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Abstract

Weighted degrees of quasihomogeneous Hamiltonian functions of the Painlevé
equations are investigated. A tuple of positive integers, called a regular weight,
satisfying certain conditions related to singularity theory is classified. For each
polynomial Painlevé equation a regular weight associates. Conversely, for 2 and 4-
dim cases, it is shown that there exists a differential equation satisfying the Painlevé
property associated with each regular weight. Kovalevskaya exponents of quasiho-
mogeneous Hamiltonian systems are also investigated by means of regular weights,
singularity theory and dynamical systems theory. It is shown that there is a one-
to-one correspondence between Laurent series solutions and stable manifolds of the
associated vector field obtained by the blow-up of the system. For 4-dim autonomous
Painlevé equations, the level surface of Hamiltonian functions can be decomposed
into a disjoint union of stable manifolds.

Keywords: Painlevé equation; quasihomogeneous vector field; regular weight; Ko-
valevskaya exponent

1 Introduction

A differential equation defined on a complex region is said to have the Painlevé
property if any movable singularity (a singularity of a solution which depends on an
initial condition) of any solution is a pole. Painlevé and his group classified second
order ODEs having the Painlevé property and found new six differential equations
called the Painlevé equations PI, · · · ,PVI. Nowadays, it is known that they are
written in Hamiltonian forms

(PJ) :
dq

dz
=

∂HJ

∂p
,

dp

dz
= −∂HJ

∂q
, J = I, · · · ,VI.

Among six Painlevé equations, the Hamiltonian functions of the first, second and
fourth Painlevé equations are polynomials in both of the independent variable z and

1E mail address : hchiba@tohoku.ac.jp

1



the dependent variables (q, p). They are given by

HI =
1

2
p2 − 2q3 − zq, (1.1)

HII =
1

2
p2 − 1

2
q4 − 1

2
zq2 − αq,

HIV = −pq2 + p2q − 2pqz − αp+ βq,

respectively, where α, β ∈ C are arbitrary parameters.
In general, a polynomial H(x1, · · · , xn) is called a quasihomogeneous polynomial

if there are positive integers a1, · · · , an and h such that

H(λa1x1, · · · , λanxn) = λhH(x1, · · · , xn) (1.2)

for any λ ∈ C. A polynomial H is called a semi-quasihomogeneous if H is decom-
posed into two polynomials as H = HP + HN , where HP satisfies (1.2) and HN

satisfies

HN(λa1x1, · · · , λanxn) ∼ o(λh), |λ| → ∞.

The integer deg(H) := h is called the weighted degree of H with respect to the
weight deg(x1, · · · , xn) := (a1, · · · , an). HP and HN are called the principal part
and the non-principal part of H, respectively. The weight of H,HP and HN are
also calculated by the Newton diagram as follows. Plot all exponents (r1, · · · , rn)
of monomials xr1

1 xr2
2 · · · xrn

n included in HP on the integer lattice in Rn. If they lie
on a unique hyperplane a1x1 + · · · + anxn = h, then deg(HP ) = h with respect to
the weight (a1, · · · , an). Exponents of monomials included in HN should be on the
lower side of the hyperplane. See [3] for the detail.

The above Hamiltonian functions for PI,PII and PIV are semi-quasihomogeneous.
If we define degrees of variables by deg(q, p, z) = (2, 3, 4) for HI, deg(q, p, z) =
(1, 2, 2) for HII and deg(q, p, z) = (1, 1, 1) for HIV, then Hamiltonian functions have
the weighted degrees 6, 4 and 3, respectively, (Table 1) with HN

I = 0, HN
II = −αq

and HN
IV = −αp+ βq.

The Hamiltonian functions of the third, fifth and sixth Painlevé equations are
not polynomials in z, and their weights include nonpositive integers (Table 1). They
are not treated in this paper, while the analysis of them using weighted projective
spaces is given in [7].

Higher dimensional Painlevé equations have not been classified yet, however, a
lot of such equations have been reported in the literature. A list of four dimensional
Painlevé equations derived from the monodromy preserving deformation is given in
[21, 20]. Lie-algebraic approach is often employed to find new Painlevé equations
[13, 15, 12, 27]. Several Painlevé hierarchies, which are hierarchies of 2n-dimensional
Painlevé equations, are obtained by the similarity reductions of soliton equations
such as the KdV equation. Among them, it is known that Hamiltonian functions
of the the first Painlevé hierarchy (PI)n[22, 23, 31], the second-first Painlevé hier-
archy (PII-1)n[9, 10, 22, 23], the second-second Painlevé hierarchy (PII-2)n and the
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fourth Painlevé hierarchy (PIV)n[16, 22] can be expressed as polynomials with re-
spect to both of the dependent variables and the independent variables. They are
Hamiltonian PDEs of the form

∂qj
∂zi

=
∂Hi

∂pj
,
∂pj
∂zi

= −∂Hi

∂qj
, j = 1, · · · , n; i = 1, · · · , n

Hi = Hi(q1, · · · , qn, p1, · · · , pn, z1, · · · , zn)
(1.3)

consisting of n Hamiltonians H1, · · · , Hn with n independent variables z1, · · · , zn.
When n = 1, (PI)1 and (PIV)1 are reduced to the first and fourth Painlevé equations,
respectively. Both of (PII-1)1 and (PII-2)1 coincide with the second Painlevé equation,
while they are different systems for n ≥ 2. When n = 2, Hamiltonians of (PI)2,
(PII-1)2, (PII-2)2 and (PIV)2 are given by

(PI)2


H

9/2
1 = 2p2p1 + 3p22q1 + q41 − q21q2 − q22 − z1q1 + z2(q

2
1 − q2),

H
9/2
2 = p21 + 2p2p1q1 − q51 + p22q2 + 3q31q2 − 2q1q

2
2

+z1(q
2
1 − q2) + z2(z2q1 + q1q2 − p22),

(1.4)

(PII-1)2


H

7/2+1
1 = 2p1p2 − p32 − p1q

2
1 + q22 − z1p2 + z2p1 + 2αq1,

H
7/2+1
2 = −p21 + p1p

2
2 + p1p2q

2
1 + 2p1q1q2

+z1p1 + z2(z2p1 − p1q
2
1 + p1p2)− α(2p2q1 + 2q2 + 2z2q1),

(1.5)

(PII-2)2


H5

1 = p1p2 − p1q
2
1 − 2p1q2 + p2q1q2 + q1q

2
2 + q2z1 + z2(q1q2 − p1) + αq1,

H5
2 = p21 − p1p2q1 + p22q2 − 2p1q1q2 − p2q

2
2 + q21q

2
2

+z1(q1q2 − p1)− z2(p1q1 + q22 + q2z2) + αp2,
(1.6)

(PIV)2


H4+1

1 = p21 + p1p2 − p1q
2
1 + p2q1q2 − p2q

2
2 − z1p1 + z2p2q2 + αq2 + βq1,

H4+1
2 = p1p2q1 − 2p1p2q2 − p22q2 + p2q1q

2
2

+p2q2z1 + z2(p1p2 − p2q
2
2 + p2q2z2) + (p1 − q1q2 + q2z2)α− βp2,

(1.7)
respectively, with arbitrary parameters α, β ∈ C (these notations for Hamiltonian
functions are related to the spectral type of a monodromy preserving deformation
[21]). The weighted degrees of these hierarchies determined by the Newton diagrams
are shown in Table 2 (see also Table 3). From Table 1, 2 and the equations, we deduce
the following properties.

• deg(qi) + deg(pi) = deg(H1)− 1.

• deg(z1) = deg(H1)− 2.

• deg(zi) + deg(Hi) is independent of i = 1, · · · , n.

• min
1≤i≤n

{deg(qi), deg(pi)} = 1 or 2.

• The equation (1.3) is invariant under the Zs-action

(qi, pi, zi) 7→ (ωdeg(qi)qi, ωdeg(pi)pi, ωdeg(zi)zi),

where s := deg(H1)− 1 and ω := e2πi/s.
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• The symplectic form
n∑

i=1

dqi ∧ dpi +
n∑

i=1

dzi ∧ dHi is also invariant under the

same Zs-action, for which Hi 7→ ωdeg(Hi)Hi.

We decompose the Hamiltonian function Hi into the principal part HP
i and the

non-principal part HN
i . Then, we further deduce

• The non-principal part HN
i consists of monomials including arbitrary param-

eters.

• deg(HN
i ) = deg(Hi)− deg(H1) + 1. In particular deg(HN

1 ) = 1.

• The variety defined by

HP
1 (q1, · · · , qn, p1, · · · , pn, 0, · · · , 0) = 0

in C2n has a unique singularity at the origin.

In section 2.4, several above properties will be proved from the others. For (PI),
(PII) and (PIV), we have

HP
I (q, p, 0) =

1

2
p2 − 2q3,

HP
II (q, p, 0) =

1

2
p2 − 1

2
q4,

HP
IV(q, p, 0) = −pq2 + p2q.

They define A2, A3 and D4 singularities at the origin, respectively. In singularity
theory, it is known that if a singularity defined by a quasihomogeneous polynomial
H(x1, · · · , xn) = 0 is isolated, then the rational function

χ(T ) :=
(T h−a1 − 1) · · · (T h−an − 1)

(T a1 − 1) · · · (T an − 1)
(1.8)

becomes a polynomial (Poincaré polynomial), where deg(xi) = ai and deg(H) = h.
Motivated by these observation, we classify regular weights (a1, · · · , an, b1, · · · , bn;h)

satisfying certain conditions in Section 2. In particular, for n = 1 and 2, we will
show that there is a corresponding Painlevé equation for each weight such that
deg(qi) = ai, deg(pi) = bi and deg(H) = h. In Section 2.4, a Hamiltonian system,
whose Hamiltonian function satisfies certain assumptions on the quasihomogeneity,
will be considered. Then, some of the above properties of weights will be proved.

In Section 3, a brief review of Kovalevskaya exponents of quasihomogeneous vec-
tor fields, which seems to be closely related to regular weights, is given. A list of
Kovalevskaya exponents of 4-dim Painlevé equations are shown in Table 4. From
the table, it is expected that Painlevé equations defined by semi-quasihomogeneous
Hamiltonian functions can be classified by their weights and Kovalevskaya expo-
nents.
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In Section 4, Kovalevskaya exponents of quasihomogeneous systems are further
studied by means of singularity theory and dynamical systems theory. In general,
the level surface of quasihomogeneous Hamiltonian functions has a singularity at the
origin. The weighted blow-up of the singularity at the origin induces a vector field
on the exceptional divisor. Then, Laurent series solutions, Kovalevskaya exponents
and the level surface are investigated via the vector field. In particular, it is shown
that there is a one-to-one correspondence between Laurent series solutions and fixed
points of the vector field, and the eigenvalues of the Jacobi matrix of the vector field
at the fixed point precisely coincide with Kovalevskaya exponents. With the aid of
these results, it is shown for several 4-dim Painlevé equations that the level surface
of Hamiltonian functions can be decomposed into a disjoint sum of stable manifolds
of the fixed points.

deg(q, p, z) deg(H) κ

PI (2, 3, 4) 6 6
PII (1, 2, 2) 4 4
PIV (1, 1, 1) 3 3

PIII(D8) (−1, 2, 4) 2 2
PIII(D7) (−1, 2, 3) 2 2
PIII(D6) (0, 1, 2) 2 2
PV (1, 0, 1) 2 2
PVI (1, 0, 0) 2 2

Table 1: deg(H) denotes the weighted degree of the Hamiltonian function with
respect to the weight deg(q, p, z). κ denotes the Kovalevskaya exponent defined in
Section 3.

deg(qj, pj) deg(zi) deg(Hi)

(PI)n (2j, 2n+ 3− 2j) 2n− 2i+ 4 2n+ 2i+ 2
(PII-1)n (2j − 1, 2n+ 2− 2j) 2n− 2i+ 2 2n+ 2i
(PII-2)n (j, n+ 2− j) n− i+ 2 n+ i+ 2
(PIV)n (j, n+ 1− j) n− i+ 1 n+ i+ 1

Table 2: Weights for four classes of the Painlevé hierarchies.

2 Classification of regular weights

Let a1, · · · , an, b1, · · · , bn and h be positive integers such that 1 ≤ ai, bi < h. Moti-
vated by the observation in Section 1, we suppose the following.

(W1) min
1≤i≤n

{ai, bi} = 1 or 2.
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{deg(qj), deg(pj)} deg(zi) deg(Hi)

(PI)2 (2, 3, 4, 5) 6, 4 8, 10
(PI)3 (2, 3, 4, 5, 6, 7) 8, 6, 4 10, 12, 14

(PII-1)2 (1, 2, 3, 4) 4, 2 6, 8
(PII-1)3 (1, 2, 3, 4, 5, 6) 6, 4, 2 8, 10, 12

(PII-2)2 (1, 2, 2, 3) 3, 2 5, 6
(PII-2)3 (1, 2, 2, 3, 3, 4) 4, 3, 2 6, 7, 8

(PIV)2 (1, 1, 2, 2) 2, 1 4, 5
(PIV)3 (1, 1, 2, 2, 3, 3) 3, 2, 1 5, 6, 7

Table 3: Weights for four classes of the Painlevé hierarchies when n = 2, 3, where
deg(qj), deg(pj)’s are shown in ascending order.

(W2) ai + bi = h− 1 for i = 1, · · · , n.
(W3) A function

χ(T ) =
(T h−a1 − 1)(T h−b1 − 1) · · · (T h−an − 1)(T h−bn − 1)

(T a1 − 1)(T b1 − 1) · · · (T an − 1)(T bn − 1)
(2.1)

is polynomial.
In Saito[29], a tuple of integers (a1, · · · , an, b1, · · · , bn;h) satisfying (W3) is called

a regular weight. In this paper, a tuple is called a regular weight if it satisfies (W1) to
(W3). In this section, we will classify all regular weights for n = 1, 2, 3. In particular,
for n = 1 and n = 2, we will show that there are Hamiltonians of Painlevé equations
associated with regular weights such that deg(qi) = ai, deg(pi) = bi and deg(H) = h.

2.1 n = 1

Proposition 2.1. When n = 1, regular weights satisfying (W1) to (W3) are only

(a, b;h) = (2, 3; 6), (1, 2; 4), (1, 1; 3).

They coincide with the weights (deg(q), deg(p); deg(H)) of HI, HII and HIV for 2-dim
Painlevé equations, respectively, given in Sec.1.

Hence, there is a one to one correspondence between regular weights and the
2-dim Painlevé equations written in polynomial Hamiltonians. Note that deg(z)
is recovered by the rule deg(z) = deg(H) − 2 (see also Prop.2.5). Now we show
that HI, HII and HIV can be reconstructed from the regular weights with the aid of
singularity theory.

Step 1. Consider generic polynomialsH(q, p) whose weighted degrees are deg(q, p;H) =
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(2, 3; 6), (1, 2; 4) and (1, 1; 3). They are given by

H = c1p
2 + c2q

3,

H = c1p
2 + c2q

2p+ c3q
4,

H = c1q
3 + c2pq

2 + c3p
2q + c4p

3,

respectively, with arbitrary constants c1, · · · , c4.
Step 2. Simplify by symplectic transformations. One of the results are

H =
1

2
p2 − 2q3,

H =
1

2
p2 − 1

2
q4,

H = −pq2 + p2q,

respectively.
Step 3. Consider the versal deformations of them[3]. We obtain

H =
1

2
p2 − 2q3 + α4q + α6,

H =
1

2
p2 − 1

2
q4 + α2q

2 + α3q + α4,

H = −pq2 + p2q + α1pq + α2p+ β2q + α3,

respectively, where αi, βi ∈ C are deformation parameters. The subscripts i of αi, βi

denote the weighted degrees of αi, βi so that H becomes a quasihomogeneous.
Step 4. Now we use the ansatz deg(z) = deg(H)− 2 observed in Sec.1. If there is
a parameter αi such that i = deg(H)− 2, then replace it by z. The results are

H =
1

2
p2 − 2q3 + zq + α6,

H =
1

2
p2 − 1

2
q4 + zq2 + α3q + α4,

H = −pq2 + p2q + zpq + α2p+ β2q + α3,

respectively. They are equivalent to HI, HII and HIV up to the scaling of z (constant
terms in Hamiltonians such as α6 do not play a role).

Hence, when n = 1, there is a one to one correspondence between the regular
weights and 2-dim polynomial Painlevé equations, and we can recover one of them
from the other.
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2.2 n = 2

Proposition 2.2. When n = 2, regular weights satisfying (W1) to (W3) are only

(a1, a2, b2, b1;h) = (2, 3, 4, 5; 8),

(1, 2, 3, 4; 6),

(2, 2, 3, 3; 6),

(1, 2, 2, 3; 5),

(1, 1, 2, 2; 4),

(1, 1, 1, 1; 3),

where we assume without loss of generality that a1 ≤ a2 ≤ b2 ≤ b1. For each weight,
there exists a polynomial Hamiltonian of a 4-dim Painlevé equation (not unique).
Explicit forms of Hamiltonian functions are given as follows.

(2,3,4,5;8). The first Hamiltonian H
9/2
1 of (PI)2 shown in Eq.(1.4) has this weight

with deg(q1, q2, p1, p2) = (2, 4, 5, 3). Another example is

HCosgrove = −4p1p2 − 2p22q1 −
73

128
q41 +

11

8
q21q2 −

1

2
q22 − q1z−

1

48

(
q1 +

α

6

)
q21α. (2.2)

This Hamiltonian system is derived by a Lie-algebraic method of type B2 and can
be written in Lax form [8], thus it enjoys the Painlevé property. It seems that it
does not appear in the list of 4-dim Painlevé equations in [20, 21, 26]. If we rewrite
the system as the fourth order single equation of q1 = y, we obtain

y′′′′ = 18yy′′ + 9(y′)2 − 24y3 + 16z + αy(y +
1

9
α). (2.3)

This equation was first given in Cosgrove [11], denoted by F-VI. He conjectured that
this equation defines a new Painlevé transcendents (i.e. it is not reduced to known
equations).

(1,2,3,4;6). The first Hamiltonian H
7/2+1
1 of (PII-1)2 shown in Eq.(1.5) has this

weight deg(q1, q2, p1, p2) = (1, 3, 4, 2). Another example is the matrix Painlevé equa-
tion of the first type HMat

I [20, 21] defined by

HMat
I =

1

2
p21 − 2q31 − 2p22q2 + 6q1q2 − 2q1z + 2αp2, (2.4)

with deg(q1, q2, p1, p2) = (2, 4, 3, 1).

(2,2,3,3;6). For H
7/2+1
1 and H

7/2+1
2 of (PII-1)2 shown in Eq.(1.5), perform the

symplectic transformation

q1 = − y1
2x1

, p1 = −x2
1, q2 =

y2
2
, p2 = 2x2. (2.5)
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Then we obtain the Hamiltonians
H

(2,3,2,3)
1 = −4x2

1x2 − 8x3
2 +

y21
4

+
y22
4

− 2z1x2 − z2x
2
1 −

αy1
x1

,

H
(2,3,2,3)
2 = −x4

1 − 4x2
1x

2
2 −

x2y
2
1

2
+

x1y1y2
2

−z1x
2
1 − z22x

2
1 − 2z2x

2
1x2 +

z2y
2
1

4
− αz2y1

x1

+
2αx2y1
x1

− αy2.

(2.6)

Thus, putting α = 0 yields semi-quasihomogeneous Hamiltonians of

deg(H
(2,3,2,3)
1 , H

(2,3,2,3)
2 ) = (6, 8) with respect to deg(x1, y1, x2, y2) = (2, 3, 2, 3) and

deg(z1, z2) = (4, 2). Although this is equivalent to (PII-1)2 for α = 0, they should
be distinguished from each other from a viewpoint of a geometric classification of
Painlevé equations (i.e. a classification based on the spaces of initial conditions) be-
cause the above symplectic transformation is not a one-to-one mapping. The direct
product of two (PI) also has this weight, see Example 4.14.

(1,2,2,3;5). The first Hamiltonian H5
1 of (PII-2)2 shown in Eq.(1.6) has this weight

with deg(q1, q2, p1, p2) = (1, 2, 3, 2).

(1,1,2,2;4). The first Hamiltonian H4+1
1 of (PIV)2 shown in Eq.(1.7) has this weight

with deg(q1, q2, p1, p2) = (1, 1, 2, 2). Another example is the matrix Painlevé equa-
tion of the second type HMat

II [20, 21] defined by

HMat
II =

1

2
p21 − p1q

2
1 + p1q2 − 2p22q2 − 4p2q1q2 − p1z + 2αp2 + 2β(p2 + q1), (2.7)

with deg(q1, q2, p1, p2) = (1, 2, 2, 1). The direct product of two (PII) also has this
weight.

(1,1,1,1;3). The Noumi-Yamada system of type A4 [21, 27] defined by

HA4
NY = 2p1p2q1 + p1q1(p1 − q1 − z) + p2q2(p2 − q2 − z) +αp1 + βq1 + γp2 + δq2 (2.8)

has the weight deg(q1, q2, p1, p2) = (1, 1, 1, 1), where α, β, γ, δ are arbitrary parame-
ters. The direct product of two (PIV) also has this weight.

2.3 n = 3

To determine all regular weights satisfying (W1) to (W3), the following lemma is
useful. Without loss of generality, we assume a1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b2 ≤
b1. There exist integers N and j(1), · · · , j(N) such that

a1 = · · · = aj(1) < aj(1)+1 = · · · = aj(2) < · · · < aj(N)+1 = · · · = an

≤ bn = · · · = bj(N)+1 < · · · < bj(2) = · · · = bj(1)+1 < bj(1) = · · · = b1.

We put Jl = j(l)− j(l − 1) (l = 1, · · · , N + 1), where j(0) = 0 and j(N + 1) = n.
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Lemma 2.3.
(i) When N = 0 (i.e. a1 = an), then

(a1, · · · , an, bn, · · · , b1;h) = (1, · · · , 1, 1, · · · , 1; 3)
= (1, · · · , 1, 2, · · · , 2; 4)
= (2, · · · , 2, 3, · · · , 3; 6).

(ii) When N ≥ 1, the equality bj(i) = bj(i+1)+1 holds for i = 1, · · · , N and Ji+1 ≥ Ji
holds for i = 1, · · · , N − 1. If an 6= bn, further bn = an + 1 and JN+1 ≥ JN hold.
(iii) If ai < ai+1 for any i = 1, · · · , n− 1, then

(a1, · · · , an, bn, · · · , b1;h) = (1, · · · , n, n, · · · , 2n− 1; 2n+ 1)

= (1, · · · , n, n+ 1, · · · , 2n; 2n+ 2)

= (2, · · · , n+ 1, n+ 2, · · · , 2n+ 1; 2n+ 4).

Proof. Because of (W2), Eq.(2.1) is rewritten as

χ(T ) =
(T a1+1 − 1) · · · (T an+1 − 1)(T bn+1 − 1) · · · (T b1+1 − 1)

(T a1 − 1) · · · (T an − 1)(T bn − 1) · · · (T b1 − 1)
. (2.9)

(i) In this case, a1 = an ≤ bn = b1 due to (W2), which implies

χ(T ) =
(T a1+1 − 1)n(T b1+1 − 1)n

(T a1 − 1)n(T b1 − 1)n
.

Since it is polynomial, either b1 + 1 or a1 + 1 is a multiple of b1. If b1m = b1 + 1,
then (m, b1) = (2, 1) and we obtain (a1, · · · , an, bn, · · · , b1) = (1, · · · 1, 1, · · · , 1). If
a1 = b1, the same result is obtained. Now suppose that b1m = a1 + 1 < b1 + 1. It is
easy to verify that m = 1 and b1 = a1 + 1. Then,

χ(T ) =
(T a1+2 − 1)n

(T a1 − 1)n
.

Since a1 + 2 is a multiple of a1, we have a1m = a1 + 2. This provides a1 = 1 or 2
(we need not use (W1)).

(ii) In what follows, we suppose that b1 > 1. In this case, bj > 1 for any
j = 1, · · · , n due to the assumption 1 ≤ a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1 and (W2).

Step 1. Since χ(T ) is polynomial, there is a multiple of bj(1) among exponents
bj(l) + 1 in the numerator. If bj(1)m = bj(1) + 1, then (m, bj(1)) = (2, 1) and it
contradicts the assumption bj(1) = b1 > 1.

If bj(1)m = bj(l) + 1 < bj(1) + 1 for some l > 1, it is easy to verify m = 1, l = 2
and bj(1) = bj(2)+1. There are J1 factors T

bj(1) −1 in the denominator. This implies
that 2J2 ≥ J1 when N = 1 and an = bn, and J2 ≥ J1 otherwise.
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Step 2. Now we assume that for some r ≤ N , bj(i) = bj(i+1) + 1 holds for i =
1, · · · , r − 1. There exists a multiple of bj(r) among bj(l) + 1. If l ≤ r, we have

bj(r)m = bj(l) + 1 = bj(l+1) + 2 = · · · = bj(r) + r − l + 1,

which yields

1 < bj(r) ≤ r − l + 1 ≤ r.

This proves bj(r) = bn = an = r (otherwise, a1 becomes nonpositive). Hence,
r = N + 1, which contradicts the assumption r ≤ N .

If bj(r)m = bj(l) + 1 for some l > r, then m = 1, l = r + 1 and bj(r) = bj(r+1) + 1.
There are Jr factors T bj(r) − 1 in the denominator. This implies that 2Jr+1 ≥ Jr
when r = N and an = bn, and Jr+1 ≥ Jr otherwise.

Step 3. By induction, we obtain bj(i) = bj(i+1) + 1 for i = 1, · · · , N , and Ji+1 ≥ Ji
for i = 1, · · · , N − 1. In particular, if an 6= bn, JN+1 ≥ JN also holds.

Step 4. There exists a multiple of bj(N+1) = bn among exponents of the numerator.
Suppose bj(N+1)m = bj(l) + 1 for some l = 1, · · · , N + 1. The same argument as
Step 2 shows that an = bn. Suppose bj(N+1)m = aj(l) + 1 < bj(N+1) + 1 for some
l = 1, · · · , N + 1. Then, we obtain m = 1, l = N + 1 and bj(N+1) = bn = an + 1.
This completes the proof of (ii).

(iii) This is verified by a direct calculation with the aid of (ii). □
Proposition 2.4. When n = 3, regular weights satisfying (W1) to (W3) are only

(a1, a2, a3, b3, b2, b1;h) = (2, 3, 4, 5, 6, 7; 10),

(2, 3, 3, 4, 4, 5; 8),

(1, 2, 3, 4, 5, 6; 8),

(1, 2, 3, 3, 4, 5; 7),

(2, 2, 2, 3, 3, 3; 6),

(1, 2, 2, 3, 3, 4; 6),

(1, 1, 2, 2, 3, 3; 5),

(1, 1, 1, 2, 2, 2; 4),

(1, 1, 1, 1, 1, 1; 3),

where we assume without loss of generality that a1 ≤ a2 ≤ a3 ≤ b3 ≤ b2 ≤ b1.
This proposition is easily obtained with the aid of Lemma 2.3. To find corre-

sponding Painlevé equations is a future work. The weights of 6-dim Painlevé equa-
tions (PI)3, (PII-1)3, (PII-2)3 and (PIV)3 shown in Table 3 are included in Prop.2.4.
The author does not know a Painlevé equation whose Hamiltonian function is semi-
quasihomogeneous but its degree does not satisfy (W1) to (W3).
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2.4 Properties of weights for semi-quasihomogeneous Hamil-
tonian systems

We gave the definition of a regular weight which is independent of differential equa-
tions so far. Now let us consider the 2n-dimensional Hamiltonian system

dqi
dz

=
∂H

∂pi
,

dpi
dz

= −∂H

∂qi
, i = 1, · · · , n, (2.10)

with the Hamiltonian function H(q1, · · · , qn, p1, · · · , pn, z) with a single time variable
z for simplicity. We suppose the following.

(A1) H is semi-quasihomogeneous; it is decomposed into two polynomials as H =
HP +HN . For the principal part HP , there exist integers 1 ≤ ai, bi, r < h such that

HP (λaq, λbp, λrz) = λhHP (q, p, z), (2.11)

for any λ ∈ C, where λaq = (λa1q1, · · · , λanqn) and λbp = (λb1p1, · · · , λbnpn).
(A2) The Hamiltonian vector field of HP satisfies

∂HP

∂pi
(λaq, λbp, λrz) = λ1+ai

∂HP

∂pi
(q, p, z),

∂HP

∂qi
(λaq, λbp, λrz) = λ1+bi

∂HP

∂qi
(q, p, z).

(A3) The non-principal part satisfies HN(λaq, λbp, λrz) ∼ o(λh) as |λ| → ∞.
(A4) The Hamiltonian vector field of H = HP +HN is invariant under the Zs action

(qj, pj, z) 7→ (ωajqj, ω
bjpj, ω

rz), (2.12)

where s = h− 1 and ω := e2πi/s.

(A5) The symplectic form
n∑

j=1

dqj ∧ dpj + dz ∧ dH is also invariant under the same

Zs-action, for which H 7→ ωhH.

From these assumptions, we will explain some of the properties of weights shown
in Section 1.

Remark. The assumption (A2) is used to define the Kovalevskaya exponents in
the next section. In this case, we can construct Laurent series solutions of (2.10)
systematically. Due to the assumptions (A1), (A2) and (A5), it is easy to show
that the Hamiltonian vector field of HP is invariant under the action (2.12). The
assumption (A4) requires that the vector field of HN is also invariant under the
action. Then, Eq.(2.10) induces a rational differential equation on the weighted
projective space CP 2n+1(a, b, r, s) [6, 5].

In what follows, we assume h ≥ 3 (if h ≤ 2, Eq.(2.10) is linear).

Proposition 2.5. Suppose that Eq.(2.10) satisfies (A1) to (A5) and h ≥ 3. Then,
(i) ai + bi = h− 1 for i = 1, · · · , n,
(ii) r = h− 2,
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(iii) deg(HN) = 1,
(iv) if Eq.(2.10) is non-autonomous, min

1≤i≤n
{ai, bi} = 1 or 2.

Proof. The first statement (i) immediately follows from (A1) and (A2).
(ii) Because of (A5), there exists an integer N such that r+h = N(h−1). Since

r < h, we obtain 0 < r = N(h − 1) − h < h. This yields h < N/(N − 2) if N 6= 2.
This contradicts the assumption h ≥ 3. Therefore, N = 2, which proves r = h− 2.

(iii) Let qµ1

1 · · · qµn
n pν11 · · · pνnn zη be a monomial included in HN . Due to (A3), the

exponents satisfy

0 ≤
n∑

i=1

(aiµi + biνi) + rη ≤ h− 1.

Further, (A4) implies that there exists an integer N such that

n∑
i=1

(aiµi + biνi) + rη − aj − bj + r = N(h− 1).

This and (i),(ii) give

n∑
i=1

(aiµi + biνi) + rη = N(h− 1) + 1.

Hence, we obtain 0 ≤ N(h−1)+1 ≤ h−1. This provesN = 0 and
∑n

i=1 (aiµi + biνi)+
rη = 1.

(iv) Suppose that H includes z. Since deg(H) = h and deg(z) = h − 2,
z is multiplied by a function whose weighted degree is 2. It exists only when
min
1≤i≤n

{ai, bi} = 1 or 2. □

3 Kovalevskaya exponents

Kovalevskaya exponents are the most important invariants of a quasihomogeneous
vector field related to the Painlevé test. Here, we give a brief review of properties
of them according to [5]. Let us consider the system of differential equations on Cm

dxi

dz
= fi(x1, · · · , xm, z) + gi(x1, · · · , xm, z), i = 1, · · · ,m, (3.1)

where fi and gi are polynomials in (x1, · · · , xm, z) ∈ Cm+1. We suppose that

(K1) (f1, · · · , fm) is a quasihomogeneous vector field satisfying

fi(λ
a1x1, · · · , λamxm, λ

rz) = λ1+aifi(x1, · · · , xm, z) (3.2)

for any λ ∈ C and i = 1, · · · ,m, where (a1, · · · , am, r) ∈ Zm+1
>0 .
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(K2) (g1, · · · , gm) satisfies

gi(λ
a1x1, · · · , λamxm, λ

rz) = o(λai+1), |λ| → ∞.

Put fA
i (x1, · · · , xm) := fi(x1, · · · , xm, 0) and fNA

i := fi − fA
i (i.e. fA

i and fNA
i

are autonomous and nonautonomous parts, respectively). We also consider the
truncated system

dxi

dz
= fA

i (x1, · · · , xm), i = 1, · · · ,m. (3.3)

By substituting xi(z) = ci(z−z0)
−ai into the truncated system, we find the following

definition.

Definition 3.1. A root c = (c1, · · · , cm) ∈ Cm of the equation

−aici = fA
i (c1, · · · , cm), i = 1, · · · ,m (3.4)

is called the indicial locus.

For each indicial locus, xi(z) = ci(z− z0)
−ai is an exact solution of the truncated

system for any z0 ∈ C. Due to the assumption (K1), c = 0 is always an indicial
locus, which corresponds to the fixed point at the origin. Usually, we assume c 6= 0
for an indicial locus. Considering the variational equation along the exact solution
xi(z) = ci(z − z0)

−ai suggests the following definition.

Definition 3.2. For an indicial locus c = (c1, · · · , cm) 6= 0, the matrix

K = K(c) :=
{∂fA

i

∂xj

(c1, · · · , cm) + aiδij

}m

i,j=1
(3.5)

and its eigenvalues are called the Kovalevskaya matrix and the Kovalevskaya expo-
nents, respectively, of the system (3.1) associated with c.

Proposition 3.3 (see [2, 5, 17] for the detail.) Suppose (K1) and (K2).
(i) −1 is always a Kovalevskaya exponent with the eigenvector (a1c1, · · · , amcm)T .
(ii) λ = 0 is a Kovalevskaya exponent associated with c if and only if c is not an
isolated root of the equation −aici = fA

i (c1, · · · , cm).
(iii) The Kovalevskaya exponents are invariant under weight preserving diffeomor-
phisms.

Consider a formal power series solution of Eq.(3.1) of the form

xi = ci(z − z0)
−ai + bi,1(z − z0)

−ai+1 + bi,2(z − z0)
−ai+2 + · · · (3.6)

Coefficients bi,j are determined by substituting it into Eq.(3.1). The column vector
bj = (b1,j, · · · , bm,j)

T satisfies

(K − jI)bj = (a function of ci and bi,k with k < j). (3.7)
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If a positive integer j is not an eigenvalue of K, bj is uniquely determined. If
a positive integer j is an eigenvalue of K and (3.7) has no solutions, we have to
introduce a logarithmic term log(z − z0) into the coefficient bj. In this case, the
system (3.1) has no Laurent series solution of the form (3.6) with a given indicial
locus c. If a positive integer j is an eigenvalue of K and (3.7) has a solution bj,
then bj + v is also a solution for any eigenvectors v. This implies that the power
series solution (3.6) includes a free parameter in (b1,j, · · · , bm,j). Therefore, if (3.6)
represents a k-parameter family of formal Laurent series solutions which includes
k−1 free parameters other than z0, at least k−1 Kovalevskaya exponents have to be
nonnegative integers. Hence, the classical Painlevé test [1, 17, 33] for the necessary
condition for the Painlevé property is stated as follows;

Classical Painlevé test. If the system (3.1) satisfying (K1) and (K2) has the
Painlevé property in a sense that any solutions are meromorphic, then there exists
an indicial locus c = (c1, · · · , cm) such that all Kovalevskaya exponents except for
one −1 are nonnegative integers (such an indicial locus is called principal), and the
Kovalevskaya matrix is semisimple. In this case, (3.6) represents an m-parameter
family of formal Laurent series solutions.

Due to (K1), the system dxi/dt = fi(x1, · · · , xm, z) is invariant under the Zs

action
(x1, · · · , xm, z) 7→ (ωa1x1, · · · , ωamxm, ω

rz), ω := e2πi/s, (3.8)

where s = r + 1. We assume that the full system (3.1) is also invariant under the
same action (i.e. the perturbation term gi admit the same Zs action as fi);

(K3) The system (3.1) is invariant under the above Zs action.

Proposition 3.4. Suppose (K1) to (K3). If the system (3.1) has a formal power
series solution (3.6), then it is a convergent power series on 0 < |z−z0| < ε for some
ε > 0. In particular, when gi = 0 (i = 1, · · · ,m) this is true without the assumption
(K3).

This proposition is shown in [18] for autonomous systems and extended to nonau-
tonomous systems (3.1) in [5] by using the weighted projective space CPm+1(a1, · · · , am, r, s).
The assumption (K1) and (K3) are used to confirm that the system (3.1) induces a
rational vector field on CPm+1(a1, · · · , am, r, s). The classical Painlevé test gives the
necessary condition that (3.1) has an m-parameter family of formal Laurent series
solutions. Prop.3.4 means that if a formal power series solution of the form (3.6)
exists, it is convergent. In Prop.3.5 of Chiba [5], the necessary and sufficient condi-
tion that (3.1) has a k-parameter family of convergent Laurent series solution (3.6)
is given under the assumption (K1) to (K3) with the aid of the weighted projective
space, Kovalevskaya exponents and the normal form theory of dynamical systems.

For the next theorem, we further assume that
(S) The origin is the only fixed point of the truncated system (3.3), i.e,

fA
i (x1, · · · , xm) = 0 (i = 1, · · · ,m) ⇒ (x1, · · · , xm) = (0, · · · , 0). (3.9)
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Theorem 3.5. [5] If the system (3.1) satisfies (K1), (K2) and (S), any formal
Laurent series solutions with a pole at z = z0 are of the form (3.6) such that
(c1, · · · , cm) 6= (0, · · · , 0). If we further assume (K3), they are convergent (due to
Prop.3.4).

This theorem means that there are no Laurent series solution (x1(z), · · · , xm(z))
of (3.1) such that the order of a pole of xi is larger than ai for some i (For the
proof, (S) is essentially used). Furthermore, if (c1, · · · , cm) = 0 (i.e. the orders
of a pole of x1, · · · , xm are smaller than a1, · · · , am), it should be a local analytic
solution. Therefore, the leading term of a Laurent series solution is strictly given by
ci(z− z0)

−ai with a given weight (a1, · · · , am) and an indicial locus (c1, · · · , cm) 6= 0.

In the rest of this section, we consider the semi-quasihomogeneous Hamiltonian
system (2.10). If it satisfies (A1) to (A5), then it also satisfies (K1) to (K3) and the
above results are applicable. Further, the assumption (S) implies that a singularity
of the algebraic variety defined by {H = 0} is isolated. This fact is used to study
a relationship between the Painlevé equations and singularity theory (see Eq.(1.8)).
The next lemma is well known [4, 17, 19].

Lemma 3.6. For a semi-quasihomogeneous Hamiltonian system (2.10) of deg(H) =
h satisfying (A1) and (A2), if κ is a Kovalevskaya exponent, so is µ given by κ+µ =
h− 1. In particular, h is always a Kovalevskaya exponent for any indicial loci.

Example 3.7. The first Painlevé equation in Hamiltonian form is given by

(PI)


dx

dz
= 6y2 + z

dy

dz
= x,

It satisfies the assumptions (A1) to (A5) as is mentioned with (a1, a2;h) = (3, 2; 6)
(Table 1). The indicial locus is uniquely given by (c1, c2) = (−2, 1). The associated
Laurent series solution is given by(
x
y

)
=

(
−2
0

)
T−3 +

(
0
1

)
T−2 −

(
z0/5
0

)
T −

(
1/2
z0/10

)
T 2 +

(
A6

−1/6

)
T 3 + · · · ,

where T = z − z0 and A6 is an arbitrary constant. Lemma 3.6 shows that h = 6
is a Kovalevskaya exponent. As a result, an arbitrary constant appears in the sixth
place from the beginning (i.e. in the coefficient of T−3+h = T 3).

We give a list of Kovalevskaya exponents of 4-dim Painlevé equations shown in

Section 2.2. In Table 4, H
9/2
1 , H

7/2+1
1 , H5

1 and H4+1
1 denote the first Hamiltonians

of (PI)2, (PII-1)2, (PII-2)2 and (PIV)2, respectively, given in Section 1 (this notation
is related to the spectral type of a monodromy preserving deformation [21]). For
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example, (−1, 2, 3, 6)×2 in Table 4 implies that there are two indicial loci c, for which
the associated Kovalevskaya exponents are κ = −1, 2, 3 and 6. Since Kovalevskaya
exponents are invariant under weight preserving diffeomorphisms, we can conclude
that two Hamiltonian systems having the same weights are actually different systems
if their Kovalevskaya exponents are different from each other.

For a differential equation dx/dz = f(x, z) on (x, z) ∈ Cm+1, an m-dim manifold
M(z) parameterized by z is called the space of initial conditions if any solutions
of the system give global holomorphic sections of the fiber bundle P = {(x, z) | x ∈
M(z), z ∈ C} over C [28]. In particular, the space of initial conditions exists for
a system having the Painlevé property in the sense that any solutions are mero-
morphic. Many experts believe that the Painlevé equations can be classified by the
geometry of the space of initial conditions, which was confirmed for two dimensional
Painlevé equations by Sakai [30] and Takano et al. [32, 24, 25]. In Chiba [5], an
algorithm to construct the space of initial conditions for semi-quasihomogeneous
systems is obtained by the weighted blow-up of the weighted projective space. The
weight for the weighted projective space is just the weight of the variables, and the
weight for the blow-up is given by Kovalevskaya exponents. This suggests the con-
jecture that polynomial systems having the Painlevé property can be classified by
their weights and Kovalevskaya exponents.

For 2-dim Painlevé equations, we have constructed the Painlevé equations PI, PII

and PIV from the weights (Prop.2.1). In this case, the Kovalevskaya exponent is given
by h (Lemma 3.6), which is included in the information of the weight (a, b;h). For
4-dim Painlevé equations listed in Table 4, they are classified by the weights with
Kovalevskaya exponents. Thus, the above conjecture looks true at least up to four
dimensional quasihomogeneous systems.

As a convenience for readers, we provide a few 4-dim Painlevé equations whose
Hamiltonian functions are polynomial, but the weights are not positive integers.
Thus, they do not satisfy the assumption (W3).

HMat
IV =

p21q1
2

− p1q
2
1 + p1q2 + 2p1p2q2 − 4p2q1q2 − 2p22q1q2 − p1q1z − 2p2q2z

+2p2q1θ0 − p1θ1 + 2p2q1θ1 − p1θ2 + 2q1θ2 + 2p2q1θ2, (3.10)

H(1,2,1,0) = −p21q1 − 2p1q
2
1 + 2p1q2 − 2p1p2q2 − 2p2q1q2

+(2p1q1 + 2p2q2)z + (2α2 + 2β2)q1 + 2β2p1 + 2β3p2, (3.11)

H(−1,1,4,2) = p1 − p22 − 2p1q1q2 − p2q
2
2 + 2β3q2 + 2β5q1 + p2z. (3.12)

The first one HMat
IV , whose degree is deg(q1, q2, p1, p2;h) = (1, 2, 1, 0; 3), is the ma-

trix Painlevé equation of the fourth type HMat
IV [20, 21]. H(1,2,1,0) (h = 3) and

H(−1,1,4,2) (h = 4) are obtained in [8] by a Lie algebraic method as well as HCosgrove.
Although the weights are nonpositive, they still satisfy (W2) and (A1) to (A5). See
also Table 4.
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(a1, a2, b2, b1;h) κ

H
9/2
1

Eq.(1.4)
(2, 3, 4, 5; 8) (−1, 2, 5, 8)

(−3,−1, 8, 10)
×1
×1

HCosgrove

Eq.(2.2)
(2, 3, 4, 5; 8) (−1, 3, 4, 8)

(−5,−1, 8, 12)
×1
×1

H
7/2+1
1

Eq.(1.5)
(1, 2, 3, 4; 6) (−1, 2, 3, 6)

(−3,−1, 6, 8)
×2
×2

HMat
I

Eq.(2.4)
(1, 2, 3, 4; 6) (−1, 2, 3, 6)

(−2,−1, 6, 7)
(−7,−1, 6, 12)

×2
×1
×1

H
(2,3,2,3)
1

Eq.(2.6)
(2, 2, 3, 3; 6) (−1, 1, 4, 6)

(−3,−1, 6, 8)
×1
×2

H5
1

Eq.(1.6)
(1, 2, 2, 3; 5) (−1, 1, 3, 5)

(−2,−1, 5, 6)
×2
×3

H4+1
1

Eq.(1.7)
(1, 1, 2, 2; 4) (−1, 1, 2, 4)

(−2,−1, 4, 5)
×3
×5

HMat
II

Eq.(2.7)
(1, 1, 2, 2; 4) (−1, 1, 2, 4)

(−2,−1, 4, 5)
(−5,−1, 4, 8)
(−1,−1, 4, 4)

×3
×2
×2
×1

HA4
NY

Eq.(2.8)
(1, 1, 1, 1; 3) (−1, 1, 1, 3)

(−1,−1, 3, 3)
(−3,−1, 3, 5)

×5
×5
×5

HMat
IV

Eq.(3.10)
(0, 1, 1, 2; 3) (−1, 1, 1, 3)

(−1,−1, 3, 3)
(−2,−1, 3, 4)
(−4,−1, 3, 6)

×2
×3
×2
×3

H(1,2,1,0)

Eq.(3.11)
(0, 1, 1, 2; 3) (−1, 1, 1, 3)

(−2,−1, 3, 4)
×2
×4

H(−1,1,4,2)

Eq.(3.12)
(−1, 1, 2, 4; 4) (−1, 1, 2, 4)

(−3,−1, 4, 6)
×2
×2

Table 4: Weights and Kovalevskaya exponents κ of 4-dim Painlevé equations. The
weights for dependent variables q1, q2, p1, p2 are shown in ascending order. For ex-
ample, (−1, 2, 3, 6) × 2 means that there are two indicial loci whose Kovalevskaya
exponents are given by κ = −1, 2, 3, 6.
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4 Blow-up of quasihomogeneous systems

Let us investigate the role of Kovalevskaya exponents for quasihomogeneous systems
from a view point of dynamical systems theory. Since the Kovalevskaya exponents
are defined by the autonomous part of a quasihomogeneous system, we consider the
following autonomous system

dxi

dz
= fi(x1, · · · , xm), i = 1, · · · ,m (4.1)

satisfying the assumptions (K1) and (S) for the weight (a1, · · · , am) ∈ Zm
>0. For an

indicial locus c = (c1, · · · , cm) 6= 0 ∈ Cm given as a root of −aici = fi(c1, · · · , cm),
xi(z) = ciz

−ai is an exact solution.
We introduce the weighted blow-up π : B → Cm of the system (4.1) at the origin

by the coordinates transformations
x1

x2
...
xm

 =


ra11
ra21 X

(1)
2

...

ram1 X
(1)
m

 =


ra12 X

(2)
1

ra22
...

ram2 X
(2)
m

 = · · · =


ra1mX

(m)
1

ra2mX
(m)
2

...
ramm

 , (4.2)

and the blow-up space B by

B = B1 ∪ B2 ∪ · · · ∪ Bm, Bj ' Cm/Zaj .

Here, the space Cm/Zaj is defined as follows: Let (r1, X
(1)
2 , · · · , X(1)

m ) be the coordi-
nates of Cm. Then, B1 is defined as a quotient space by the Za1 action

(r1, X
(1)
2 , · · · , X(1)

m ) 7→ (e2πi/a1r1, e
−2πia2/a1X

(1)
2 , · · · , e−2πiam/a1X(1)

m ), (4.3)

and similar for B2, · · · , Bm. Let π : B → Cm be the surjection defined through
(4.2). The exceptional divisor

D := π−1({0}) = {r1 = 0} ∪ {r2 = 0} ∪ · · · ∪ {rm = 0} ⊂ B (4.4)

is isomorphic to them−1 dimensional weighted projective space CPm−1(a1, · · · , am),
and π|B\D : B\D → Cm\{0} is a diffeomorphism. Since (c1, · · · , cm) 6= (0, · · · , 0),
we assume c1 6= 0 and denote the first local coordinates (r1, X

(1)
2 , · · · , X(1)

m ) on the
chart B1 as (r,X2, · · · , Xm) for simplicity. In this coordinates, Eq.(4.1) is written
as 

dr

dz
=

1

a1
r2f1(1, X2, · · · , Xm)

dXi

dz
= rfi(1, X2, · · · , Xm)−

ai
a1

rXif1(1, X2, · · · , Xm), i = 2, · · · ,m.
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A new independent variable t satisfying the relation d/dz = r · d/dt is introduced,
that results in

dr

dt
=

1

a1
rf1(1, X2, · · · , Xm)

dXi

dt
= fi(1, X2, · · · , Xm)−

ai
a1

Xif1(1, X2, · · · , Xm), i = 2, · · · ,m.
(4.5)

We regard it as a vector field on B1. The set {(0, X2, · · · , Xm)} ⊂ D is an invariant
manifold.

Lemma 4.1. (i) For an indicial locus (c1, · · · , cm) of (4.1) with c1 6= 0,

(r,X2, · · · , Xm) = (0, c
−a2/a1
1 c2, · · · , c−am/a1

1 cm) (4.6)

is a fixed point of the vector field (4.5). Conversely, for any fixed point (0, X2, · · · , Xm)
of (4.5) on the divisor, there exists an indicial locus (c1, · · · , cm) satisfying (4.6).
(ii) For an indicial locus c, the exact solution xi(z) = ciz

−ai , (i = 1, · · · ,m) on the
blow-up space converges to the fixed point (4.6) as z → ∞.

Proof. (i) A fixed point satisfying r = 0 is given by a root of the equation

a1fi(1, X2, · · · , Xm)− aiXif1(1, X2, · · · , Xm) = 0, (i = 2, · · · ,m). (4.7)

If there is a root (X2, · · · , Xm) satisfying f1(1, X2, · · · , Xm) = 0, then fi(1, X2, · · · , Xm) =
0 for i = 2, · · · ,m. This contradicts the assumption (S). Thus, there is a number
λ 6= 0 such that (4.7) is equivalent to{

fi(1, X2, · · · , Xm) = −aiXiλ
−1

f1(1, X2, · · · , Xm) = −a1λ
−1.

(4.8)

By using the assumption (K1), we rewrite the above equation as

λai+1fi(1, X2, · · · , Xm)

= fi(λ
a1 , λa2X2, · · · , λamXn)

= −λai+1aiXiλ
−1 = −aiλ

aiXi,

for i = 2, · · · ,m, and

λa1+1f1(1, X2, · · · , Xm)

= f1(λ
a1 , λa2X2, · · · , λamXn)

= −λa1+1a1λ
−1 = −a1λ

a1 .

By putting λa1 = c1 and λaiXi = ci, it turns out that (4.8) is equivalent to the
equation −aici = fi(c1, · · · , cm) to determine an indicial locus. A proof of (ii) is
straightforward. □
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Note that the choice of a branch of c
−aj/a1
1 does not matter because of the Za1

action (4.3). When c1 = 0, there are no fixed points in the chart B1 but exists in Bj

when cj 6= 0. In this manner, there is a one-to-one correspondence between indicial
loci c and fixed points of the vector field induced on the divisor, denoted by P(c). If
we do not assume (S), there is a fixed point of (4.5) on the divisor, which results not
from an indicial locus but from a fixed point of (4.1) other than the origin. The next
proposition associates the Kovalevskaya exponents with the local dynamics around
a fixed point of the vector field.

Proposition 4.2. Let κ1 = −1, κ2, · · · , κm be Kovalevskaya exponents of the sys-
tem (4.1) associated with an indicial locus c = (c1, · · · , cm). The eigenvalues of the
Jacobi matrix of the vector field (4.5) at the fixed point P(c) are given by

λ1 = −c
−1/a1
1 , λ2 = c

−1/a1
1 κ2, · · · , λm = c

−1/a1
1 κm. (4.9)

Hence, the ratio of eigenvalues is the same as that of the Kovalevskaya exponents.

Proof. Let K be the Kovalevskaya matrix for an indicial locus c. Set v1 = a1c1
and v2 = (a2c2, · · · , amcm). Then, (v1, v2)

T is an eigenvector of K associated with
κ1 = −1 (Prop.3.3). Define

P =

(
v1 0
vT2 id

)
, P−1 =

(
v−1
1 0

−v−1
1 vT2 id

)
, K =

(
K1 K2

K3 K4

)
.

We obtain

P−1KP =

(
−1 v−1

1 K2

0 K4 − v−1
1 vT2 K2

)
=:

(
−1 v−1

1 K2

0 K̃

)
,

where an (m− 1)× (m− 1) matrix K̃ = (K̃ij)
m
i,j=2 is given by

K̃ij =
∂fi
∂xj

(c)− aici
a1c1

∂f1
∂xj

(c) + aiδij. (4.10)

By the definition, eigenvalues of K̃ are κ2, · · · , κm.
On the other hand, the Jacobi matrix of (4.5) at the fixed point P(c) is given by

J =

(
λ1 0

0 J̃

)
,

where

λ1 =
1

a1
f1(1, c

−a2/a1
1 c2, · · · , c−am/a1

1 cm) =
1

a1
c
−(a1+1)/a1
1 f1(c1, · · · , cm) = −c

−1/a1
1 ,
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and

J̃ij =
∂fi
∂xj

(1, c
−a2/a1
1 c2, · · · , c−am/a1

1 cm)−
ai
a1

Xi
∂f1
∂xj

(1, c
−a2/a1
1 c2, · · · , c−am/a1

1 cm)

− ai
a1

f1(1, c
−a2/a1
1 c2, · · · , c−am/a1

1 cm)δij

= c
−(ai+1−aj)/a1
1

∂fi
∂xj

(c)− ai
a1

c
−ai/a1
1 cic

−(a1+1−aj)/a1
1

∂f1
∂xj

(c)− ai
a1

c
−(a1+1)/a1
1 f1(c)δij

= c
−1/a1
1 c

−(ai−aj)/a1
1

(
∂fi
∂xj

(c)− aici
a1c1

∂f1
∂xj

(c) + aiδij

)
.

This shows

c
1/a1
1 J̃ij = c

−(ai−aj)/a1
1 K̃ij.

Let κ be an eigenvalue of K̃ with the eigenvector u = (u2, · · · , um)
T satisfying∑

K̃ijuj = κui. Putting uj = c
aj/a1
1 ũj yields∑
c
−(ai−aj)/a1
1 K̃ijũj = κũi.

This proves that κ is an eigenvalue of the matrix c
1/a1
1 J̃ . □

We turn to the quasihomogeneous Hamiltonian system of degree m

dqi
dz

=
∂H

∂pi
,

dpi
dz

= −∂H

∂qi
, i = 1, · · · ,m. (4.11)

We assume stronger conditions than (A1) and (A2) as follows.

(H0) There exist polynomials H = H1, H2, · · · , Hk (1 ≤ k ≤ m) that commute
with respect to the canonical Poisson structure; {Hi, Hj} = 0 for i, j = 1, · · · , k.
(H1) Hi is quasihomogeneous; there exist positive integers aj, bj and hi such that

Hi(λ
aq, λbp) = λhiHi(q, p), i = 1, · · · , k, (4.12)

for any λ ∈ C, where λaq = (λa1q1, · · · , λamqm) and λbp = (λb1p1, · · · , λbmpm).
(H2) h1 = aj + bj + 1 for j = 1, · · · ,m and h1 ≤ hi for i = 1, · · · , k.
(S) The origin is the only fixed point;

∂H1

∂pi
=

∂H1

∂qi
= 0 (i = 1, · · · ,m) ⇒ (q1, · · · , qm, p1, · · · , pm) = 0.

Note that (H1) and (H2) for k = 1 is equivalent to (A1) and (A2), see Prop.2.5
(i). Let c = (c1, · · · , c2m) be an indicial locus determined by H1 as

∂H1

∂pi
(c) = −aici,

∂H1

∂qi
(c) = bicm+i, i = 1, · · · ,m. (4.13)
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The Kovalevskaya matrix at c is

K(c) =


∂2H1

∂p∂q
(c)

∂2H1

∂p∂p
(c)

−∂2H1

∂q∂q
(c) −∂2H1

∂q∂p
(c)

+

 diag(a1, · · · , am) 0

0 diag(b1, · · · , bm)

 ,

where ∂2/∂p∂q = (∂2/∂pi∂qj)i,j.

Lemma 4.3.

m∑
j=1

(
ajqj

∂Hi

∂qj
+ bjpj

∂Hi

∂pj

)
= hiHi(q, p). (4.14)

Proof. This is obtained by the derivative of (4.12) at λ = 1.

Lemma 4.4. For any i = 1, · · · , k and indicial loci c, we have Hi(c) = 0 .

Proof. Use the relations (4.13), (4.14) and {H1, Hj} = 0 at (q, p) = c.

In what follows, the gradient of a function H is denoted by a row vector

dH :=

(
∂H

∂q1
, · · · , ∂H

∂qm
,
∂H

∂p1
, · · · , ∂H

∂pm

)
. (4.15)

The assumption (S) implies that dH1(q, p) = 0 if and only if (q, p) = 0; i.e. the
origin is a unique singularity of the variety {H1 = 0}. The following result was first
obtained by Yoshida [34]. Here, we give a simple proof.

Theorem 4.5. For an indicial locus c, the following equality

dHj(c)(K(c)− hj · Id2m×2m) = 0, j = 1, · · · , k (4.16)

holds. In particular, if dHj(c) 6= 0, then hj is a Kovalevskaya exponent.

Proof. {H1, Hj} = 0 gives

0 =
∂

∂ql
{H1, Hj}

=
m∑
i=1

(
∂2H1

∂qi∂ql

∂Hj

∂pi
+

∂H1

∂qi

∂2Hj

∂pi∂ql
− ∂2Hj

∂qi∂ql

∂H1

∂pi
− ∂Hj

∂qi

∂2H1

∂pi∂ql

)
.

Substituting (q, p) = c yields

0 =
m∑
i=1

(
aici

∂2Hj

∂qi∂ql
+ bicm+i

∂2Hj

∂pi∂ql
+

∂2H1

∂qi∂ql

∂Hj

∂pi
− ∂Hj

∂qi

∂2H1

∂pi∂ql

)
.
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By the derivative of (4.14) with respect to ql, we obtain

m∑
i=1

(
aiqi

∂2Hj

∂qi∂ql
+ bipi

∂2Hj

∂pi∂ql

)
+ al

∂Hj

∂ql
= hj

∂Hj

∂ql
.

Thus, we obtain

0 =
m∑
i=1

(
∂2H1

∂qi∂ql

∂Hj

∂pi
− ∂2H1

∂pi∂ql

∂Hj

∂qi

)
+ (hj − al)

∂Hj

∂ql
(4.17)

for l = 1, · · · ,m. The derivative of (4.14) with respect to pl gives similar m relations.
The resultant 2m relations are equivalent to (4.16). □

Example 4.6. We consider the Hamiltonians of degree 2{
H1 = 2p2p1 + 3p22q1 + q41 − q21q2 − q22,
H2 = p21 + 2p2p1q1 − q51 + p22q2 + 3q31q2 − 2q1q

2
2.

(4.18)

They are autonomous parts of (PI)2 given in (1.4). They satisfy (H0), (H1), (H2) and
(S) for the weight (a1, a2, b1, b2) = (2, 4, 5, 3) and h1 = 8, h2 = 10 shown in Table 2.
There are two indicial loci c1 = (1, 1, 1,−1) and c2 = (3, 0, 27,−3). For the former c1,
the Kovalevskaya exponents are κ = −1, 2, 5, 8. Thus, the corresponding Laurent
series solution (3.6) represents a general solution including four free parameters
(Painlevé test). Since κ 6= −10, Thm.4.5 implies that dH2(c1) = 0. For the indicial
locus c2, we can verify that dH1(c2) 6= 0, dH2(c2) 6= 0. Therefore, Thm.4.5 and
Lemma 3.6 show that the Kovalevskaya exponents are given by κ = −3,−1, 8, 10

(see H
9/2
1 of Table 4).

Let V be a variety defined by the level set

V = {(q, p) ∈ C2m |Hj(q, p) = 0, j = 1, · · · , k} 3 0. (4.19)

Lemma 4.4 shows c ∈ V for an indicial locus c. Because of (H1), the orbit

{(λa1c1, · · · , λamcm, λ
b1cm+1, · · · , λbmc2m) |λ ∈ C}

is also included in V . Let us consider the weighted blow-up π : B → C2m at the
origin

B = B1 ∪ · · · ∪ B2m, Bi = C2m/Zai , Bm+i = C2m/Zbi (4.20)

for i = 1, · · · ,m. The exceptional divisor D is a 2m − 1 dimensional weighted
projective space

D = π−1({0}) = CP 2m−1(a1, · · · , am, b1, · · · , bm). (4.21)

For an indicial locus c, we assume c1 6= 0 as before. The local coordinates
(r,Q2, · · · , Qm, P1, · · · , Pm) on B1 is defined by

q1 = ra1 , qi = raiQi (i = 2, · · · ,m),

pi = rbiPi (i = 1, · · · ,m).
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In particular, D ∩ B1 is given by the set {r = 0}. The set π−1(V ) ⊂ B is a disjoint

union of D and π−1(V \{0}). Let π−1(V \{0}) be the closure with respect to the
usual topology and

V0 := D ∩ π−1(V \{0}) ⊂ D,

see Fig.1. On the chart B1, we have Hj(q, p) = rhjHj(1, Q2, · · · , Pm). Hence, define

V01 := {(0, Q2, · · · , Pm) ∈ D |Hj(1, Q2, · · · , Pm) = 0, j = 1, · · · , k} ⊂ D ∩ B1.

The sets V0i on the chart Bi are also defined in the same way for i = 2, · · · , 2m.
Then, we have

V0 = V01 ∪ V02 ∪ · · · ∪ V0,2m ⊂ D

π−1(V ) = D ∪ π−1(V \{0}) ' D ∪ (V0 × C).

V and V0 are 2m − k and 2m − k − 1 dimensional manifolds, respectively, with
singularities. As in Eq.(4.5), the system (4.11) induces the vector field X on B after
a suitable change of the independent variable. On B1, X is expressed as

dr

dt
=

1

a1
r
∂H1

∂p1
(1, Q2, · · · , Pm)

dQi

dt
=

∂H1

∂pi
(1, Q2, · · · , Pm)−

ai
a1

Qi
∂H1

∂p1
(1, Q2, · · · , Pm)

dPi

dt
= −∂H1

∂qi
(1, Q2, · · · , Pm)−

bi
a1

Pi
∂H1

∂p1
(1, Q2, · · · , Pm).

(4.22)

Proposition 4.7.
(i) D is an invariant manifold of X .
(ii) V0 ⊂ D is an invariant manifold of X .
(iii) All fixed points of X are included in V0.
(iv) For an indicial locus c = (c1, · · · , c2m), the orbit of the exact solution qi(z) =
ciz

−a1 , pi(z) = cm+iz
−bi of (4.11) is included in V . On the blow-up space B, it tends

to a fixed point P(c) on V0 as z → ∞.

Proof. It is sufficient to prove the statements on the chart B1. Since D ∩ B1 =
{r = 0}, (i) immediately follows from Eq.(4.22). By the assumption (S), all fixed
points of X lie on the divisor D. Due to Lemma 4.1(i), a fixed point P(c) on D∩B1

is of the form (0, c
−a2/a1
1 c2, · · · , c−bm/a1

1 c2m) for an indicial locus c. Then, Lemma 4.4
implies

Hj(1, c
−a2/a1
1 c2, · · · , c−bm/a1

1 c2m) = c
−hj/a1
1 Hj(c) = 0,

which proves (iii): P(c) ∈ V01 ⊂ V0. Part (iv) is shown by Lemma 4.1 (ii) and
Lemma 4.4. Finally, let us show the statement (ii). Along an integral curve of
(4.22), we have

d

dt
Hj(1, Q2, · · · , Pm) =

m∑
i=2

∂Hj

∂qi

(
∂H1

∂pi
− ai

a1
Qi

∂H1

∂p1

)
+

m∑
i=1

∂Hj

∂pi

(
−∂H1

∂qi
− bi

a1
Pi

∂H1

∂p1

)
.
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By introducing a dummy parameter Q1 = 1, it is rewritten as

d

dt
Hj(1, Q2, · · · , Pm) =

m∑
i=1

∂Hj

∂qi

(
∂H1

∂pi
− ai

a1
Qi

∂H1

∂p1

)
+

m∑
i=1

∂Hj

∂pi

(
−∂H1

∂qi
− bi

a1
Pi

∂H1

∂p1

)
=

m∑
i=1

(
∂Hj

∂qi

∂H1

∂pi
− ∂H1

∂qi

∂Hj

∂pi

)
− 1

a1

∂H1

∂p1

m∑
i=1

(
aiQi

∂Hj

∂qi
+ biPi

∂Hj

∂pi

)
.

Lemma 4.3 and {H1, Hj} = 0 show

d

dt
Hj(1, Q2, · · · , Pm) = − 1

a1

∂H1

∂p1
hjHj(1, Q2, · · · , Pm).

This is a linear equation of Hj(1, Q2, · · · , Pm) solved as

Hj(1, Q2(t), · · · , Pm(t)) = Hj(1, Q2(0), · · · , Pm(0)) · exp
[
−hj

a1

∫ t

0

∂H1

∂p1
ds

]
.

This proves that if (0, Q2, · · · , Pm) ∈ V01 at the initial time t = 0, so that
Hj(1, Q2(0), · · · , Pm(0)) = 0, then (0, Q2, · · · , Pm) ∈ V01 for any t ∈ R. □

Fix an indicial locus c = (c1, · · · , c2m) 6= 0 with c1 6= 0. Without loss of gener-
ality we assume that c1 = 1 by a suitable scaling of the independent variable. By
Lemma 4.1, the indicial locus associates the fixed point P(c) : (r,Q2, · · · , Pm) =
(0, c2, · · · , c2m) of the vector field (4.22) on the chart B1. Prop.4.2 shows that the
Jacobi matrix at the fixed point written in (r,Q2, · · · , Pm)-coordinates is of the form

J =

(
−1 0

0 J̃

)
, (4.23)

and its eigenvalues coincide with the Kovalevskaya exponents κ1 = −1, κ2, · · · , κ2m.
Thus, eigenvectors of κ2, · · · , κ2m are tangent to the divisor D = {r = 0}. Let
Es,Eu and Ec be the stable, unstable and center subspace at the point P = P(c),
which are eigenspaces of eigenvalues with negative real parts, positive real parts,
and zero real parts, respectively. Let Ws(P),Wu(P) and Wc(P) be a local stable
manifold, unstable manifold and center manifold, respectively, which are tangent to
Es,Eu and Ec at P. Because of Lemma 3.6 (κ + µ = h1 − 1 > 0), dimEu ≥ m and
1 ≤ dimEs ≤ m.

Proposition 4.8. Under the above situation, the unstable manifold Wu(P) is in-

cluded in D and the stable manifold Ws(P) is included in π−1(V \{0}) ' V0 ×C. If
there are no purely imaginary eigenvalues ( 6= 0), Wc(P) is included in V0.

Proof. Since Eu is tangent to the divisor D and D is an invariant manifold,
Wu(P) ⊂ D. Let x be a point on Ws(P) and suppose x /∈ D ∪ V . Since x ∈ Ws(P),
a solution of (4.22) with an initial value at x tends to the fixed point P as t → ∞.
Since x /∈ V , Hj(x) 6= 0 for some j. This is a contradiction because Hj = 0 at P and
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Hj is a constant along a solution. Let x′ be a point on Ws(P) such that x′ ∈ D\V0.
Then, there is a point x on Ws(P) and x /∈ D∪V because the eigenvector of κ1 = −1
is transverse to D, that is again a contradiction. If the Kovalevskaya matrix at c
has zero eigenvalues, then an indicial locus c is not isolated (Prop.3.3). Thus, the
fixed point P(c) is not isolated and there exists a neighborhood U of P(c) such that
U ∩ V0 consists of fixed points of the vector field. If there are no purely imaginary
eigenvalues, U ∩ V0 gives a local center manifold. □

Next, we consider the system (4.11) satisfying (H0), (H1), (H2) and (S) with

k = m. In this case, V and π−1(V \{0}) are m dimensional and V0 is an m − 1
dimensional variety with singularities. If the system satisfies the Painlevé property
in a sense that any solution is meromorphic, there is an indicial locus c such that
all the Kovalevskaya exponents but unique −1 are positive integers (Painlevé test).
Thus, a stable manifold at P(c) is one dimensional, which is precisely given by the
orbit of the special solution qi(z) = ciz

−ai , pi(z) = cm+iz
−bi . The next theorem

consider the opposite situation.

Theorem 4.9. Suppose that the system (4.11) satisfies (H0), (H1), (H2) and
(S) with k = m. Suppose that there exists an indicial locus c such that vectors
dH1(c), · · · , dHm(c) are linearly independent. Then, there exists a neighborhood U

of P(c) such that π−1(V \{0}) ∪ U = Ws(P(c)) ∪ U .

Proof. Theorem 4.5 shows that h1, · · · , hm > 0 are Kovalevskaya exponents. Due to
Lemma 3.6, negative integers µj := h1− 1−hj, j = 1, · · · ,m are also Kovalevskaya
exponents. Thus, a local stable manifold Ws(P(c)) of the vector field (4.22) is an m-

dimensional smooth manifold included in π−1(V \{0}). Indeed, again Theorem 4.5
implies that the (right) eigenvectors of K(c) associated with eigenvalues µ1, · · · , µm

are orthogonal to dH1(c), · · · , dHm(c). Hence, the stable subspace Es coincides with

the tangent space of π−1(V \{0}) at P(c). □

An indicial locus c satisfying the assumption of the theorem (i.e. h1, · · · , hm > 0
are Kovalevskaya exponents), for which dimEu = dimEs = m, is called the lowest
indicial locus. The existence of a lowest indicial locus is proved by [14] for a certain
class of integrable systems called the hyperelliptically separable systems, while the
existence for more general systems is not known. Let us demonstrate our results for
several 4-dim systems obtained from the autonomous parts of Painlevé equations.
See also Table 5. They have lowest indicial loci and π−1(V \{0}) is decomposed into
the disjoint union of stable manifolds at the fixed points on the divisor.

Example 4.10. We consider the autonomous part of (PI)2 given in Example 4.6.
Since the Kovalevskaya exponents of the indicial locus c1 = (1, 1, 1,−1), which
corresponds to the principal Laurent series solution, are −1, 2, 5, 8, the stable man-
ifold Ws(P1) at the fixed point P(c1) is given by the orbit of the special solution
q1 = z−2, q2 = z−4, p1 = z−5, p2 = −z−3. The Kovalevskaya exponents of the indi-
cial locus c2 = (3, 0, 27,−3), which satisfies the assumptions for Theorem 4.9, are

−3,−1, 8, 10. The 2-dim stable manifold Ws(P2) locally coincides with π−1(V \{0}).
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Fig. 1: A schematic view of π−1(V ), V0 and the dynamics on it for Example 4.10.
The singularity P1 of V0 is of type A4.

In this case, π−1(V \{0}) is decomposed into the disjoint union of Ws(P1) and
Ws(P2), see Fig.1.

On the (r,Q2, P1, P2)-coordinates, H1 and H2 are written as

H1 = r8(1 + 2P1P2 + 3P 2
2 −Q2 −Q2

2),

H2 = r10(−1 + P 2
1 + 2P1P2 + 3Q2 + P 2

2Q2 − 2Q2
2).

Thus, V01 is defined by

V01 = {1 + 2P1P2 + 3P 2
2 −Q2 −Q2

2 = 0, −1 + P 2
1 + 2P1P2 + 3Q2 + P 2

2Q2 − 2Q2
2 = 0}.

Since dH2(c1) = 0, V0 is singular at P1 : (Q2, P1, P2) = (1, 1,−1). We can verify
that it is a A4-singularity, for example, by using blow-up of a singularity or direct
suitable coordinate transformations (a singularity whose normal form of defining
equation is y2 + x5 = 0).

Example 4.11. The autonomous, quasihomogeneous part of (PII-1)2 given in (1.5)
is defined by the Hamiltonians{

H1 = 2p1p2 − p32 − p1q
2
1 + q22,

H2 = −p21 + p1p
2
2 + p1p2q

2
1 + 2p1q1q2.

(4.24)

The weights are (a1, a2, b1, b2) = (1, 3, 4, 2) and h1 = 6, h2 = 8. Its four indicial loci
and the Kovalevskaya exponents are given by

c1 = (1, 0, 0, 0), κ = −1, 2, 3, 6

c2 = (−1, 1, 0, 1), κ = −1, 2, 3, 6

c3 = (2, 1, 0, 1), κ = −1,−3, 6, 8

c4 = (−2, 3, 9, 3), κ = −1,−3, 6, 8.
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Among them, c3 and c4 satisfy the assumptions for Theorem 4.9. Thus, the fixed
points P(c3) and P(c4) have 2-dim stable manifolds that locally coincide with π−1(V \{0}).
The fixed points P(c1) and P(c2) have 1-dim stable manifolds that are given by the
orbit of special solutions.

On the (r,Q2, P1, P2)-coordinates, H1 and H2 are written as

H1 = r6(2P1P2 − P 3
2 − P1 +Q2

2)

H2 = r8(−P 2
1 + P1P

2
2 + P1P2 + 2P1Q2).

Thus, V01 is defined by

V01 = {2P1P2 − P 3
2 − P1 +Q2

2 = 0, −P 2
1 + P1P

2
2 + P1P2 + 2P1Q2 = 0}.

Theorem 4.5 shows that dH2(c1) = dH2(c2) = 0. Hence, V0 is singular at P(c1) :
(Q2, P1, P2) = (0, 0, 0) and P(c2) : (−1, 0, 1). We can verify that both P(c1) and
P(c2) are D5-singularities (the normal form is y(x2 + y3) = 0).

Example 4.12. The autonomous, quasihomogeneous part of (PII-2)2 given in (1.6)
is defined by the Hamiltonians{

H1 = p1p2 − p1q
2
1 − 2p1q2 + p2q1q2 + q1q

2
2,

H2 = p21 − p1p2q1 + p22q2 − 2p1q1q2 − p2q
2
2 + q21q

2
2.

(4.25)

The weights are (a1, a2, b1, b2) = (1, 2, 3, 2) and h1 = 5, h2 = 6. It has five indicial
loci given by

c1 = (1, 0, 0, 0), κ = −1, 1, 3, 5

c2 = (−1,−1, 1, 0), κ = −1, 1, 3, 5

c3 = (0,−2, 4,−4), κ = −1,−2, 5, 6

c4 = (−2,−2, 0, 2), κ = −1,−2, 5, 6

c5 = (2, 0, 0, 2), κ = −1,−2, 5, 6.

Among them, c3, c4 and c5 satisfy the assumptions for Theorem 4.9. Thus, the fixed
points P(c3),P(c4) and P(c5) have 2-dim stable manifolds that locally coincide with

π−1(V \{0}). The fixed points P(c1) and P(c2) have 1-dim stable manifolds that are
given by the orbit of special solutions.

On the (r,Q2, P1, P2)-coordinates, H1 and H2 are written as

H1 = r5(P1P2 − P1 − 2P1Q2 + P2Q2 +Q2
2)

H2 = r6(P 2
1 − P1P2 + P 2

2Q2 − 2P1Q2 − P2Q
2
2 +Q2

2).

V01 is defined by

V01 = {P1P2 − P1 − 2P1Q2 + P2Q2 +Q2
2 = 0,

P 2
1 − P1P2 + P 2

2Q2 − 2P1Q2 − P2Q
2
2 +Q2

2 = 0}.
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Since dH2(c1) = dH2(c2) = 0, V0 is singular at P(c1) : (Q2, P1, P2) = (0, 0, 0) and
P(c2) : (−1,−1, 0). We can verify that both P(c1) and P(c2) are A5-singularities
(the normal form is y2 + x6 = 0).

Example 4.13. The autonomous, quasihomogeneous part of (PIV)2 given in (1.7)
is defined by the Hamiltonians{

H1 = p21 + p1p2 − p1q
2
1 + p2q1q2 − p2q

2
2,

H2 = p1p2q1 − 2p1p2q2 − p22q2 + p2q1q
2
2.

(4.26)

The weights are (a1, a2, b1, b2) = (1, 1, 2, 2) and h1 = 4, h2 = 5. It has eight indicial
loci given by

c1 = (−1,−1, 1, 0), κ = −1, 1, 2, 4

c2 = (1, 0, 0, 0), κ = −1, 1, 2, 4

c3 = (0, 1, 0, 0), κ = −1, 1, 2, 4

c4 = (0,−1, 2,−4), κ = −1,−2, 4, 5

c5 = (2, 0, 0, 2), κ = −1,−2, 4, 5

c6 = (−1, 1, 1, 0), κ = −1,−2, 4, 5

c7 = (1, 2, 0, 0), κ = −1,−2, 4, 5

c8 = (−2,−2, 2, 2), κ = −1,−2, 4, 5

Among them, c4 to c8 satisfy the assumptions for Theorem 4.9. To investigate
the fixed points P(c1) and P(c2), we move to B1 chart with the (r,Q2, P1, P2)-
coordinates, on which H1 and H2 are written as

H1 = r4(P 2
1 + P1P2 − P1 + P2Q2 − P2Q

2
2)

H2 = r5(P1P2 − 2P1P2Q2 − P 2
2Q2 + P2Q

2
2).

V01 is defined by

V01 = {P 2
1 + P1P2 − P1 + P2Q2 − P2Q

2
2 = 0,

P1P2 − 2P1P2Q2 − P 2
2Q2 + P2Q

2
2 = 0}.

Since dH2(c1) = dH2(c2) = 0, V01 is singular at P(c1) : (Q2, P1, P2) = (1, 1, 0) and
P(c2) : (0, 0, 0). We can verify that both P(c1) and P(c2) are D6-singularities (the
normal form is y(x2 + y4) = 0).

Note that P(c3) is not included in B1 chart because the first component of c3 is
zero. To study P(c3) we use to B2 chart with the coordinates (Q1, r, P1, P2) defined
as (4.2). In this coordinates, H1 and H2 are written as

H1 = r4(P 2
1 + P1P2 − P1Q

2
1 + P2Q1 − P2)

H2 = r5(P1P2Q1 − 2P1P2 − P 2
2 + P2Q1).
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V02 is defined by

V02 = {P 2
1 + P1P2 − P1Q

2
1 + P2Q1 − P2 = 0,

P1P2Q1 − 2P1P2 − P 2
2 + P2Q1 = 0}.

Since dH2(c3) = 0, V02 is singular at P(c3) : (Q1, P1, P2) = (0, 0, 0), which is also a
D6-singularity.

Example 4.14. Let us consider the following Hamiltonians{
H1 = (p21/2− 2q31) + (p22/2− 2q32),
H2 = p21/2− 2q31.

(4.27)

The Hamiltonian equation of H1 is a direct product of the autonomous part of
the first Painlevé equation. The weights are (a1, a2, b1, b2) = (2, 2, 3, 3) and h1 =
6, h2 = 6. It has three indicial loci c1, c2, c3, whose Kovalevskaya exponents are
κ = −1, 2, 3, 6 for c1, c2 and κ = −1,−1, 6, 6 for c3. Since dH2(c1) = dH2(c2) = 0,
V0 is singular at P(c1) and P(c2). We can show that both singularities are A2-
singularity.

Similarly, consider the direct product of the autonomous part of the second
Painlevé equation {

H1 = (p21/2− q41/2) + (p22/2− q42/2),
H2 = p21/2− q41/2.

(4.28)

The weights are (a1, a2, b1, b2) = (1, 1, 2, 2) and h1 = 4, h2 = 4. It has eight indicial
loci c1, · · · , c8, whose Kovalevskaya exponents are κ = −1, 1, 2, 4 for c1, c2, c3 and
κ = −1,−1, 4, 4 for the others. Since dH2(c1) = dH2(c2) = dH2(c3) = 0, V0 is
singular at P(c1) to P(c3). We can show that singularities of them are A3- singularity.

Finally, consider the direct product of the autonomous part of the fourth Painlevé
equation {

H1 = (−p1q
2
1 + p21q1) + (−p2q

2
2 + p22q2),

H2 = −p1q
2
1 + p21q1.

(4.29)

The weights are (a1, a2, b1, b2) = (1, 1, 1, 1) and h1 = 3, h2 = 3. It has fifteen indicial
loci c1, · · · , c15, whose Kovalevskaya exponents are κ = −1, 1, 1, 3 for c1 to c5 and
κ = −1,−1, 3, 3 for the others. Since dH2(c1) · · · = dH2(c5) = 0, V0 is singular at
P(c1) to P(c5). They are D4- singularities.
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