams. Although smaller wiring diagrams can be
reconstructed using electron microscopy [1], reconstruction
on the scale of a cortical column is impossible with current
technology (but see [2] for a promising approach). Even if
such a possibility were within reach, synaptic connectivity
likely varies from animal to animal and within one animal
over time. Therefore, a reasonable approach is to describe
synaptic connectivity statistically, or probabilistically. Such
statistical description may be based on random sampling of
connections with multineuron recordings [3,4,5]. For exam-
ple, electrophysiological recordings from neuronal pairs
showed that the probability of connection is often low
[3,5,6,7,8,9,10,11], suggesting that the network is sparse. Such
statistical approaches may create the impression that synaptic
connectivity in local cortical circuits is random. This view is
consistent with previous suggestions [12,13,14], but hard to
reconcile with cortical functionality, which must rely on
specificity of connections [15,16,17,18].

In general, statistical sampling of connections does not
imply that the underlying network has random connectivity.
Indeed, statistical sampling has already revealed several
nonrandom features in cortical connectivity. In particular,
specific connectivity patterns exist between different classes
in the local circuit [3,19,20]. Within one putatively homoge-
neous class, the number of reciprocally connected pairs is
greater than expected in a random network [5,6,11].
Distribution of the number of synapses per connection is

non-Poisson and has low variance [6,21]. At the same time, the
distribution of the connection strength is broad [5,6,10,11].
But many questions remain unanswered: Are there non-
random features in patterns involving more than two
neurons? What is the distribution of synaptic connection
strength? Are synaptic connection strengths correlated?
Recently, new approaches for network connectivity analysis

have been developed and various nonrandom features were
discovered in natural and man-made networks. In particular,
many networks are scale-free, that is, the number of
connections per node (node degree) often follows a power-
law distribution [22]. Also, many networks exhibit the small-
world property, that is, high local clustering of connections in
combination with a short path between any two nodes [23,24].
In addition, probability of connection between nodes
depends on how many connections they have [25]. Although
local cortical networks may possess these properties, existing
connectivity data are not sufficient for such analyses. These
data are obtained by random sampling of connections and
call for other approaches. One such approach is to explore
local structures in network connectivity by studying the

Received July 6, 2004; Accepted December 17, 2004; Published March 1, 2005
DOI: 10.1371/journal.pbio.0030068
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tation could arise from a nonuniform probability of
connection for different neurons. For example, connection
probability may depend on interneuron distance. To control
for this artifact, we measured distances between neurons in
recordings where labeling was performed successfully. We

found that the probability of connection does not depend
systematically on the interneuron distance (p = 0.21, chi
square test) (Figures 3, S1, and S2). This is not surprising
because most neurons were located closer than the span of
their dendritic (and especially axonal) arbors. Our result is
consistent with Holmgren et al.’s study [11], which found only
a small (22%) decrease in connection probability up to 50 lm,
with a more significant drop (44%) up to 100 lm for layer 2/3
pyramidal neurons.
Another source of nonuniformity in connection proba-

bility may be axonal arbors being cut off differentially,
depending on the depth of the recorded neuron from the
slice surface. (The recording depths were from 10 to 100 lm.)
To explore such a possibility we measured the dependence of
the connection probability on the recording depth. Neither
connection probability, nor strength of connection was found
to depend systematically on the recording depth (see
Figure S3). In addition, for every successfully labeled tissue
we measured the distance from the average cell position to
the nearest axonal cut point (see Figure S3). Again no strong
trends in connection probability or connection strength were
found. These results show that the cutting artifact is unlikely
to explain observed nonrandom features.
We also considered the possible artifact of connection

probability varying with age. We found a weak decline in
connection probability and EPSP amplitude (consistent with
Reyes and Sakmann [34]) within the range used in experi-
ments (P12–P20; see Figure S4). Yet, such a decline is
insufficient to account for the observed nonrandomness. To
demonstrate this, we repeated most of the analysis on a subset

Figure 2. Two-Neuron Connectivity Patterns Are Nonrandom

(A) Null hypothesis is generated by assuming independent proba-
bilities of connection.
(B) Reciprocal connections are four times more likely than predicted
by the null hypothesis (p , 0.0001, Monte Carlo simulation to test for
overrepresentation). Numbers on top of bars are actual counts. Error
bars are standard deviations estimated by bootstrap method.
DOI: 10.1371/journal.pbio.0030068.g002

Figure 3. Probability of Connection among Adjacent Neurons Does Not Depend Strongly on the Interneuron Distance

(A) Relative location of labeled neurons in the plane of the section. Positive direction of y-axis is aligned with apical dendrite. Potentially
presynaptic neuron is located at the origin. Red—bidirectionally connected pairs; blue—unidirectionally connected pairs; green—unconnected
pairs.
(B) Histogram showing the numbers of pairs in the three classes as a function of distance between neurons (Euclidian distance was calculated
from relative X, Y, Z coordinates).
(C) Probability of connection versus interneuron distance. Error bars are 95% confidence intervals estimated from binomial distribution.
DOI: 10.1371/journal.pbio.0030068.g003
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of the data from 14 to 16-d-old animals when the majority of
measurements were performed (see Figure S5). We found that
bidirectional connections are also overrepresented in this
subset of data. Results of other analyses that will be described
later in the paper are also confirmed on this subset
(Figure S5).

Finally, it is possible that some extreme degree of
inhomogeneity in connections probability is able to explain
the observed overrepresentation of reciprocal pairs, but this
would probably reflect large local inhomogeneity in cortical
connectivity patterns—possibly differences between sub-
classes [6,35], rather than experimental artifacts—and is in
line with the main conclusions of this paper.

Three-Neuron Patterns
We extended our analysis by comparing the statistics of

three-neuron patterns to those expected by chance [26,27].
We classify all triplets into 16 classes and count the number of
triplets in each class. In order to avoid reporting over-
represented three-neuron patterns just because they contain
popular two-neuron patterns, we have revised the null
hypothesis[26,27]. The control distribution was obtained
numerically by constructing random triplets where constit-
uent pairs are chosen independently, but with the same
probability of bidirectional and unidirectional connections
as in data (Figure 4A). For example, the actual probability of a
unidirectional connection is (according to Figure 2B) 495/
(3312 þ 495 þ 218) = 0.123. Then the probability of
unidirectional connection from A to B is 0.123/2 = 0.0615,
the same as from B to A (see Figure 4A). The probability of
bidirectional connection is (according to Figure 2B) 218/
(3312 þ 495 þ 218) = 0.0542. The probability of finding the
particular triplet class in Figure 4A by chance is the product
of the probabilities of finding the three constituent pairs and
a factor to account for permutations of the three neurons.
The ratio of the observed counts and the expected counts for
each class are plotted in Figure 4B. The actual counts are
given as numbers on top of the bars. Although triplets from
several of these patterns have been reported previously [9,10],
small numbers of recordings have precluded statistical
analysis.

According to Figure 4B, several triplet patterns are
overrepresented. Is this overrepresentation statistically sig-
nificant? Because we look for overrepresentation in many
pattern classes at the same time, the raw p-values (Figure 4C)
overestimate the true significance (underestimate the true p-
value). To correct the raw p-values, one has to apply a
multiple-hypothesis testing procedure. We chose to correct
the p-values by applying a step-down min-P-based multiple-
hypothesis testing correction procedure (see Materials and
Methods). The corrected p-values (Figure 4C) give the
probability of mistakenly reporting at least one of the
patterns as overrepresented when it is not.

Two-neuron correlations are summarized by saying that if
neuron A synapses onto neuron B, then the probability of B
synapsing onto A is several times greater than chance. Three-
neuron correlations are summarized roughly by saying that if
A connects with B and B connects with C (regardless of
direction), the probability of connection between A and C is
several times greater than chance. Interestingly, similar
results have been obtained in the analysis of the Caenorhabditis
elegans wiring diagram [36], which was reconstructed from

serial section electron microscopy [1]. Because different
techniques have different biases, the similarity of results
suggests that correlations in synaptic connectivity represent a
general property of neuronal circuits. Such property may
represent evolutionary conservation from invertebrates to
mammals or convergence driven by similar computational
constraints.
Although individual connectivity patterns containing more

than three neurons could not be analyzed statistically for the
existing dataset (Table S1), we found a 70% overrepresenta-
tion of ‘‘chain’’ quadruplets (patterns number 21 23 24 26 28
29 31 32 33 34 35 38 39 41 43 as defined in Figure S6, p=0.004)
relative to the null hypothesis requiring that a random matrix
has the actual proportion of triplet classes.

Distribution of Synaptic Connection Strengths
Next, we turned our attention to the distribution of

synaptic connection strengths as characterized by EPSP
amplitude (Figure 5A). We estimated the probability density
function by binning connection strengths and dividing the
number of occurrences in each bin by the bin size. Since
there are many more weak connections than strong ones, we

Figure 4. Several Three-Neuron Patterns Are Overrepresented as
Compared to the Random Network

(A) Null hypothesis for three-neuron patterns assumes independent
combinations of connection probabilities of two kinds of two-neuron
patterns.
(B) Ratio of actual counts (numbers above bars) to that predicted by
the null hypothesis. Error bars are standard deviations estimated by
bootstrap method.
(C) Raw (open bars) and multiple-hypothesis testing corrected (filled
bars) p-values. p-values above 0.5 are not shown.
DOI: 10.1371/journal.pbio.0030068.g004
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Reimann et al. Cliques, Cavities, Structure, and Function

FIGURE 2 | (A1) A 4-clique in the undirected connectivity graph has one of 729 configurations in the directed graph. (A2) Configurations containing bidirectional

connections are resolved by considering all sub-graphs without bidirectional connections. (A3) Without bidirectional connections, 64 possible configurations remain,

24 of which are acyclic, with a clear sink-source structure (directed simplices, in this case of dimension 3). (B) Number of simplices in each dimension in the Bio-M

reconstruction (shaded area: standard deviation of seven statistical instantiations) and in three types of random control networks. (C) Examples of neurons forming

high-dimensional simplices in the reconstruction. Bottom: Their representation as directed graphs. (D) (Left) Number of directed simplices of various dimensions found

in 55 in vitro patch-clamp experiments sampling groups of pyramidal cells in layer 5. (Right) Number of simplices of various dimensions found in 100,000 in silico
experiments mimicking the patch-clamp procedure of (B).

2.2. An Abundance of Directed Simplices
2.2.1. Reconstructed Neocortical Microcircuitry
We analyzed 42 variants of the reconstructed microconnectome,
grouped into six sets, each comprised of seven statistically
varying instantiations (Markram et al., 2015; Section 4.3). The
first five sets were based on specific heights of the six layers
of the neocortex, cell densities, and distributions of different
cell types experimentally measured in five different rats (Bio1-
5), while the sixth represents the mean of these measurements
(Bio-M). Individual instantiations within a set varied with the
outcome of the stochastic portions of the reconstruction process.
Surprisingly, we found that the reconstructions consistently
contained directed simplices of dimensions up to 6 or 7, with as

many as 80 million directed 3-simplices (Figure 2B; blue). This is
the first indication of the existence of such a vast number of high-
dimensional directed simplices in neocortical microcircuitry, or
in any neural network.

2.2.2. Control Models
To compare these results with null models, we examined how the
numbers of directed simplices in these reconstructions differed
from those of artificial circuits and from circuits in which some
of the biological rules of connectivity were omitted (see Section
4.4). For one control, we generated five Erdős-Rényi random
graphs (ER) of equal size (∼31,000 vertices) and the same average
connection probability as the Bio-M circuit (∼0.8%; ∼8 million

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2017 | Volume 11 | Article 48
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in 55 in vitro patch-clamp experiments sampling groups of pyramidal cells in layer 5. (Right) Number of simplices of various dimensions found in 100,000 in silico
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We analyzed 42 variants of the reconstructed microconnectome,
grouped into six sets, each comprised of seven statistically
varying instantiations (Markram et al., 2015; Section 4.3). The
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cell types experimentally measured in five different rats (Bio1-
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outcome of the stochastic portions of the reconstruction process.
Surprisingly, we found that the reconstructions consistently
contained directed simplices of dimensions up to 6 or 7, with as

many as 80 million directed 3-simplices (Figure 2B; blue). This is
the first indication of the existence of such a vast number of high-
dimensional directed simplices in neocortical microcircuitry, or
in any neural network.

2.2.2. Control Models
To compare these results with null models, we examined how the
numbers of directed simplices in these reconstructions differed
from those of artificial circuits and from circuits in which some
of the biological rules of connectivity were omitted (see Section
4.4). For one control, we generated five Erdős-Rényi random
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and analyzing these directed graphs using algebraic topology. Applying this approach to
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1. INTRODUCTION

How the structure of a network determines its function is not well understood. For neural networks
specifically, we lack a unifying mathematical framework to unambiguously describe the emergent
behavior of the network in terms of its underlying structure (Bassett and Sporns, 2017). While
graph theory has been used to analyze network topology with some success (Bullmore and Sporns,
2009), current methods are usually constrained to analyzing how local connectivity influences local
activity (Pajevic and Plenz, 2012; Chambers and MacLean, 2016) or global network dynamics (Hu
et al., 2014), or how global network properties like connectivity and balance of excitatory and
inhibitory neurons influence network dynamics (Renart et al., 2010; Rosenbaum et al., 2017). One
such global network property is small-worldness. While it has been shown that small-worldness
optimizes information exchange (Latora and Marchiori, 2001), and that adaptive rewiring during
chaotic activity leads to small world networks (Gong and Leeuwen, 2004), the degree of small-
worldness cannot describe most local network properties, such as the different roles of individual
neurons.

Algebraic topology (Munkres, 1984) offers the unique advantage of providing methods to
describe quantitatively both local network properties and the global network properties that
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such global network property is small-worldness. While it has been shown that small-worldness
optimizes information exchange (Latora and Marchiori, 2001), and that adaptive rewiring during
chaotic activity leads to small world networks (Gong and Leeuwen, 2004), the degree of small-
worldness cannot describe most local network properties, such as the different roles of individual
neurons.

Algebraic topology (Munkres, 1984) offers the unique advantage of providing methods to
describe quantitatively both local network properties and the global network properties that
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FIGURE 2 | (A1) A 4-clique in the undirected connectivity graph has one of 729 configurations in the directed graph. (A2) Configurations containing bidirectional

connections are resolved by considering all sub-graphs without bidirectional connections. (A3) Without bidirectional connections, 64 possible configurations remain,

24 of which are acyclic, with a clear sink-source structure (directed simplices, in this case of dimension 3). (B) Number of simplices in each dimension in the Bio-M

reconstruction (shaded area: standard deviation of seven statistical instantiations) and in three types of random control networks. (C) Examples of neurons forming

high-dimensional simplices in the reconstruction. Bottom: Their representation as directed graphs. (D) (Left) Number of directed simplices of various dimensions found

in 55 in vitro patch-clamp experiments sampling groups of pyramidal cells in layer 5. (Right) Number of simplices of various dimensions found in 100,000 in silico
experiments mimicking the patch-clamp procedure of (B).

2.2. An Abundance of Directed Simplices
2.2.1. Reconstructed Neocortical Microcircuitry
We analyzed 42 variants of the reconstructed microconnectome,
grouped into six sets, each comprised of seven statistically
varying instantiations (Markram et al., 2015; Section 4.3). The
first five sets were based on specific heights of the six layers
of the neocortex, cell densities, and distributions of different
cell types experimentally measured in five different rats (Bio1-
5), while the sixth represents the mean of these measurements
(Bio-M). Individual instantiations within a set varied with the
outcome of the stochastic portions of the reconstruction process.
Surprisingly, we found that the reconstructions consistently
contained directed simplices of dimensions up to 6 or 7, with as

many as 80 million directed 3-simplices (Figure 2B; blue). This is
the first indication of the existence of such a vast number of high-
dimensional directed simplices in neocortical microcircuitry, or
in any neural network.

2.2.2. Control Models
To compare these results with null models, we examined how the
numbers of directed simplices in these reconstructions differed
from those of artificial circuits and from circuits in which some
of the biological rules of connectivity were omitted (see Section
4.4). For one control, we generated five Erdős-Rényi random
graphs (ER) of equal size (∼31,000 vertices) and the same average
connection probability as the Bio-M circuit (∼0.8%; ∼8 million
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graph theory has been used to analyze network topology with some success (Bullmore and Sporns,
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chaotic activity leads to small world networks (Gong and Leeuwen, 2004), the degree of small-
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Plan of the talk


•  Attractors in neuroscience


•  Network structures/motifs


•  Threshold-linear networks, CTLNs


•  Early explorations...


•  Graphical analysis of fixed points of CTLNs




Threshold-linear networks

Threshold-linear dynamics

xi

xj

Wij

same as ReLU (rectified linear unit) in deep learning networks



Threshold-linear networks

Threshold-linear dynamics
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Fixed points/steady states/equilibria

Fixed	points:	
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set dxi/dt = 0 for each i 2 [n]

Fixed	points	arise	when	linear	fixed	points	lie	in	the	“correct”	
chamber	of	the	hyperplane	arrangement.	



Fixed points/steady states/equilibria

Fixed	points:	

xi

xj

Wij
set dxi/dt = 0 for each i 2 [n]

There	is	at	most	one	fixed	point	per	support	(subset	of	neurons):		

supp(x) = {i 2 [n] | xi > 0}

Fixed	points	arise	when	linear	fixed	points	lie	in	the	“correct”	
chamber	of	the	hyperplane	arrangement.	



Combinatorial Threshold-Linear Networks (CTLNs)
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Spontaneous state transitions in large random networks
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Spontaneous state transitions in large random networks
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rate, with coupling strengths that vary between neurons. The underly-
ing model is parsimonious, requiring only order n parameters to pre-
dict order n2 pairwise correlations. Moreover, the model is intuitive,
involving procedures among the simplest in neuroscience—summing
the activity of multiple neurons, and correlating the spike train of each
neuron with the result. To assess whether more advanced procedures
would yield different results, we used a variant of latent variable ana-
lysis designed for discrete spike count data4,21 to obtain the weights of

individual neurons to the first detected factor. Reassuringly, these weights
were highly correlated with population coupling (Extended Data Fig. 5a);
latent variable analysis found the same basic structure as our simple
coupling model.

The ability of the model to predict correlations may appear surprising
given that it operates without knowledge of the neurons’ sensory tuning.
In primary sensory areas, neurons with similar sensory selectivity show
stronger stimulus-independent correlations1,3,5,22, and we observed a

0001000

0000000

1100011

1010011

0110001

0100110

0100110

0010010

Mean
firing rate

Population
coupling

2431253 2Population rate 

a b c

E(x1)
E(x2)

E(Σjxj | x1 = 1)
E(Σjxj | x2 = 1)

E(Σjxj | xn = 1)

Prob(Σjxj = r)

E(xn)

Population rate
distribution

Σjxj

fe

P
ai

rw
is

e 
co

rr
el

at
io

n

Difference in preferred orientation (degrees) 

P = 0.15 P < 10–3

d

P
ai

rw
is

e 
co

rr
el

at
io

ns

Model

0

0

1

0

0

1

0

0

Population rate variability

Predicted Residual

Fr
ac

tio
n 

of
 p

re
di

ct
ed

 
co

rr
el

at
io

n 
st

ru
ct

ur
e 

(%
)

0.02 0.04 0.06

0

20

40

60

80

0 45 90

–0.05

0

0.10

0.15

0.05

0 45 90

C
ou

pl
in

g

Coupling

0.10

0.05

0

Observed Observed Observed 

Observed Observed Observed 

PredictedPredictedPredicted

Predicted
(no coupling)

Predicted
(no coupling)

Predicted
(no coupling)

Strong

S
tr

on
g

W
ea

k

Weak

Figure 2 | A simple model based on population coupling predicts the
structure of pairwise correlations in a cortical population. a, The model
generates random spike patterns subject to three constraints: that the
population coupling of each neuron, the mean firing rate of each neuron, and
the distribution of the population rate must match those in the original data.
b, Random activity generated by the model produces pairwise correlations that
are similar to those measured in the original spike trains (n 5 67 units in
one experiment; correlations computed in 20-ms bins). The upper triangle
shows observed pairwise correlations, and the lower one shows pairwise
correlations predicted by the model. Neurons are arranged in order of
population coupling. The values on the diagonal (all 1s) have been removed.
Similarity of observed and predicted correlations is indicated by the symmetry
of the upper and lower triangles. c, Percentage of explainable correlation
structure predicted, as a function of the variability of population rate (filled
symbols, see Methods). The model captures pairwise correlations, but only in

experiments in which the population rate fluctuates. It cannot predict them
when population rate is mostly constant (a highly desynchronized cortical
state). Recordings were obtained from mouse V1 in wakefulness (diamonds)
or under anaesthesia (circles), or from A1 of awake rat (squares), all
spontaneous activity; note that a variety of states is observed in all conditions.
Open symbols show predictions of a model that ignores population coupling.
The example experiment in b is shown in red. d, Same as b for predictions
made without using population coupling. Such predictions fail to capture the
structure of pairwise correlations (open markers in c). e, The model cannot
predict a relationship between similarity of preferred orientation and
spontaneous pairwise correlations (P 5 0.15, Pearson correlation). f, As a
result, this correlation is retained in the residual pairwise correlations obtained
by subtracting the modelled from actual correlations (r 5 0.26, P , 1023,
Pearson correlation), indicating that the predictions of coupling and
orientation sum linearly. The black line in f shows regression on cos 2Dhð Þ.
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Figure 1 | Neighbouring neurons differ markedly in population coupling
during spontaneous activity. a, Schematic of a single shank of silicon
electrode array, and spike waveforms of four example wide-spiking neighbour
neurons measured with the array in deep layers of V1 of an awake mouse.
b, Population raster of spontaneous activity in 66 neurons recorded from the
whole array. Cells are arranged vertically in order of population coupling.
Arrows indicate the four example neurons shown in a. c, Population rate
measured by summing all the spikes detected on the entire array. d, LFP
measured on a shank adjacent to that on which the example neurons were
recorded (LFP waveforms were similar across shanks). e, Spike-triggered
population rate (stPR) for the four example neurons. The spike train of each

neuron was excluded from the population rate before computing its stPR.
f, The spike-triggered local field potential (stLFP) for the four example cells
(inverted for ease of comparison) resembles their stPR (shown in e). Inset,
normalized magnitudes of stPR and stLFP (see Methods) are highly correlated
across cells (r 5 20.71, P , 102100, rank correlation, n 5 431 neurons).
g, Differences in population coupling disappear after shuffling spikes in a
manner that preserves each neuron’s mean firing rate and the population rate.
Inset, population couplings in the actual spike trains (red) and after shuffling
(grey), for neurons from all experiments. h, stPR of four example neurons
simultaneously recorded in primate area V4, computed as in e.
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Important Facts about CTLNs

•  all nodes are identical

•  for fixed parameters           , only the graph matters

•  many aspects of dynamics are invariant under 
parameter changes

•  we can use this model to study emergent dynamics 
as shaped by connectivity alone (the graph)

•  global properties of connectivity may matter more 
than local features 

•  mathematically tractable

•  displays a rich variety of nonlinear dynamics

", �, ✓



a transient phase in which some species may go extinct, the surviv-
ing species fluctuate with regular cycles (Fig. 1B). Moreover, we

can show that the average density of each species is that it would
attain at equilibrium. Thus, although the initial conditions deter-
mine the amplitude of the cycles around the equilibrium, the
average densities of the species eventually equal their equilibrium
value. In this respect, coexistence via intransitive competition is a
stabilizing niche mechanism—one that generates an advantage
when rare (21). Indeed, if a focal species is perturbed to low den-
sity, compositional shifts among the remaining competitors tend
to favor an increase in the focal species, albeit with cycles (SI Text).

Using a game theoretical framework, we can find the equili-
brium values for all species in an efficient way using linear
programming (13) (i.e., we can predict the average relative abun-
dances of the species without having to run the dynamical system,
Fig. 1C). For any tournament expressing the dominance relation-
ships between pairs of competitors, we can find the predicted
average density for each species when embedded in the compe-
titive network (SI Text). Using these techniques, we can show, for
example, that only a subset of species (shown in green) would
coexist for any given tournament in Fig. 2C. Note that all species
coexisting after the initial exclusions are part of intransitive cycles,
but membership in a cycle need not lead to persistence. For ex-
ample, speciesG,C,D, and F form an intransitive cycle in the top-
left tournament in Fig. 2C, but all fail to persist at equilibrium.

To examine how the number of limiting factors influences
the number of coexisting species, we repeat the same procedure
used to develop the network in Fig. 2, but for a larger number of
species and with varying numbers of limiting factors (for which
species rank is still randomly assigned). As in classic niche theory,
we find that an increasing number of limiting factors allows an
increasing number of species to coexist (Fig. 3A). In contrast
to traditional niche theory, however, species do not coexist be-
cause each species in a pair is limited by a different factor (all
pairs have a clear competitive rank). Instead, they coexist because
multiple limiting factors generate competitive intransitivities that
counter the outcome of each pairwise interaction in isolation.

When the number of limiting factors goes to infinity in our
competitive network framework, the probability of drawing an
arrow from species A to B is the same of that of drawing the arrow
from B to A (i.e., the probability of either species being the domi-
nant competitor is the same). This scenario defines a random
tournament, a limiting case that is particularly interesting because
one can derive several predictions analytically. For example, it
can be shown (13, 14) that in a random tournament composed
of n species, the probability of observing k number of coexisting
species at equilibrium is

A B C

Fig. 1. (A) Species’ competitive abilities can be represented in a tournament in which we draw an arrow from the inferior to the superior competitor for all
species pairs. A tournament is a directed graph composed by n nodes (the species) connected by nðn − 1Þ∕2 edges (arrows). (B) Simulations of the dynamics for
the tournament. The simulation begins with 25,000 individuals assigned to species at random (with equal probability per species). At each time step, we pick
two individuals at random and allow the superior to replace the individual of the inferior. We repeat these competitions 107 times, which generates relative
species abundances that oscillate around a characteristic value (SI Text). (C) The average simulated density of each species from B (shown in lighter bars) almost
exactly matches the analytic result obtained using linear programming (shown in darker bars).

A

C

B

Fig. 2. (A) The competitive abilities of species A–G are ranked at random for
three limiting factors. (B) Two possible competitive relationships can emerge:
(i) The inferior species is ranked lower than its competitor for all three factors
(e.g., C versus B, black arrows) or (ii) the inferior species is ranked lower than
its competitor for two factors (e.g., A and B, red arrows). (C) We can use this
information to “draw” tournaments: We draw an arrow from node i to j
with a probability equal to the proportion of factors for which species i is
ranked below j. For example, we draw the arrow A → B with probability
2∕3, whereas B → Awith probability 1∕3. In this way we can generate several
tournaments from the same set of competitive relationships in A. For each
tournament, we can find the equilibrium solution, and those species with
nonzero equilibrium densities coexist (in green), though the equilibrium is
neutrally stable.
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Nonhierarchical competition between species has been proposed
as a potential mechanism for biodiversity maintenance, but theo-
retical and empirical research has thus far concentrated on systems
composed of relatively few species. Here we develop a theory of
biodiversity based on a network representation of competition
for systems with large numbers of competitors. All species pairs
are connected by an arrow from the inferior to the superior. Using
game theory, we show how the equilibrium density of all species
can be derived from the structure of the network. We show that
when species are limited by multiple factors, the coexistence of a
large number of species is the most probable outcome and that
habitat heterogeneity interacts with network structure to favor
diversity.

competitive exclusion ∣ rock-paper-scissor ∣ neutral theory ∣ niche theory

Ecologists have long sought to explain how a wide diversity of
species coexists in nature (1). Coexistence is a conundrum

because if two species share the same niche, the competitive ex-
clusion principle predicts the extinction of the inferior competitor
(2). This foundational principle continues to motivate advances
in niche and neutral theories (3–5) of coexistence, which use
niche differences and species equivalence, respectively, to avoid
competitive exclusion. However, each theory suffers shortcom-
ings. Field evidence that classic resource-based niche differences
are essential for coexistence is rare (6–8), whereas the species
equivalence assumption of neutral theory is hard to reconcile with
nature. These shortcomings justify the quantitative exploration of
less conventional niche mechanisms of coexistence.

Here, we ask how embedding pairs of superior and inferior
species in a network of competitors alters the outcome of com-
petition and influences patterns of relative abundance. We find
that although the competitive exclusion principle certainly holds
for any pair of competitors, when multiple factors determine the
outcome of competition and species are embedded in competi-
tive networks, a large number of species can coexist. The coex-
istence relies on the stabilizing effect of intransitivities (9–12)
that emerge in these networks rather than more traditional pair-
wise niche differences. By combining a game theoretical frame-
work with graph theory and dynamical systems (13, 14), we show
how the equilibrium abundance of all species can be determined
from the competitive network, how species diversity relates to
the number of limiting factors, and how spatial heterogeneity
combines with intransitivity to interactively favor diversity main-
tenance.

Model
The pairwise competitive relationships between species in a com-
munity can be expressed as a network, or more formally, a tour-
nament, in which species are the nodes and arrows connect
the competitive inferior to the superior competitor (Fig. 1A).
In the simplest case, where all species in a system compete for
a single limiting resource, their competitive abilities should be
transitive: Species A beats all others, B beats all but A, C beats
all but A and B, and so on. We therefore expect a single winner;
the best competitor will drive all others extinct. By contrast,
when at least one pair of species competes for a resource differ-
ent than the other pairs, we might observe intransitive competi-
tive relationships: In pairwise interactions, species A excludes B,

B excludes C, but C excludes A. This forms the familiar “rock-
paper-scissor” dynamic, which has been studied extensively, as it
can lead to the indefinite coexistence of the three species (10–12)
and facilitate the coexistence of many more species with the
appropriate consumer resource interactions (9, 15). In the tour-
nament representation of this very same problem, intransitive
relationships between competitors generate cycles (Fig. 1B).

Which type of competitive networks should we expect in
nature? Empirical work over the last several decades has shown
that multiple factors regulate the outcome of plant species inter-
actions, causing different plant species to compete for different
resources (16, 17) and limit one another via shared pathogens and
consumers (18). With such a diversity of mechanisms controlling
the interaction between competitors, a simple transitive hierarchy
is highly unlikely. However, the prevalence of intransitivities
will depend on whether superior competitors for one resource
tend to be superior for others. Because the empirical literature
is not clear on this matter (16, 19, 20), we initially assume that
species’ competitive ranks for different limiting factors are uncor-
related, an assumption we later relax.

To investigate the relationship among intransitivity, coexis-
tence, and the number of limiting factors, we begin with the
following scenario: Suppose we have three limiting factors and
seven species are ranked at random for each factor (Fig. 2A). For
each pair of species, there are two possible competitive relation-
ships: (i) One species is the superior for all factors (Fig. 2B, in
black) or (ii) one species is better for two of three factors (Fig. 2B,
in red). For the second case, we might expect the better compe-
titor in each pair to win in two-thirds of the tournaments. From
this “master tournament” (Fig. 2B) describing the ranking of the
n species for f factors, we can derive multiple possible networks.
For example, in Fig. 2C we report four tournaments generated
from the ranking of the species illustrated in Fig. 2A. More gen-
erally, we draw an arrow from A to B with probability NAB∕f ,
where NAB is the number of factors in which A is worse than B
and f is the number of factors (SI Text). We therefore assume each
factor is equally likely to determine the dominant in pairwise
competition. For a given network (e.g., one of those in Fig. 2C),
we consider a system in which large numbers of individuals inter-
act and compete with one another at random, leading to the loss
of the inferior individual after each bout of competition.

Results
Under the assumption of zero-sum dynamics (gains by one spe-
cies require losses by others) and mass-action interactions (the
interaction rate is proportional to species’ densities), we find that
the dynamics for a system composed of n competing species are
characterized by a unique equilibrium point (13, 14) (shown by
the lighter bars in Fig. 1C) and that the dynamics around the
equilibrium are linearly neutrally stable (SI Text). Therefore, after
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Nonhierarchical competition between species has been proposed
as a potential mechanism for biodiversity maintenance, but theo-
retical and empirical research has thus far concentrated on systems
composed of relatively few species. Here we develop a theory of
biodiversity based on a network representation of competition
for systems with large numbers of competitors. All species pairs
are connected by an arrow from the inferior to the superior. Using
game theory, we show how the equilibrium density of all species
can be derived from the structure of the network. We show that
when species are limited by multiple factors, the coexistence of a
large number of species is the most probable outcome and that
habitat heterogeneity interacts with network structure to favor
diversity.

competitive exclusion ∣ rock-paper-scissor ∣ neutral theory ∣ niche theory

Ecologists have long sought to explain how a wide diversity of
species coexists in nature (1). Coexistence is a conundrum

because if two species share the same niche, the competitive ex-
clusion principle predicts the extinction of the inferior competitor
(2). This foundational principle continues to motivate advances
in niche and neutral theories (3–5) of coexistence, which use
niche differences and species equivalence, respectively, to avoid
competitive exclusion. However, each theory suffers shortcom-
ings. Field evidence that classic resource-based niche differences
are essential for coexistence is rare (6–8), whereas the species
equivalence assumption of neutral theory is hard to reconcile with
nature. These shortcomings justify the quantitative exploration of
less conventional niche mechanisms of coexistence.

Here, we ask how embedding pairs of superior and inferior
species in a network of competitors alters the outcome of com-
petition and influences patterns of relative abundance. We find
that although the competitive exclusion principle certainly holds
for any pair of competitors, when multiple factors determine the
outcome of competition and species are embedded in competi-
tive networks, a large number of species can coexist. The coex-
istence relies on the stabilizing effect of intransitivities (9–12)
that emerge in these networks rather than more traditional pair-
wise niche differences. By combining a game theoretical frame-
work with graph theory and dynamical systems (13, 14), we show
how the equilibrium abundance of all species can be determined
from the competitive network, how species diversity relates to
the number of limiting factors, and how spatial heterogeneity
combines with intransitivity to interactively favor diversity main-
tenance.

Model
The pairwise competitive relationships between species in a com-
munity can be expressed as a network, or more formally, a tour-
nament, in which species are the nodes and arrows connect
the competitive inferior to the superior competitor (Fig. 1A).
In the simplest case, where all species in a system compete for
a single limiting resource, their competitive abilities should be
transitive: Species A beats all others, B beats all but A, C beats
all but A and B, and so on. We therefore expect a single winner;
the best competitor will drive all others extinct. By contrast,
when at least one pair of species competes for a resource differ-
ent than the other pairs, we might observe intransitive competi-
tive relationships: In pairwise interactions, species A excludes B,

B excludes C, but C excludes A. This forms the familiar “rock-
paper-scissor” dynamic, which has been studied extensively, as it
can lead to the indefinite coexistence of the three species (10–12)
and facilitate the coexistence of many more species with the
appropriate consumer resource interactions (9, 15). In the tour-
nament representation of this very same problem, intransitive
relationships between competitors generate cycles (Fig. 1B).

Which type of competitive networks should we expect in
nature? Empirical work over the last several decades has shown
that multiple factors regulate the outcome of plant species inter-
actions, causing different plant species to compete for different
resources (16, 17) and limit one another via shared pathogens and
consumers (18). With such a diversity of mechanisms controlling
the interaction between competitors, a simple transitive hierarchy
is highly unlikely. However, the prevalence of intransitivities
will depend on whether superior competitors for one resource
tend to be superior for others. Because the empirical literature
is not clear on this matter (16, 19, 20), we initially assume that
species’ competitive ranks for different limiting factors are uncor-
related, an assumption we later relax.

To investigate the relationship among intransitivity, coexis-
tence, and the number of limiting factors, we begin with the
following scenario: Suppose we have three limiting factors and
seven species are ranked at random for each factor (Fig. 2A). For
each pair of species, there are two possible competitive relation-
ships: (i) One species is the superior for all factors (Fig. 2B, in
black) or (ii) one species is better for two of three factors (Fig. 2B,
in red). For the second case, we might expect the better compe-
titor in each pair to win in two-thirds of the tournaments. From
this “master tournament” (Fig. 2B) describing the ranking of the
n species for f factors, we can derive multiple possible networks.
For example, in Fig. 2C we report four tournaments generated
from the ranking of the species illustrated in Fig. 2A. More gen-
erally, we draw an arrow from A to B with probability NAB∕f ,
where NAB is the number of factors in which A is worse than B
and f is the number of factors (SI Text). We therefore assume each
factor is equally likely to determine the dominant in pairwise
competition. For a given network (e.g., one of those in Fig. 2C),
we consider a system in which large numbers of individuals inter-
act and compete with one another at random, leading to the loss
of the inferior individual after each bout of competition.

Results
Under the assumption of zero-sum dynamics (gains by one spe-
cies require losses by others) and mass-action interactions (the
interaction rate is proportional to species’ densities), we find that
the dynamics for a system composed of n competing species are
characterized by a unique equilibrium point (13, 14) (shown by
the lighter bars in Fig. 1C) and that the dynamics around the
equilibrium are linearly neutrally stable (SI Text). Therefore, after
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a transient phase in which some species may go extinct, the surviv-
ing species fluctuate with regular cycles (Fig. 1B). Moreover, we

can show that the average density of each species is that it would
attain at equilibrium. Thus, although the initial conditions deter-
mine the amplitude of the cycles around the equilibrium, the
average densities of the species eventually equal their equilibrium
value. In this respect, coexistence via intransitive competition is a
stabilizing niche mechanism—one that generates an advantage
when rare (21). Indeed, if a focal species is perturbed to low den-
sity, compositional shifts among the remaining competitors tend
to favor an increase in the focal species, albeit with cycles (SI Text).

Using a game theoretical framework, we can find the equili-
brium values for all species in an efficient way using linear
programming (13) (i.e., we can predict the average relative abun-
dances of the species without having to run the dynamical system,
Fig. 1C). For any tournament expressing the dominance relation-
ships between pairs of competitors, we can find the predicted
average density for each species when embedded in the compe-
titive network (SI Text). Using these techniques, we can show, for
example, that only a subset of species (shown in green) would
coexist for any given tournament in Fig. 2C. Note that all species
coexisting after the initial exclusions are part of intransitive cycles,
but membership in a cycle need not lead to persistence. For ex-
ample, speciesG,C,D, and F form an intransitive cycle in the top-
left tournament in Fig. 2C, but all fail to persist at equilibrium.

To examine how the number of limiting factors influences
the number of coexisting species, we repeat the same procedure
used to develop the network in Fig. 2, but for a larger number of
species and with varying numbers of limiting factors (for which
species rank is still randomly assigned). As in classic niche theory,
we find that an increasing number of limiting factors allows an
increasing number of species to coexist (Fig. 3A). In contrast
to traditional niche theory, however, species do not coexist be-
cause each species in a pair is limited by a different factor (all
pairs have a clear competitive rank). Instead, they coexist because
multiple limiting factors generate competitive intransitivities that
counter the outcome of each pairwise interaction in isolation.

When the number of limiting factors goes to infinity in our
competitive network framework, the probability of drawing an
arrow from species A to B is the same of that of drawing the arrow
from B to A (i.e., the probability of either species being the domi-
nant competitor is the same). This scenario defines a random
tournament, a limiting case that is particularly interesting because
one can derive several predictions analytically. For example, it
can be shown (13, 14) that in a random tournament composed
of n species, the probability of observing k number of coexisting
species at equilibrium is

A B C

Fig. 1. (A) Species’ competitive abilities can be represented in a tournament in which we draw an arrow from the inferior to the superior competitor for all
species pairs. A tournament is a directed graph composed by n nodes (the species) connected by nðn − 1Þ∕2 edges (arrows). (B) Simulations of the dynamics for
the tournament. The simulation begins with 25,000 individuals assigned to species at random (with equal probability per species). At each time step, we pick
two individuals at random and allow the superior to replace the individual of the inferior. We repeat these competitions 107 times, which generates relative
species abundances that oscillate around a characteristic value (SI Text). (C) The average simulated density of each species from B (shown in lighter bars) almost
exactly matches the analytic result obtained using linear programming (shown in darker bars).

A

C

B

Fig. 2. (A) The competitive abilities of species A–G are ranked at random for
three limiting factors. (B) Two possible competitive relationships can emerge:
(i) The inferior species is ranked lower than its competitor for all three factors
(e.g., C versus B, black arrows) or (ii) the inferior species is ranked lower than
its competitor for two factors (e.g., A and B, red arrows). (C) We can use this
information to “draw” tournaments: We draw an arrow from node i to j
with a probability equal to the proportion of factors for which species i is
ranked below j. For example, we draw the arrow A → B with probability
2∕3, whereas B → Awith probability 1∕3. In this way we can generate several
tournaments from the same set of competitive relationships in A. For each
tournament, we can find the equilibrium solution, and those species with
nonzero equilibrium densities coexist (in green), though the equilibrium is
neutrally stable.
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What would Darwin do?




Thm	1.		If	G	is	an	oriented	graph	with	no	sinks,	then	the	network	has	
no	stable	fixed	points	(but	bounded	acGvity).	
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Thm	1.		If	G	is	an	oriented	graph	with	no	sinks,	then	the	network	has	
no	stable	fixed	points	(but	bounded	acGvity).	

Early facts about stable fixed points

Thm	2.		For	any	G,	a	clique	is	the	support	of	a	stable	fixed	point	if	and	
only	if	it	is	a	target-free	clique.		
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Taxonomy for oriented graphs on 5 neurons 

Base graphs

1

3

2 1

34

2

1

34

2

1

34

2 1

34

2 1

34

2

1

2

34

5

1

2

34

5

AA T

IHG

FED

Neuron numbering chosen to maximally align sequences in observed attractors

1

34

2
D

1

34

2
D1

5
1

34

2
D1[2,3]

5

Every oriented graph with no sinks on n=5 
can be built up and named using these 
base graphs:



Dictionary of attractor types



Dictionary of attractor types

Using the taxonomy, we could identify 19 attractor types and 
classify graphs based on which attractor types they exhibited –
this classification largely aligned with the taxonomy!

Attractor types include:

 Limit cycles with simple cycles
 Limit cycles with synchronous firing
 Period-doubled limit cycles
 Quasperiodic attractors
 Chaotic attractors



Some things we learned…
1.  3-cycles supporting (unstable) fixed points yield attractors, 

while others do not.  
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Some things we learned…
1.  3-cycles supporting (unstable) fixed points yield attractors, 

while others do not. 

2.  Sources die – i.e., do not participate in any attractors.  

fir
ing

 ra
te

time

1

23

4

0 5 10 15 20 25 30 35 40 45 50



1.  3-cycles supporting (unstable) fixed points yield attractors, 
while others do not. 

2.  Sources die – i.e., do not participate in any attractors. 
 
3.  When two networks share certain common subgraphs, they 

tend to have at least one attractor in common.

For           only 19 attractor types! (~200 observed 
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1.  3-cycles supporting (unstable) fixed points yield attractors, 
while others do not. 

2.  Sources die – i.e., do not participate in any attractors. 
 
3.  When two networks share certain common subgraphs, they 

tend to have at least one attractor in common.

For           only 19 attractor types! (~200 observed 
attractors)  

Some things we learned…

4.  Unstable fixed points are closely related to – and 
predictive of - limit cycles and chaotic attractors
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Graphical	analysis	of	fixed	points	of	CTLNs	

GOAL: Analyze the graph to predict the 
stable and unstable fixed points

(This gives insight into the dynamics.)

FP(G) = {� ✓ [n] | � is a fixed point support }



How do we find the fixed point supports? 

for i 2 �,� ✓ [n]

s�i = det((I �W�[{i})i; 1)



How do we find the fixed point supports? 

for i 2 �,� ✓ [n]

� 2 FP(G) , sgn s�i = sgn s�j = � sgn s�k

for any i, j 2 �, k /2 �

Lemma (fixed point supports) 

Fixed point is stable iff                       is a stable matrix. �I +W�

s�i = det((I �W�[{i})i; 1)
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A	general	principle:	dominaGon	

Lemma:   

If k dominates j with respect to      then  �

j, k 2 �
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� /2 FP(G|�)

Some consequences:

1.  Fixed point supports cannot have sources
     - rules out paths

2.  FF graphs cannot be fixed point supports
      (unless a union of isolated nodes)

3.  Directed cliques cannot be fixed points supports
      (unless it’s a full bidirectional clique) 
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More facts about (unstable) fixed points
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More facts about (unstable) fixed points
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•  If a subgraph is a fixed point support, this fixed point may or 
may not survive to the full graph!

Thm	3.		G	has	uniform	in-degree	d.	
Fixed	points	survives														no	node	outside	G	receives	d+1	
																																																			(or	more)	edges	from	G	

,

More facts about (unstable) fixed points
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What	can	we	learn	using	topology?	
	
	
	
Naive	Idea:		
	
Make	a	simplicial	complex	from	the	network	graph	
by	filling	in	directed	cliques...	



Supergraphs	theorem	

• Domination results:
- sources theorem
- targets: defn & lemma (always kill fixed points)
- corollary: paths can’t be fixed pt supports, only the sink (at end of path) supports a fixed
point by inside-out domination.
- parity result (recall)
- cycles have a unique (type 1) fixed point, which is the full support

• Extended example: F graph analysis. Use parity + cycles to get F graph being a f.p.
support. (Don’t need uniform in-degree here - just the cycles result.)

• Uniform in-degree subsection

• Uniform in-degree fixed points + their stability (proposition)
- include figure with various n=3 and n=4 fixed points supports (don’t repeat F graph)
- reprocess domination: remark that condition 1 is satisfied if � is uniform in-degree and k
receives d or more edges from � \ {j}.
- prove uniform in-degree survival rule
- 2 corollaries: cliques survive if they are target-free in G; independent sets survive if they
are a union of sinks in G.
- Conjecture: target-free cliques are the only stable fixed points

• Simply-added subsection

• Directed cliques & FF subgraphs don’t support fixed points. Use these as key examples
to segue into projectors/non-projectors. Directed cliques have a unique target-free clique -
which is the only possible fixed point support contained in a directed clique.

• Process projectors and non-projectors for graphs

• Formulas for s�
i

in clique and independent set cases (old “root” formula)
- also root formula for directed cliques and FF subgraphs (or, more generally, sequentially
constructible)
- n = 3 picture with all graphs and s�

i

values

• Sinks result (processing prior non-projector proposition)

• Supergraphs theorem: if we replace each node i in a graph G by a subset !
i

with the
same edges to obtain eG, then �̃ 2 FP(

eG) if and only if �̃ = [
i2�⌧i where ⌧

i

2 FP(

eG|
!i) for

each i 2 � and the index set � 2 FP(G). Moreover, type(�̃) = type(�)
Q

i2� type(⌧i).
- corollaries: disjoint unions
- if !

i

are all minimal type 1 fixed point supports (e.g. cycles or cliques) then there is a
bijection b/w fixed points of G and eG, and the types match: type(�̃) = type(�).

• Section 4: Evidence for the Conjecture

• clique+1 and clique+2

• n  4 proof of conjecture

11



Summary

•  CTLNs have rich nonlinear dynamics that are shaped by 
the graph of network connectivity

•  Fixed point supports appear to depend only on properties 
of the graph, independent of parameters

•  We can prove many facts about which (sub)graphs support 
fixed points, and when those fixed points survive to larger 
graphs

•  Unstable fixed points are closely related – and predictive 
of - limit cycles and chaotic attractors

•  A simplicial complex obtained by filling in directed cliques 
has the potential to tell us something about the 
attractors... if we figure out how to do it in the right way!

", �, ✓
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A	general	principle:	dominaGon	

• small " proof of conjecture

• counting target-free cliques

• Loose ends - should go somewhere!

• graph complements

• total activity bounds (on rates and s�
i

s)

4. Fixed points of CTLNs

4.1. Applications of domination in CTLNs

The following lemma gives sufficient conditions for domination in CTLNs in terms of the graph G.
Conditions 2 and 3 are exactly equivalent to those in definition 2.28, while condition 1 below is
stronger than necessary.

Lemma 4.1. k dominates j with respect to � if the following three conditions hold:

1. if i ! j then i ! k for each i 2 � \ {j, k},

2. if j 2 �, then j ! k, and

3. if k 2 �, then k 6! j.

[**We need a figure for the F graph domination arguments here!**] As an illustration
of domination arguments, consider the graph F4[1]. If � = {1, 2, 3, 4} is the F graph support, we
can ask if this fixed point survives the addition of the 5th node. Node 5 does not dominate any
node in �, but this does not guarantee survival of �. However, node 2 inside � dominates 5. This
domination relationship guarantees, by the lemma, that � survives when 5 is added to the graph.

Domination arguments tell us what happens to fixed points when sources or targets are
added to a graph.

Theorem 4.2 (sources). If k 2 [n] is a proper source of G, then

FP(G) = FP(G|[n]\{k}).

In particular, k /2 � for any � 2 FP(G).

Proof. To see that FP(G|[n]\{k}) ✓ FP(G), let � 2 FP(G|[n]\{k}) and observe that any j 2 �
dominates k with respect to �, since k is a source of G. Thus, by part (c) of Lemma 12.16
we see that � 2 FP(G|

�[{k}) and thus � 2 FP(G) (using Corollary 2.15). To see the reverse
direction, let � 2 FP(G) and observe that since k is a proper source, there exists j 2 [n] such
that k ! j. If k 2 �, this j dominates k with respect to � irrespective of whether or not j 2 �.
Thus, by Lemma 12.16, � 62 FP(G), a contradiction. So we must have k 62 �, and thus � 2
FP(G|[n]\{k}).

Definition 4.3. We say that k /2 � is a target of � if i ! k for all i 2 �. (Note that there are no
constraints on edges k ! i.)

12

Proposition 2.27. If k is a non-projector onto [n] \ {k}, then for any nonempty � ✓ [n],

� [ {k} 2 FP(W ) , � 2 FP(W ).

If k is a projector onto [n] \ {k}, then for any nonempty � 2 FP(W[n]\{k}) we have

� [ {k} 2 FP(W ) , � 62 FP(W ).

[**Need to revise to add projector statement proof! Also remark that we know types

here from previous lemma.**]

Proof. If k 2 � the statement is trivially true, so assume k /2 �. ()) If � 2 FP(W ), then sgn s�
i

= ↵
for all i 2 �, and sgn s�

j

= �↵ for all j /2 � (including j = k), where ↵ = sgn det(I � W
�

). Since
k is a non-projector, by Proposition 12.23 we know that sgn s�[{k}

i

= � sgn s�
i

for all i 6= k, while
sgn s�[{k}

k

= sgn s�
k

. This implies sgn s�[{k}
i

= �↵ for all i 2 � [ {k}, while sgn s�[{k}
i

= ↵ for all
i /2 � [ {k}. By Proposition 2.14, � [ {k} 2 FP(W ). (() Repeating all the arguments above in
the reverse direction shows that if � [ {k} 2 FP(W ), then � 2 FP(W ).

2.5. Domination

Here we again assume b
i

= ✓ = 1 for all i 2 [n]. In particular, equation (2.12) holds:

s�
k

= s�
j

+

X

i2�\{k}

W
ki

s�
i

�
X

i2�\{j}

W
ji

s�
i

,

and equation (2.18) becomes

s�
i

= det((I �W
�

)

i

; 1), for i 2 �.

Definition 2.28. We say that k dominates j with respect to � if the following three conditions
hold:

1.
X

i2�\{j,k}

W
ki

|s�
i

| �
X

i2�\{j,k}

W
ji

|s�
i

|,

2. if j 2 �, then W
kj

> �1 (i.e., j ! k), and

3. if k 2 �, then W
jk

< �1 (i.e. k 6! j).

Note that condition 1 is always satisfied if W
ki

� W
ji

for all i 2 � \ {j, k} – that is, if i ! k
whenever i ! j.

Lemma 2.29 (domination). Suppose k dominates j with respect to �. The following statements

all hold:

(a) If j, k 2 �, then � /2 FP(G|
�

).

(b) If j 2 �, k 62 �, then � /2 FP(G|
�[{k}).

(c) If j /2 �, k 2 �, and � 2 FP(G|
�

), then we also have � 2 FP(G|
�[{j}).

9



A	general	principle:	dominaGon	

• small " proof of conjecture

• counting target-free cliques

• Loose ends - should go somewhere!

• graph complements

• total activity bounds (on rates and s�
i

s)

4. Fixed points of CTLNs

4.1. Applications of domination in CTLNs

The following lemma gives sufficient conditions for domination in CTLNs in terms of the graph G.
Conditions 2 and 3 are exactly equivalent to those in definition 2.28, while condition 1 below is
stronger than necessary.

Lemma 4.1. k dominates j with respect to � if the following three conditions hold:

1. if i ! j then i ! k for each i 2 � \ {j, k},

2. if j 2 �, then j ! k, and

3. if k 2 �, then k 6! j.

[**We need a figure for the F graph domination arguments here!**] As an illustration
of domination arguments, consider the graph F4[1]. If � = {1, 2, 3, 4} is the F graph support, we
can ask if this fixed point survives the addition of the 5th node. Node 5 does not dominate any
node in �, but this does not guarantee survival of �. However, node 2 inside � dominates 5. This
domination relationship guarantees, by the lemma, that � survives when 5 is added to the graph.

Domination arguments tell us what happens to fixed points when sources or targets are
added to a graph.

Theorem 4.2 (sources). If k 2 [n] is a proper source of G, then

FP(G) = FP(G|[n]\{k}).

In particular, k /2 � for any � 2 FP(G).

Proof. To see that FP(G|[n]\{k}) ✓ FP(G), let � 2 FP(G|[n]\{k}) and observe that any j 2 �
dominates k with respect to �, since k is a source of G. Thus, by part (c) of Lemma 12.16
we see that � 2 FP(G|

�[{k}) and thus � 2 FP(G) (using Corollary 2.15). To see the reverse
direction, let � 2 FP(G) and observe that since k is a proper source, there exists j 2 [n] such
that k ! j. If k 2 �, this j dominates k with respect to � irrespective of whether or not j 2 �.
Thus, by Lemma 12.16, � 62 FP(G), a contradiction. So we must have k 62 �, and thus � 2
FP(G|[n]\{k}).

Definition 4.3. We say that k /2 � is a target of � if i ! k for all i 2 �. (Note that there are no
constraints on edges k ! i.)
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Proposition 2.27. If k is a non-projector onto [n] \ {k}, then for any nonempty � ✓ [n],

� [ {k} 2 FP(W ) , � 2 FP(W ).

If k is a projector onto [n] \ {k}, then for any nonempty � 2 FP(W[n]\{k}) we have

� [ {k} 2 FP(W ) , � 62 FP(W ).

[**Need to revise to add projector statement proof! Also remark that we know types

here from previous lemma.**]

Proof. If k 2 � the statement is trivially true, so assume k /2 �. ()) If � 2 FP(W ), then sgn s�
i

= ↵
for all i 2 �, and sgn s�

j

= �↵ for all j /2 � (including j = k), where ↵ = sgn det(I � W
�

). Since
k is a non-projector, by Proposition 12.23 we know that sgn s�[{k}

i

= � sgn s�
i

for all i 6= k, while
sgn s�[{k}

k

= sgn s�
k

. This implies sgn s�[{k}
i

= �↵ for all i 2 � [ {k}, while sgn s�[{k}
i

= ↵ for all
i /2 � [ {k}. By Proposition 2.14, � [ {k} 2 FP(W ). (() Repeating all the arguments above in
the reverse direction shows that if � [ {k} 2 FP(W ), then � 2 FP(W ).

2.5. Domination

Here we again assume b
i

= ✓ = 1 for all i 2 [n]. In particular, equation (2.12) holds:

s�
k

= s�
j

+

X

i2�\{k}

W
ki

s�
i

�
X

i2�\{j}

W
ji

s�
i

,

and equation (2.18) becomes

s�
i

= det((I �W
�

)

i

; 1), for i 2 �.

Definition 2.28. We say that k dominates j with respect to � if the following three conditions
hold:

1.
X

i2�\{j,k}

W
ki

|s�
i

| �
X

i2�\{j,k}

W
ji

|s�
i

|,

2. if j 2 �, then W
kj

> �1 (i.e., j ! k), and

3. if k 2 �, then W
jk

< �1 (i.e. k 6! j).

Note that condition 1 is always satisfied if W
ki

� W
ji

for all i 2 � \ {j, k} – that is, if i ! k
whenever i ! j.

Lemma 2.29 (domination). Suppose k dominates j with respect to �. The following statements

all hold:

(a) If j, k 2 �, then � /2 FP(G|
�

).

(b) If j 2 �, k 62 �, then � /2 FP(G|
�[{k}).

(c) If j /2 �, k 2 �, and � 2 FP(G|
�

), then we also have � 2 FP(G|
�[{j}).
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