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Abstract

A spectral theory of linear operators based on a Gelfand triplet (rigged
Hilbert space) is developed under the assumptions that a linear operator T on
a Hilbert spaceH is a perturbation of a self-adjoint operator, and the spectral
measure of the self-adjoint operator has an analytic continuation near the
real axis. It is shown that for a suitable dense subspace X of H and its dual
space X′, for any ϕ ∈ X, the resolvent (λ − T )−1ϕ of the operator T has an
analytic continuation from the lower half plane to the upper half plane as an
X′-valued holomorphic function even when T has a continuous spectrum on
R. The Gelfand triplet consists of three topological vector spaces X ⊂ H ⊂
X′. Basic tools of the usual spectral theory, such as spectra, resolvents and
Riesz projections are extended to those defined on a Gelfand triplet. They
prove to have the same properties as those of the usual spectral theory. The
results are applied to estimate exponential decays of the semigroups of linear
operators and bifurcations of nonlinear dynamical systems. In particular, a
conjecture on a bifurcation of the Kuramoto model (Kuramoto conjecture)
will be solved.

1 Kuramoto model
In the last few decades, the study of large / infinite-dimensional dynamical systems
becomes more and more important. Let us consider the system of differential
equations

dxi

dt
= fi(x1, · · · , xn), i = 1, · · · ,N,

where xi = xi(t) moves on some phase space. This dynamical system assigns a
directed graph in the following way:

1E mail address : hchiba@tohoku.ac.jp
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Let V = {vi}Ni=1 be the set of vortices. If the function fi depends on x j, we
define the edge e ji from the vortex v j to vi, that means that x j affects the dynamics
of xi. It is a challenging problem to understand how the graph structure is related
to the dynamics. For simplicity, we consider the system of the form

dθi

dt
= fi(θ1, · · · , θn), i = 1, · · · ,N, (1.1)

where θi ∈ S 1 rotates on a circle. Thus, the phase space is an N-torus. A dynamical
system of the form is often called a system of coupled oscillators [21, 23]. For
example, if a given dynamical system on a phase space X has an N-torus as an
invariant manifold, we obtain a coupled oscillators by restricting the dynamics on
it.

The Kuramoto model is one of the most famous coupled oscillators given by

dθi

dt
= ωi +

K
N

N∑
j=1

sin(θ j − θi), i = 1, · · · ,N, (1.2)

which is well-known as a typical mathematical model for synchronization phe-
nomena [20, 21, 26]. Here, ωi and K are constants called natural frequencies
and the coupling strength, respectively. When the coupling strength is zero, there
are no interactions between oscillators and they rotate with their own velocity ωi.
Hence, if ω j > ωi then θ j overtakes θi many times. However, if K is positive,
there are interactions between oscillators through the term sin(θ j − θi) and we ex-
pect that if K is large enough, such an overtaking does not occur. Indeed, it is easy
to observe by numerics that there exists a threshold Kc such that when K > Kc, a
synchronized state appears; a subset of oscillators forms a cluster on a circle and it
behaves like a big oscillator without overtaking. The cluster consists of oscillators
whose natural frequency ωi is close to the averageΩ of all natural frequencies. As
K increases, the number of oscillators that are entrained into the cluster gets larger
(Fig.1).

r

Figure 1: (left) synchronization. (right) de-synchronization.
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In order to observe that whether a synchronization occurs or not, it is conve-
nient to introduce the order parameter defined by

η :=
1
N

N∑
j=1

eiθ j(t). (1.3)

This gives the center of mass of oscillators on a unit circle. Hence, when its
absolute value r := |η| is positive (resp. zero), a synchronization occurs (resp.
does not occur). Kuramoto performed a certain formal and technical calculation
using the order parameter, and reached the following result, though there are no
mathematical proofs.

The Kuramoto conjecture [21, 26].
Suppose N → ∞ and the natural frequencies are independent and identically

distributed according to a probability density function g(ω). If g(ω) is an even
and unimodal function, a bifurcation diagram of the order parameter r = |η| is
given as Fig. 2. This means that when K is smaller than Kc := 2/(πg(0)), the de-
synchronized state r = 0 is asymptotically stable. At K = Kc, a bifurcation (phase
transition) occurs and a stable synchronized state (r > 0) exists for K > Kc. Near
the bifurcation point, r is approximately given by r ∼ O(

√
K − Kc).

KK

r

c

Figure 2: A bifurcation diagram of the order parameter.

Note that by a translation of the coordinate θi 7→ θi + Ωt, we can assume
without loss of generality that the average value of g(ω) is zero. Then, “ g(ω)
is unimodal” means that when ω > 0 (resp. ω < 0), it is strictly monotonically
decreasing (resp. increasing). The bifurcation point Kc := 2/(πg(0)) is often
called Kuramoto’s transition point. See [26] for Kuramoto’s formal calculation.

As explained in later sections, the difficulty of a mathematical approach to the
Kuramoto conjecture is that a certain linear operator obtained by the linearization
of the model has a continuous spectrum. Recently, the author developed the gener-
alized spectrum theory of linear operators based on Gelfand triplets and proposed
an effective method to investigate linear operators having continuous spectra [5].

3



By applying this theory to the infinite dimensional Kuramoto model, he proved
the Kuramoto conjecture under a suitable condition [3, 4]. In what follows, h(θ)
denotes a distribution of the initial values {θ j(0)}∞j=1 of oscillators.

Theorem 1.1 Suppose that g(ω) is the Gaussian distribution. When 0 < K < Kc,
there exists δ > 0 such that if h(θ) satisfies∣∣∣∣∣∣

∫ 2π

0
ei jθh(θ)dθ

∣∣∣∣∣∣ < δ, j = 1, 2, · · · ,

then the order parameter η(t) tends to zero as t → ∞ with an exponential rate.

Theorem 1.2 Suppose that g(ω) is the Gaussian distribution. There exist num-
bers ε0, δ > 0 such that if h(θ) satisfies∣∣∣∣∣∣

∫ 2π

0
ei jθh(θ)dθ

∣∣∣∣∣∣ < δ, j = 1, 2, · · · ,

then for Kc < K < Kc + ε0, the absolute value of the order parameter converges
to the following value as t → ∞

|η(t)| =
√

−16
πK4

c g′′(0)

√
K − Kc + O(K − Kc).

In particular, a bifurcation diagram of the order parameter is given as Fig. 2.

This result holds even if g(ω) is not Gaussian. The most essential assumption
is that g(ω) is analytic on R and it has an analytic continuation around the real
axis. On the other hand, the Kuramoto conjecture was proved when g(ω) is a Cn

function in [13] by a different way. In this case, the decay rate (Thm.1.1) is not
exponential but algebraic O(t−n).

More general form of the Kuramoto model is given as

dθi

dt
= ωi +

K
N

N∑
j=1

ai j sin(θ j − θi + α), i = 1, · · · ,N, (1.4)

and g(ω) is not unimodal, where α is a phase lag and ai j denotes the adjacency
matrix that determines the graph structure (we have an edge connecting θ j and θi

only when ai j , 0). We can also consider other periodic function as the interaction
term such as sin 2(θ j − θi). Even in these cases, we can obtain similar results as
above, see [4, 7, 8, 9, 10] for the details.

The generalized spectral theory used to prove the Kuramoto conjecture is also
applicable to any problems related to continuous spectra, such as Schrödinger
equations [6], chaos in symbolic dynamical systems [11], the onset of the human
brain wave [12], and so on.

The purpose of this article is to illustrate the generalized spectral theory. For
it, we begin to investigate the Kuramoto model within the usual spectral theory in
Sec. 2 and 3.
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2 Continuous limit
Since we assume N → ∞ for the Kuramoto conjecture, we first start to define the
infinite-dimensional version of the Kuramoto model.

By substituting the definition of the order parameter η into the Kuramoto
model (1.2), we obtain

dθi

dt
= ωi + Kr sin(ψ − θi),

where we put η = reiψ. With this in mind, the continuous limit of the Kuramoto
model is defined by the following system

∂ρt

∂t
+
∂

∂θ
(vρt) = 0, ρt = ρt(θ, ω),

v := ω + Kr sin(ψ − θ),

η := reiψ =

∫
R

g(ω)dω
∫ 2π

0
eiθρt(θ, ω)dθ.

(2.1)

Now infinitely many oscillators rotate on a circle like a fluid, and ρt denotes its
distribution. More precisely, ρt(θ, ω) implies a probability density function of θ
for each time t and natural frequency ω. The first line of the system is the equation
of continuity (conservation law) of ρt. The velocity field v is given by the second
line, that comes from the right hand side of the finite-dimensional one by removing
the subscript i. The third line is the definition of the infinite-dimensional version
of the order parameter, that is obtained by replacing the summation in the finite-
dim model by the integral with respect to the measure g(ω)ρt(θ, ω)dωdθ, where
g(ω) is a given density function. In this article, we assume that it is the Gaussian
distribution for simplicity. It is easy to show that this system has a unique weak
solution for a given initial condition ρ0(θ, ω) = h(θ, ω) for any t > 0.

Since the unknown function ρt is periodic in θ, we consider the Fourier series
of it. The Fourier coefficients are given by

Z j(t, ω) :=
∫ 2π

0
ei jθρt(θ, ω)dθ.

Rewriting the equation of ρt by Z j yields the system of equations of Z j as

dZ1

dt
= iωZ1 +

K
2
η(t) − K

2
η(t)Z2,

and

dZ j

dt
= i jωZ j +

jK
2

(η(t)Z j−1 − η(t)Z j+1),
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for j = 2, 3, · · · . Note that Z0 = 1 because of the normalization of a probability
density. This system has the trivial solution Z j = 0, j = 1, 2, · · · . In this case
ρt = 1/(2π) is the uniform distribution on a circle which corresponds to the de-
synchronization state.

Let us investigate the stability of the trivial solution. Since η is written as
η =

∫
RZ1g(ω)dω, the terms such as η(t)Z j in the system are nonlinear terms.

Therefore, the linearization of the system around the trivial solution is given by

dZ1

dt
= T1Z1 :=

(
iM + K

2
P
)

Z1,

dZ j

dt
= i jMZ j, j = 2, 3, · · ·

where the linear operatorsM and P are defined byM : f (ω) 7→ ω f (ω) and

P f (ω) =
∫

R
f (ω)g(ω)dω.

The order parameter η =
∫

RZ1g(ω)dω = PZ1 depends only on Z1 at least for
the linearized system. Hence, let us investigate the spectrum of the operator T1 =

iM+KP/2, that defines the linearized system for Z1, as an operator on the Hilbert
space L2(R, g(ω)dω) (weighted Lebesgue space).

3 Spectrum of linear operators
For the comparison with the generalized spectrum, we give a brief review of the
(usual) spectral theory on a Banach space.

The spectrum set σ(T ) of a linear operator T on a Banach space X is the set of
the singularities of the resolvent operator (λ − T )−1. More precisely, it consists of
;

point spectrum σp(T ). The set of point λ such that λ − T is not injective on X.

residual spectrum σr(T ). The set of point λ such that λ− T is injective on X but
its range is not a dense subspace of X.

continuous spectrum σc(T ). The set of point λ such that λ − T is injective and
the range is dense but the inverse (λ − T )−1 is not a continuous operator on
X.

The resolvent set is defined by ρ(T ) = C\σ(T ).
The point spectrum is just the set of eigenvalues ; Tv = λv has a solution

v , 0 in X. If X is a finite dimensional space, λ − T is surjective if and only if
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it is injective, however, it is not true for infinite one. Unfortunately, λ − T is not
surjective for most problems. Hence, we consider a more mild condition that the
range of λ − T is dense or not dense in X. When it is not dense, the set of such
λ is the residual spectrum. If λ is neither in the point spectrum nor the residual
spectrum, the inverse (λ − T )−1 exists and the domain is dense. If (λ − T )−1 is a
continuous operator, we can continuously extend its domain to the whole space
X, and λ is a regular point. The continuous spectrum is the set of λ such that we
cannot extend the domain of (λ − T )−1 to the whole space (recall the closed graph
theorem) 2.

Let us consider the linear differential equation du/dt = Tu, u ∈ X defined on
a Banach space X. The asymptotic behavior of a solution as t → ∞ is almost
characterized by the spectrum of T . Indeed, under a suitable assumption for T , it
is known that a solution is expressed by the Laplace inversion formula

u(t) = eTtu(0) =
1

2πi

∫ a+i∞

a−i∞
eλt(λ − T )−1u(0)dλ, (3.1)

for t > 0, where the integral path is a vertical straight line such that the spectrum
set of T is included in the left half plane Re(λ) < a. The operator eTt is called the
semigroup generated by T . For example when X is a finite dimensional space, the
set of singularities of the integrant (λ − T )−1 consists only of the eigenvalues of
T . In this case, we can calculate the Laplace inversion formula by deforming the
integral path and using the residue theorem as is shown in Fig. 3. Hence, the real
parts of eigenvalues completely determine the asymptotic behavior of solutions
because of the factor eλt. This is true even if X is an infinite-dim space as long as
T is a bounded operator or a sectorial operator, that admit the deformation of the
integral path as in Fig. 3 3.

2The concept of the spectrum makes sense only when T is a closed operator. Let us consider
the point λ ∈ ρ(T ). By the definition, the resolvent (λ − T )−1 is a continuous operator on X, in
particular it is a closed operator. It is known that the inverse of a closed operator is also closed.
Thus, ((λ − T )−1)−1 = λ − T is also closed. Then, T = −(λ − T ) + λ is also closed. Consider the
contraposition. If T is not a closed operator, there are no λ ∈ ρ(T ); the whole complex plane is the
spectrum set.

3Roughly speaking, a sectorial operator is an operator such that its spectrum set is included in a
small sector that is open toward the left direction (i.e. included in the > shape region). A bounded
operator is always sectorial because its spectrum set is compact.

If T is not sectorial, solutions u(t) may diverge as t → ∞ even when the spectrum set is included
in the left half plane. A typical situation is that the spectrum set is not bounded for imaginary
direction (so we can not take > shape region). This means that the spectrum set does not determine
the behavior of solutions [18].

This difficulty essentially comes from the fact that the spectral mapping theorem does not hold.
Let S (t) = eTt be a semi-group generated by T . If T is bounded or a self-adjoint operator on
a Hilbert space, we have the spectral mapping theorem, that states eσ(T )t = σ(S (t)). However,
in general we only have eσ(T )t ⊂ σ(S (t)). This implies that S (t) has an information that is not
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With this in mind, let us calculate the spectrum of the operator T1 = iM +
KP/2. We only give the sketch of proofs, see [3] for the detail.

Figure 3: A deformation of the integral path. × denotes an eigenvalue.

Proposition 3.1 T1 is a densely defined closed operator on L2(R, g(ω)dω) satis-
fying
(i) the continuous spectrum is σc(T1) = i · supp(g),
(ii) the residual spectrum is empty,
(iii) an eigenvalue is given as a root of the equation∫

R

1
λ − iω

g(ω)dω =
2
K
, λ ∈ C\σc(T1), (3.2)

if it exists.

Since P is a compact operator, (i) and (ii) immediately follow from the pertur-
bation theory of linear operators. If g is the Gaussian distribution, σc(T1) = iR is
the whole imaginary axis. Let us derive the eigen-equation (3.2). Let P0(ω) ≡ 1
be a constant function. By using the inner product on L2(R, g(ω)dω), P is written
as P f = ( f , P0)P0. This gives

λv = T1v = iωv +
K
2

(v, P0)P0

=⇒ v =
K
2

(v, P0)(λ − iω)−1P0.

obtained from an information of σ(T ).
The domain D(T ) of an unbounded operator T is not the whole space X but its dense subspace.

However, the domain of its semigroup S (t) can be the whole space. Hence, if we take an initial
condition u(0) from X\D(T ), then the behavior of a solution u(t) is not captured by σ(T ). If we
choose u(0) from D(T ), we may obtain nice information about a solution from σ(T ), see [18] for
the detail.
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By taking the inner product with P0 and dividing by (v, P0), we obtain (3.2). From
this calculation, it turns out that an eigenvector is given by

v(ω) =
1

λ − iω
(3.3)

if an eigenvalue λ exists.

Proposition 3.2 Suppose that g is an even, unimodal and continuous function.
(i) When K > Kc := 2/(πg(0)), there exists a unique eigenvalue on the positive
real axis,
(ii) it converges to the origin as K → Kc + 0 and
(iii) when K ≤ Kc, there are no eigenvalues.

Proof. By setting λ = x + iy and decomposing (3.2) into the real and complex
parts, we have 

∫
R

x
x2 + (ω − y)2 g(ω)dω =

2
K
,∫

R

ω − y
x2 + (ω − y)2 g(ω)dω = 0.

Further the second line is written as∫ ∞

0

ω

x2 + ω2
(g(y + ω) − g(y − ω)) dω = 0.

If g is even, y = 0 satisfies it. By using that g is unimodal, we can verify that
y , 0 does not satisfy. The first line shows that when K > 0, x is positive, which
means that if an eigenvalue exists, it should be on the positive real line. It also
follows from the first line that an eigenvalue is unique if it exists. When |λ| = x
is sufficiently large, the equation (3.2) is estimated as 1/λ + O(1/λ2) = 2/K,
which proves that the eigenvalue exists and given by λ ∼ K/2. On the other hand,
since the left hand side of (3.2) is bounded on the right half plane, there are no
eigenvalues when K > 0 is sufficiently small. This shows that there is a number
Kc > 0 such that x → +0 as K → Kc + 0. The value Kc is obtained from the
well-known formula

lim
x→+0

∫
R

x
x2 + ω2 g(ω)dω = πg(0).

This result proves that the trivial solution (de-synchro state) is unstable when
K > Kc because of the eigenvalue on the right half plane. The eigenvalue goes to
the left side as K decreases, and finally it is absorbed into the continuous spectrum
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on the imaginary axis at K = Kc. When K ≤ Kc, there are no eigenvalues and
the spectrum set consists only of the continuous spectrum on the imaginary axis.
Since a point of the spectrum on the imaginary axis implies the neutral stability,
we cannot prove the asymptotic stability from the spectrum σ(T1). This problem
will be resolved by introducing the generalized spectrum.

4 Gelfand triplet
To handle the difficulty caused by the continuous spectrum on the imaginary axis,
we develop the generalized spectral theory based on a Gelfand triplet. In this
section, we will illustrate how the triplet naturally arises by a simple example.

Let us consider the multiplication operatorM : f (x) 7→ x f (x) on L2(R). The
continuous spectrum is the whole real axis. Indeed, the resolvent is given by

(λ −M)−1 f (x) =
1

λ − x
f (x)

and it is not included in L2(R) when λ ∈ R. Nevertheless, we will show that there
exists a topological vector space larger than L2(R) on which the resolvent operator
makes sense even if λ ∈ R.

To this end, we consider the L2(R)-inner product with some functions ϕ, ψ

((λ −M)−1ϕ, ψ∗) =
∫

R

1
λ − x

ϕ(x)ψ(x)dx,

where ψ∗(x) := ψ(x) is introduced to avoid the complex conjugate in the right
hand side. The right hand side above is holomorphic in λ on the lower half plane
{Im(λ) < 0}.

Next, suppose λ approaches the real axis from below

lim
Im(λ)→0

∫
R

1
λ − x

ϕ(x)ψ(x)dx.

The factor 1/(λ − x) diverges at x = λ ∈ R, however, it is known that as long as
ϕ and ψ are continuous functions on R, the above integral exists as an improper
integral and is continuous in λ ∈ R.

Further suppose that λ moves to the upper half plane. It is known that as long
as ϕ and ψ are holomorphic on the region {Im(λ) ≥ 0}, the above function of λ has
an analytic continuation to the upper half plane given by∫

R

1
λ − x

ϕ(x)ψ(x)dx + 2πiϕ(λ)ψ(λ), Im(λ) > 0.

Now we have shown that if ϕ and ψ are holomorphic on the real axis and the
upper half plane, the function ((λ −M)−1ϕ, ψ∗) of λ has an analytic continuation
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from the lower to the upper half plane across the continuous spectrum on the real
axis. We denote it as

R(λ; ϕ, ψ) :=


∫

R

1
λ − x

ϕ(x)ψ(x)dx, Im(λ) < 0∫
R

1
λ − x

ϕ(x)ψ(x)dx + 2πiϕ(λ)ψ(λ), Im(λ) > 0.

Motivated by this observation, let X be a dense subspace of L2(R) consisting
of some class of holomorphic functions and X′ be its dual space, the vector space
of continuous linear functionals on X. The mapping ϕ 7→ R(λ; ϕ, ψ) defines a
linear functional on X, which is denoted by R(λ; •, ψ) ∈ X′. The topology on X is
defined so that this functional is continuous. Then, the mapping ψ 7→ R(λ; •, ψ)
gives a linear mapping from X to X′, denoted by Rλ, that is holomorphic in λ ∈ C.
By the definition, Rλ = (λ −M)−1 when Im(λ) < 0. We call Rλ the generalized
resolvent ofM.

This discussion is summarized as follows: As an operator from L2(R) to L2(R),
the resolvent operator (λ−M)−1 is singular on the real axis because of the contin-
uous spectrum. Nevertheless, if we regard it as an operator from X into X′, it has
an analytic continuation Rλ from the lower to the upper half plane. For any ψ ∈ X,
Rλψ is an X′-valued holomorphic function.

If X is a dense subspace of L2(R) and the embedding is continuous, L2(R) is
continuously embedded to the dual space X′. In this manner, we obtain the triplet

X ⊂ L2(R) ⊂ X′ (4.1)

called the Gelfand triplet or rigged Hilbert space.
The spectrum set is also generalized as follows. Let H be a Hilbert space

and T a linear operator on H . Recall that the spectrum set of T is the set of
singularities of the resolvent (λ−T )−1. Suppose that T has a continuous spectrum.
In a similar manner to the above, suppose that there exists a suitable subspace
X ⊂ H such that if we regard the resolvent as an operator from X to X′, then it
has an analytic continuation Rλ across the continuous spectrum. In general, the
Riemann surface of Rλ is nontrivial. If the analytic continuation Rλ has a new
singularity on the Riemann surface different from the original complex plane, we
call it a generalized spectrum. By the definition, it is not a true eigenvalue inH-
sense, however, it is expected that it plays a similar role to a usual eigenvalue and
provides a new information that is not obtained from the framework of a Hilbert
space.

It is applied to the dynamics of the Kuramoto model as follows. Recall that
the semigroup eTt generated by T is given by the Laplace inversion formula (3.1).
As explained, if T is a bounded operator, we can estimate the formula by deform-
ing the integral path as shown in Fig. 3. However, for the operator T1 obtained
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from the Kuramoto model, any point on the imaginary axis is a singularity of the
integrant eλt(λ − T1)−1 and we cannot deform the integral path toward the left half
plane. Now we assume that there exists a subspace X ⊂ L2(R, g(ω)dω) such that
the resolvent (λ − T1)−1 has an analytic continuation Rλ from the right to the left
half plane as an operator from X into X′. Hence, we interpret (3.1) as

eTtϕ= lim
y→∞

1
2πi

∫ a+iy

a−iy
eλtRλϕ dλ, ϕ ∈ X. (4.2)

Then, we can deform the integral path toward the left half plane (more precisely,
the second sheet of the Riemann surface), on which Rλϕ ∈ X′ 4. A singularity of
Rλ on the second Riemann sheet is called the generalized eigenvalue. By picking
up the residue of the generalized eigenvalue, we can estimate the asymptotic be-
havior of the semigroup. Recall that there is the eigenvalue on the positive real
axis when K > Kc, it moves to the left side as K decreases and is absorbed into
the continuous spectrum as K → Kc + 0, and disappears. Actually, the eigenvalue
does not disappear. It moves to the second Riemann sheet when K < Kc (now the
imaginary axis is a branch cut of the Riemann surface). After getting across the
branch cut, it is not an eigenvalue in the usual sense but becomes a generalized
eigenvalue, that is not found in Hilbert space theory, see Fig. 4. We can deform
the integral path to the second Riemann sheet and calculate the residue around
the generalized eigenvalue, which prove the exponential decay of a solution of
dZ1/dt = T1Z1 with respect to the topology of X′ (asymptotic stability of the de-
synchronization when K < Kc). Further, we can show that when the generalized
eigenvalue crosses the imaginary axis at K = Kc as K increases, a bifurcation
from the de-synchro state to the synchronized state occurs. In this manner, the
Kuramoto conjecture was proved [3].

Figure 4: The motion of the (generalized) eigenvalue as K decreases. When
K > Kc, it is a usual eigenvalue in L2-sense. When 0 < K < Kc, it is a general-
ized eigenvalue that lies on the second Riemann sheet different from the original
complex plane.

4Thus, the limit lim
y→∞

in (4.2) is considered in weak sense (weak dual topology on X′).
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From the next section, the generalized spectral theory will be formulated in a
general setting. The reader can find all omitted proofs in [5, 6]. Throughout this
article, D(·) and R(·) denote the domain and range of an operator, respectively. For
terminologies of topological vector spaces, refer to [27].

5 The generalized spectral theory
Let X be a locally convex Hausdorff topological vector space over C, X′ be its dual
space that is a vector space consisting of all continuous anti-linear functionals on
X.

For µ ∈ X′ and ϕ ∈ X, µ(ϕ) is denoted by 〈µ | ϕ〉. For any a, b ∈ C, ϕ, ψ ∈ X
and µ, ξ ∈ X′, the equalities

〈µ | aϕ + bψ〉 = a〈µ | ϕ〉 + b〈µ |ψ〉,
〈aµ + bξ | ϕ〉 = a〈µ | ϕ〉 + b〈ξ | ϕ〉,

hold. On the dual space X′, there are several ways to introduce a topology. The
most commonly used are the weak dual topology and the strong dual topology.
A sequence {µ j} ⊂ X′ is said to be weakly convergent to µ ∈ X′ if we have
〈µ j | ϕ〉 → 〈µ | ϕ〉 for each ϕ ∈ X. If we have 〈µ j | ϕ〉 → 〈µ | ϕ〉 uniformly on
arbitrary bounded subset in X, then {µ j} ⊂ X′ is said to be strongly convergent to
µ ∈ X′.

Let H be a Hilbert space with a Hermitian inner product (· , ·). Suppose X is
a dense subspace ofH and the embedding intoH is continuous (i.e. the topology
of X is stronger than that ofH). By considering their duals, it turns out thatH ′ is
continuously embedded into X′. Since a Hilbert space is isomorphic to itself, we
haveH ′ ' H ⊂ X′.

Definition 5.1 Assume that a locally convex Hausdorff topological vector space
X is a dense subspace of a Hilbert spaceH and the topology of X is stronger than
that ofH . The triplet

X ⊂ H ⊂ X′

is called the Gelfand triplet or the rigged Hilbert space.

The embedding i : H → X′ is defined as follows: For ψ ∈ H , i(ψ) is denoted by
〈ψ| and defined as

i(ψ)(ϕ) = 〈ψ | ϕ〉 = (ψ, ϕ), ϕ ∈ X.

In other words, the isomorphism H ' H ′ is defined so that 〈ψ | ϕ〉 is compatible
with the inner product when ψ ∈ H . The embedding is injective and continuous
by the assumption in Def. 5.1. A Gelfand triplet was proposed to generalize the
theory of Schwartz distribution [15], for which X = C∞0 (Rm) and ,H = L2(Rm).
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I

Figure 5: The region Ω and the interval I.

5.1 Generalized eigenvalue
Let H be a Hilbert space over C, H be a self-adjoint operator densely defined
on H and {E(B)}B∈B its spectral measure; H admits the spectral representation
H =

∫
RωdE(ω). Let K be another densely defined operator on H . The purpose

here is to investigate spectral properties of T := H + K. For the Kuramoto model,
H = M, K = P, and for a Schrödinger operator, H is the Laplacian, K is a
potential function [6].

Let Ω ⊂ C be a simply connected region included in the upper half plane, and
let Ī be the intersection of the closure of Ω and the real axis (we assume that it
is not empty and connected). Let I be an open interval obtained by removing the
end points from Ī (Fig. 5). Later we will see that our setting makes sense when Ī
is a (subset of) continuous spectrum of H. For a given operator T = H + K onH ,
we assume that there exists a locally convex Hausdorff topological vector space
X(Ω) satisfying the following conditions.

(X1) X(Ω) is a dense subspace ofH .
(X2) The topology of X(Ω) is stronger than that ofH .
(X3) X(Ω) is a quasi-complete barreled space.

By (X1), (X2), the Gelfand triple

X(Ω) ⊂ H ⊂ X(Ω)′

is well-defined. The definition of a barreled space is rather complicated [27].
It includes any Fréchet space, Banach space, Hilbert space, nuclear space and

14



Montel space 5. If X is a barreled space, the Banach-Steinhaus theorem 6 holds
and usual complex function theory (such as Cauchy theorem) is applicable for
X′-valued functions [5].

Next, we need the assumptions for the spectral measure E(B) of H.

(X4) For any ϕ ∈ X(Ω), the spectral measure (E(B)ϕ, ϕ) is absolutely continuous
on the interval I 7. Its density function denoted by E[ϕ, ϕ](ω) has an analytic
continuation to the region Ω ∪ I.
(X5) For each point λ ∈ I ∪ Ω, the bilinear form E[ · , · ](λ) : X(Ω) × X(Ω) → C
is separately continuous.

By (X4) with the aid of the polarization identity, we can verify that (E(B)ϕ, ψ) is
absolutely continuous on I for any ϕ, ψ ∈ X(Ω). We denote its density function as
E[ϕ, ψ](ω)：

d(E(ω)ϕ, ψ) = E[ϕ, ψ](ω)dω, ω ∈ I.

Then, the function E[ϕ, ψ](ω) is holomorphic in ω ∈ I ∪Ω. For simplicity, we use
the notation E[ϕ, ψ](ω) for any ω ∈ R.

Define a linear operator A(λ) : X(Ω)→ X(Ω)′ to be

〈A(λ)ψ | ϕ〉 =



∫
R

1
λ − ωE[ψ, ϕ](ω)dω + 2πiE[ψ, ϕ](λ) (λ ∈ Ω),

lim
y→−0

∫
R

1
x + iy − ωE[ψ, ϕ](ω)dω (λ = x ∈ I),∫

R

1
λ − ωE[ψ, ϕ](ω)dω (Im(λ) < 0).

(5.1)

We can verify that the function 〈A(λ)ψ | ϕ〉 is holomorphic in {Im(λ) < 0} ∪Ω∪ I.
In particular, if Im(λ) < 0 then 〈A(λ)ψ | ϕ〉 = ((λ − H)−1ψ, ϕ) and A(λ) coincides

5If a locally convex topological vector space is barreled and has the property that “any closed
and bounded set is compact”, then it is called a Montel space (this property is often called the
Heine-Borel property). A Montel space has a nice property that any weakly convergent series is
also strongly convergent. For a sufficient condition for a given space to be a Montel, refer to [16],
[19]. For example, they are Montel spaces: the space of C∞ functions, the space of C∞ functions
with compact support, the space of rapidly decreasing C∞ functions, the space of holomorphic
functions on an open region, and their dual spaces.

6Banach-Steinhaus theorem.
Let X be a barreled space and X′ its dual space. For a subset A ⊂ X′, the following conditions

are equivalent.
(i) A is bounded with respect to the weak dual topology.
(ii) A is bounded with respect to the strong dual topology.
(iii) A is equicontinuous as a family of mappings.
(iv) A is relatively compact with respect to the weak dual topology.

(i)⇒ (ii) is well-known as the uniform boundedness principle when X is a Banach space.
7Imagine the situation that Ī is a spectrum of H. Otherwise (E(B)ϕ, ϕ) = 0 on I.
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with the resolvent of H. This means that A(λ)ψ is an analytic continuation of the
resolvent from the lower half plane to Ω through the interval I as an X(Ω)′-valued
function. We can show that A(λ) : X(Ω) → X(Ω)′ is a continuous operator 8, if
X(Ω)′ is equipped with the weak dual topology.

We need some notation for the next assumptions. Let Q be a densely defined
linear operator on X(Ω). Its dual operator Q′ : D(Q′) → X(Ω)′ is defined as
follows : The domain D(Q′) of Q′ is all elements µ ∈ X(Ω)′ so that the mapping
ϕ 7→ 〈µ |Qϕ〉 from X(Ω) to C is continuous, and Q′ is defined through the equality
〈Q′µ | ϕ〉 = 〈µ |Qϕ〉. Next, for a densely defined operator Q on H , its Hilbert-
adjoint Q∗ is defined through (Qϕ, ψ) = (ϕ,Q∗ψ). Moreover, if Q∗ is densely
defined on X(Ω), its dual operator (Q∗)′ can be considered and we denote is as
Q×. Then, Q× = (Q∗)′ satisfies Q = Q×|D(Q), which means that Q× is a natural
extension (lift) of Q fromH to X(Ω)′. For simplicity, we call Q× the dual operator
of Q.

For the operators H and K onH , we assume the following.

(X6) H (= H∗) is densely defined operator on X(Ω) (there is a dense subspace Y
of X(Ω) such that HY ⊂ X(Ω)).
(X7) K is H-bounded and K∗ is densely defined on X(Ω).
(X8) For any λ ∈ {Im(λ) < 0} ∪ I ∪Ω, we have K×A(λ)X(Ω) ⊂ X(Ω).

By (X6) and (X7), H×,K× and T× are densely defined on X(Ω)′ (recall T :=
H + K). If H and K are continuous on X(Ω), so are H×,K× and T× on X(Ω)′,
but we do not assume it in general. An operator K is said to be H-bounded when
K(λ − H)−1 is a bounded operator on H for λ < σ(H). Recalling that A(λ) is an
analytic continuation of (λ−H)−1, (X8) is in some sense the analytic continuation
version of (X7).

With these assumptions, we define a generalized eigenvalue. An eigenvalue
and eigenvector in the usual sense are defined by (λ − T )v = 0. Since T = H +
K now, it is rewritten as (id − (λ − H)−1K)v = 0. Recalling that the analytic
continuation of (λ − H)−1 in X(Ω)′ is A(λ), we make the following definition.

Definition 5.2 If the equation

(id − A(λ)K×)µ = 0 (5.2)

have a solution 0 , µ ∈ X(Ω)′ for some λ ∈ Ω ∪ I ∪ {λ | Im(λ) < 0}, λ and µ are
called the generalized eigenvalue and generalized eigenvector of T , respectively.

Applying K× to (5.2), we obtain

(id − K×A(λ))K×µ = 0. (5.3)
8Note that since X(Ω) may not be a Banach space, there is a gap between a continuous operator

and a bounded operator. The condition for two concepts to coincide other than a Banach space is
complicated [1].
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If K×µ = 0, then (5.2) gives µ = 0. Hence, λ is a generalized eigenvalue if and
only if id − K×A(λ) is not injective on X(Ω). Note that the operator K×A(λ) on
X(Ω) is well-defined because of (X8).

Theorem 5.3 For a generalized eigenvalue λ of T and its generalized eigenvector
µ, the equality

T×µ = λµ

holds.

Sketch of a Proof. By the operational calculus, we can show D(λ − H×) ⊃
R(A(λ)) and (λ − H×)A(λ) = id|X(Ω). This yields

(λ − H×)(id − A(λ)K×)µ = (λ − H× − K×)µ = (λ − T×)µ = 0.

Thus, a generalized eigenvalue is a true eigenvalue of the dual operator T×,
although the converse statement is not true. An eigenvalue of T× is not always
a generalized eigenvalue. Since the dual space X(Ω)′ is too large, typically any
points in C become eigenvalues of T×.

5.2 Properties of A(λ)

For further discussion, let us investigate the properties of A(λ) in detail. For n =
1, 2, · · · , we define an linear operator A(n)(λ) : X(Ω)→ X(Ω)′ to be

〈A(n)(λ)ψ | ϕ〉 =



∫
R

1
(λ − ω)n E[ψ, ϕ](ω)dω + 2πi

(−1)n−1

(n − 1)!
dn−1

dzn−1

∣∣∣∣
z=λ

E[ψ, ϕ](z), (λ ∈ Ω),

lim
y→−0

∫
R

1
(x + iy − ω)n E[ψ, ϕ](ω)dω, (λ = x ∈ I),∫

R

1
(λ − ω)n E[ψ, ϕ](ω)dω. (Im(λ) < 0)

By integration by parts, it is easy to show that 〈A(n)(λ)ψ | ϕ〉 is an analytic continu-
ation of ((λ − H)−nψ, ϕ) from the lower half plane to the upper half plane. A(1)(λ)
is also denoted by A(λ) as before.

Proposition 5.4 For any integer j ≥ n ≥ 0, the operator A( j)(λ) satisfies

(i) (λ − H×)nA( j)(λ) = A( j−n)(λ), where A(0)(λ) := id.

(ii) A( j)(λ)(λ − H×)n = A( j−n)(λ).
In particular, if (λ − H×)µ ∈ X(Ω) then A(λ)(λ − H×)µ = µ.

(iii)
d j

dλ j 〈A(λ)ψ | ϕ〉 = (−1) j j!〈A( j+1)(λ)ψ | ϕ〉, j = 0, 1, · · · .
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(iv) For any ψ ∈ X(Ω), A(λ)ψ is expanded as

A(λ)ψ =
∞∑
j=0

(λ0 − λ) jA( j+1)(λ0)ψ, (5.4)

and the right hand side converges with respect to the strong dual topology on
X(Ω)′.

Sketch of a Proof. (i) and (ii) are easily proved by the operational calculus.
(iii) follows from the definition of A(λ). Since 〈A(λ)ψ | ϕ〉 is holomorphic, (iii)
yields

〈A(λ)ψ | ϕ〉 =
∞∑
j=0

(λ0 − λ) j〈A( j+1)(λ0)ψ | ϕ〉, (5.5)

which means that A(λ)ψ is weakly holomorphic in X(Ω)′. Since X(Ω) is barreled,
a weakly holomorphic function is strongly holomorphic by the Banach-Steinhaus
theorem.

Next, we define an eigenspace and the multiplicity of a generalized eigenvalue.
In the usual spectral theory, the eigenspace of λ is defined as the space spanned
by solutions of (λ − T )nv = 0. For example n = 2, it is rearranged as

(λ − H − K)(λ − H − K)v
= (λ − H)2(id − (λ − H)−2K(λ − H)) ◦ (id − (λ − H)−1K)v = 0.

Divided by (λ − H)2, it gives

(id − (λ − H)−2K(λ − H)) ◦ (id − (λ − H)−1K)v = 0.

Since the analytic continuation of (λ − H)−n is A(n)(λ), we may consider the equa-
tion

(id − A(2)(λ)K×(λ − H×)) ◦ (id − A(λ)K×) µ = 0.

Thus, let us define an operator B(n)(λ) : D(B(n)(λ)) ⊂ X(Ω)′ → X(Ω)′ by

B(n)(λ) = id − A(n)(λ)K×(λ − H×)n−1. (5.6)

Then, the above equation is simply written as B(2)(λ)B(1)(λ)µ = 0. The domain of
B(n)(λ) is the domain of A(n)(λ)K×(λ − H×)n−1. The following equality

(λ − H×)kB( j)(λ) = B( j−k)(λ)(λ − H×)k, j > k (5.7)

is easily proved.
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Definition 5.5 The generalized eigenspace associated with a generalized eigen-
value λ is defined by

Vλ =
⋃
m≥1

Ker B(m)(λ) ◦ B(m−1)(λ) ◦ · · · ◦ B(1)(λ),

and dimVλ is called the multiplicity of λ.

In particular, an element of Ker B(1)(λ) is a generalized eigenvector defined in
Def. 5.2. In the same way as Thm. 5.3, we can prove the next theorem.

Theorem 5.6 For any µ ∈ Vλ, there exists an integer M such that (λ−T×)Mµ = 0.

The theorem means that Vλ is a subspace of an eigenspace
⋃

m≥1 Ker (λ−T×)m

of T×. Since the dual space X(Ω)′ is too large, typically
⋃

m≥1 Ker (λ − T×)m

becomes an infinite dimensional, however, Vλ is finite dimensional for most ap-
plications (Thm. 5.16).

5.3 Generalized resolvent
Let Rλ = (λ − T )−1 be the resolvent operator of T . Since

Rλψ = (λ − H)−1
(
id − K(λ − H)−1

)−1
ψ (5.8)

and the analytic continuation of (λ − H)−1 in X(Ω)′ is given by A(λ), we make the
following definition. In what follows, we put Ω̂ = Ω ∪ I ∪ {λ | Im(λ) < 0}.

Definition 5.7 When the inverse (id − K×A(λ))−1 exists on X(Ω), the generalized
resolvent Rλ : X(Ω)→ X(Ω)′ of T is defined by

Rλ = A(λ) ◦ (id − K×A(λ))−1 = (id − A(λ)K×)−1 ◦ A(λ), λ ∈ Ω̂. (5.9)

The second equality follows from (id − A(λ)K×)A(λ) = A(λ)(id − K×A(λ)).
Note that id − K×A(λ) is an operator on X(Ω) because of (X8), and id − A(λ)K× is
an operator on R(A(λ)). The former is injective if and only if so is the latter. Since
A(λ) is continuous as mentioned in Sec. 5.1, we require that Rλ : X(Ω) → X(Ω)′

is also continuous.

Definition 5.8 The set of λ ∈ Ω̂ satisfying the following two conditions is called
the generalized resolvent set ϱ̂(T )；There exists a neighborhood Vλ ⊂ Ω̂ of λ such
that
(i) For any λ′ ∈ Vλ, Rλ′ is a densely defined continuous operator from X(Ω) into
X(Ω)′, where X(Ω)′ is equipped with the weak dual topology.
(ii) For any ψ ∈ X(Ω), the set {Rλ′(ψ)}λ′∈Vλ is a bounded set in X(Ω)′ 9.

9Because of the Banach-Steinhaus theorem, a weakly bounded set is strongly bounded. Thus,
we need not specify a topology here.
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The complement σ̂(T ) = Ω̂\ϱ̂(T ) is called the generalized spectrum set of
T . The generalized point spectrum σ̂p(T ) is the set of points λ ∈ σ̂(T ) at which
id−K×A(λ) is not injective (this is the set of generalized eigenvalues). The gener-
alized residual spectrum σ̂r(T ) is the set of points λ ∈ σ̂(T ) such that the domain
of Rλ is not dense in X(Ω). The generalized continuous spectrum is defined to
be σ̂c(T ) = σ̂(T )\(σ̂p(T ) ∪ σ̂r(T )).

By the definition, ϱ̂(T ) is an open set. This definition looks rather complicated
because X(Ω) is not a Banach space. To require the existence of the neighbor-
hood Vλ ⊂ Ω̂ in the above definition was introduced by Waelbroeck [31] (see also
Maeda [18]) for the spectral theory on locally convex spaces. If ϱ̂(T ) were simply
defined to be the set of points such that Rλ′ is a densely defined continuous oper-
ator as in the Banach space theory, ϱ̂(T ) is not an open set in general. If X(Ω) is
a Banach space, the definition coincides with the usual definition of the resolvent
set in a Banach space.

Theorem 5.9
(i) For each ψ ∈ X(Ω), Rλ(ψ) is an X(Ω)′-valued holomorphic function on ϱ̂(T ).
(ii) When Im(λ) < 0, Rλ = i ◦ (λ − T )−1 ( i is the embedding into X(Ω)′).

The second part (ii) implies that when Im(λ) < 0, the equality 〈Rλψ | ϕ〉 =
((λ − T )−1ψ, ϕ) holds for ψ, ϕ ∈ X(Ω). Thus, 〈Rλψ | ϕ〉 is an analytic continuation
of ((λ − T )−1ψ, ϕ).

Sketch of a Proof of (i).
Put ψλ = (id − K×A(λ))−1(ψ). It is easy to confirm that

Rλ+h(ψ) − Rλ(ψ)
= (A(λ + h) − A(λ))(ψλ) + Rλ+hK×(A(λ + h) − A(λ))(ψλ).

We show that it tends to zero as h→ 0 with respect to the weak dual topology on
X(Ω)′. Since A(λ) is holomorphic in λ, the first term is easy to treat. To estimate
the second term, we need to estimate Rλ+h and K×A(λ). For the latter one, we can
verify that K×A(λ) is also holomorphic in λ as an X(Ω)-valued function, so that

ϕh := K×(A(λ + h) − A(λ))(ψλ) ∈ X(Ω)

tends to zero as h → 0. For the former one, the set {Rλ+h(ϕ); |h| : small } is
bounded for any ϕ ∈ X(Ω) due to the condition (ii) in Def. 5.8. This shows that
Rλ+h(ϕh) → 0 weakly as h → 0 by the condition (i). Hence, Rλ+h(ψ) → Rλ(ψ) as
h→ 0.

Repeating the same procedure after dividing by h, it turns out that Rλ(ψ) is
weakly holomorphic. Since X(Ω) is barreled, it is automatically strongly holo-
morphic.
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Proposition 5.10 Rλ satisfies that
(i) (λ − T×) ◦ Rλ = id|X(Ω),
(ii) when µ ∈ X(Ω)′ satisfies (λ − T×)µ ∈ X(Ω), then Rλ ◦ (λ − T×)µ = µ,
(iii) T× ◦ Rλ = Rλ ◦ T×.

This proposition immediately follows from Prop. 5.4.

5.4 Generalized projection
Let Σ ⊂ σ̂(T ) be a bounded subset of the generalized spectrum set which is sepa-
rated from the rest of the spectrum by a simple closed curve γ ⊂ Ω∪I∪{λ | Im(λ) <
0}. Define an operator ΠΣ : X(Ω)→ X(Ω)′ by

ΠΣϕ =
1

2πi

∫
γ

Rλϕ dλ, ϕ ∈ X(Ω), (5.10)

where the integral is defined as the Pettis integral 10. Since the compositionΠΣ◦ΠΣ
cannot be defined, it is not a projection operator in the usual sense. Nevertheless,
it is reasonable to call ΠΣ the generalized projection because of the following
results.

Proposition 5.11 The following hold

ΠΣ(X(Ω)) ∩ (id − ΠΣ)(X(Ω)) = {0}
X(Ω) ⊂ ΠΣ(X(Ω)) ⊕ (id − ΠΣ)(X(Ω)) ⊂ X(Ω)′

In particular, for any ϕ ∈ X(Ω), there are µ1, µ2 ∈ X(Ω)′ such that ϕ is uniquely
decomposed as

i(ϕ) = 〈ϕ| = µ1 + µ2, µ1 ∈ ΠΣ(X(Ω)), µ2 ∈ (id − ΠΣ)(X(Ω)). (5.11)

Proposition 5.12 ΠΣ is T×-invariant : ΠΣ ◦ T× = T× ◦ ΠΣ.

Theorem 5.13 Let λ0 be an isolated generalized eigenvalue, Π0 be the general-
ized projection for λ0 and V0 be the generalized eigenspace of λ0 (Def. 5.5). If
Π0X(Ω) is finite dimensional, Π0X(Ω) = V0.

10In general, let X be a topological vector space, X′ its dual space with the strong dual topology,
S compact Hausdorff space and µ be a finite Borel measure on S . For a mapping f : S → X′, if
there exists I( f ) ∈ X′ satisfying

〈I( f ) | ϕ〉 =
∫

S
〈 f | ϕ〉dµ

for any ϕ ∈ X, then f is said to be Pettis integrable and I( f ) =
∫

S f dµ is called the Pettis integral
of f . If X is barreled and f is holomorphic, it is Pettis integrable [5].
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In the usual spectral theory, these properties are proved by using Π ◦ Π = Π
and the resolvent identity. In our case, since these formulae do not hold because
Π and Rλ are mappings from X(Ω) into X(Ω)′ (i.e. the composition of them is not
defined), the proof is rather technical [5].

5.5 Properties of of the generalized spectrum
Obviously the definition of the generalized spectrum depends on the choice of
the space X(Ω). When we want to emphasize the choice, we denote σ̂(T ) as
σ̂(T ; X(Ω)). If we have two spaces X1(Ω) and X2(Ω) satisfying (X1) to (X8),
there are two generalized spectra σ̂(T ; X1(Ω)) and σ̂(T ; X2(Ω)).

Proposition 5.14 ([6]) Suppose that X2(Ω) is a dense subspace of X1(Ω) and the
topology of X2(Ω) is stronger than that of X1(Ω). Then, the following statements
hold.
(i) σ̂(T ; X2(Ω)) ⊂ σ̂(T ; X1(Ω)),
(ii) Let Σ , ∅ be a bounded subset of σ̂(T ; X1(Ω)) which is separated from the rest
of the spectrum σ̂(T ; X1(Ω)) by a simple closed curve γ. Then, there exists a point
of σ̂(T ; X2(Ω)) inside γ. In particular, if λ is an isolated point of σ̂(T ; X1(Ω)),
then λ ∈ σ̂(T ; X2(Ω)).

Sketch of a Proof. Because of the assumption of the topology, the generalized
resolvent Rλ : X2(Ω) → X2(Ω)′ behaves “better” than Rλ : X1(Ω) → X1(Ω)′,
which proves (i). For (ii), letΠΣ be the generalized projection. By the assumption,
ΠΣX1(Ω) , {0}. Since X2(Ω) is dense in X1(Ω), we have ΠΣX2(Ω) , {0}. □

Due to this theorem, the existence of isolated generalized eigenvalues is inde-
pendent of the choice of X(Ω) 11.

For the next theorem, we define a uniformly compact operator. A linear oper-
ator L from a topological vector space X1 to another topological vector space X2

is said to be bounded if there exists a neighborhood U ⊂ X1 of the origin such that
LU ⊂ X2 is a bounded set. When L = L(λ) is parameterized by λ, it is said to be
bounded uniformly in λ if such a neighborhood U is independent of λ. When the
domain X1 is a Banach space, L(λ) is bounded uniformly in λ if and only if L(λ)
is continuous for each λ (U is taken to be the unit sphere).

Similarly, L is called compact if there exists a neighborhood U ⊂ X1 of the
origin such that LU ⊂ X2 is relatively compact. When L = L(λ) is parameterized
by λ, it is said to be compact uniformly in λ if such a neighborhood U is indepen-
dent of λ. When the domain X1 is a Banach space, L(λ) is compact uniformly in λ

11Historically, several definitions of the generalized eigenvalues had been proposed. It seems
that their results are the same because of this theorem. For example, for the study of Schrödinger
operators, the generalized eigenvalue is called the resonance pole. This is defined by the analytic
continuation of a scattering matrix [24] or the method of complex deformation [17] and so on.
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if and only if L(λ) is compact for each λ. When the range X2 is a Montel space, a
(uniformly) bounded operator is (uniformly) compact because every bounded set
in a Montel space is relatively compact.

Put Ω̂ := {Im(λ) < 0} ∪ I ∪ Ω as before. In many applications, K×A(λ) is a
bounded operator on X(Ω). In such a case, the following proposition is useful to
estimate the generalized spectrum.

Proposition 5.15 Suppose that for fixed λ ∈ Ω̂, there exists a neighborhood Uλ ⊂
Ω̂ of λ such that K×A(λ′) : X(Ω) → X(Ω) is a bounded operator uniformly in
λ′ ∈ Uλ. If id − K×A(λ) has a continuous inverse on X(Ω), then λ < σ̂(T ).

Sketch of a Proof. Check the condition of Def. 5.8. On the generalized
resolvent Rλ = A(λ) ◦ (id − K×A(λ))−1, since A(λ) : X(Ω)→ X(Ω)′ is continuous,
it is sufficient to show that there exists a neighborhood Vλ of λ such that the set
{(id−K×A(λ′))−1ψ}λ′∈Vλ exists and is bounded in X(Ω) for any ψ. For this purpose,
it is sufficient to show that the mapping λ′ 7→ (id − K×A(λ′))−1ψ is continuous in
λ′ ∈ Vλ. Since A(λ) is holomorphic, there is an operator D(λ, h) such that

id − K×A(λ + h) = id − K×A(λ) − hD(λ, h)
=
(
id − hD(λ, h)(id − K×A(λ))−1

)
◦ (id − K×A(λ))

for small h ∈ C. Since K×A(λ) is uniformly bounded by the assumption, D(λ, h) is
a uniformly bounded operator in h. Further, (id − K×A(λ))−1 is continuous by the
assumption. Thus, D(λ, h)(id − K×A(λ))−1 is a bounded operator. Then, Bruyn’s
theorem [2] is applicable to show that id−hD(λ, h)(id−K×A(λ))−1 has a continuous
inverse that is continuous in h (when X(Ω) is a Banach space, Bruyn’s theorem is
reduced to the existence of the Neumann series). This proves that id − K×A(λ′)
has a continuous inverse which is continuous in λ′.

Theorem 5.16 Suppose that K×A(λ) : X(Ω) → X(Ω) is a compact operator uni-
formly in λ ∈ Ω̂. Then, the following statements hold.
(i) For any compact set D ⊂ Ω̂, the number of generalized eigenvalues in D is
finite (thus σ̂p(T ) consists of a countable number of generalized eigenvalues and
they may accumulate only on the boundary of Ω̂ or infinity).
(ii) For each λ0 ∈ σ̂p(T ), the generalized eigenspace V0 is of finite dimensional
(in particular Thm. 5.13 holds).
(iii) σ̂c(T ) = σ̂r(T ) = ∅.

This kind of result is well-known as the Riesz-Schauder theory for a Banach
space. Even if X(Ω) is not Banach but a general locally convex vector space, it
is known that the Riesz-Schauder theory is valid [25], which is used to prove the
above theorem.
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5.6 Semigroup
Suppose that the operator iT = i(H+K) generates a C0-semigroup eiT t onH (here,
i is not the embedding but

√
−1). It is expressed by the Laplace inversion formula

as

(eiT tψ, ϕ) =
1

2πi
lim
x→∞

∫ x−iy

−x−iy
eiλt((λ − T )−1ψ, ϕ)dλ, x, y ∈ R, (5.12)

for ϕ, ψ ∈ H , where the integral path is the horizontal straight line below the
spectrum of T . If T has a continuous spectrum on the real axis, we cannot deform
the integral path from the lower to the upper half plane and it is difficult to estimate
the asymptotic behavior of the semigroup as t → ∞. However, for ϕ, ψ ∈ X(Ω),
we can rewrite (5.12) as

(eiT tψ, ϕ) =
1

2πi
lim
x→∞

∫ x−iy

−x−iy
eiλt〈Rλψ | ϕ〉dλ.

As a result, the path can be deformed toward the Riemann surface of Rλ. In many
applications, the set of singularities of 〈Rλψ | ϕ〉 consists of isolated generalized
eigenvalues, and we can estimate the Laplace inversion formula by the residue
theorem. A residue is calculated by using the generalized projection. Let Π0

be the projection associated with an isolated generalized eigenvalue λ0 with the
multiplicity M. The residue of it is given by

1
2πi

∫
γ0

eiλt〈Rλψ | ϕ〉dλ =
M−1∑
k=0

eiλ0t (−it)k

k!
〈(λ0 − T×)kΠ0ψ | ϕ〉,

where γ0 is a small simple closed curve enclosing λ0, see Fig. 6. In particular,
if λ0 lies on the upper half plane, it induces an exponentially decaying term with
respect to the weak topology on X(Ω)′, not the topology onH . This kind of decay
in the weak dual topology induced by the generalized eigenvalues is known in
plasma physics as the Landau damping [14] and in Schrödinger equations as a
tunnel effect [17, 24, 6].

In general, the decay of a semigroup occurs only during a transient state. To
see it, let λ0 be a generalized eigenvalue on the upper half plane and µ0 ∈ X(Ω)′

its generalized eigenvector. Let (eiT t)× be the dual operator. Since the equality
(eiT t)×µ0 = ei λ0tµ0 holds, if we consider µ0 as the initial condition, actually the
semigroup decays to zero exponentially. However, µ0 is an element of the dual
space, which may be not a suitable choice for an application. Since X(Ω) is a
dense subspace of X(Ω)′, for any ε > 0, there are τ > 0 and a function ϕ0 ∈ X(Ω)
such that for 0 ≤ t ≤ τ, the inequality

|〈(eiT t)×ϕ0 |ψ〉 − 〈(eiT t)×µ0 |ψ〉| < ε
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Figure 6: Deformation of the integral path γ to γ′. The solid curve denotes the
path on the original complex plane, and the dotted one denotes the path on the
second Riemann sheet.

holds. This means that for a finite time interval 0 ≤ t ≤ τ, we have

(eiT tϕ0, ψ) ∼ eiλ0t〈µ0 |ψ〉,

and the generalized eigenvalue gives a transient behavior.

6 Application to the Kuramoto model

6.1 The stability of the de-synchronization state
Let us apply the previous results to the linear operator T1 = iM + KP/2 obtained
by the linearization of the Kuramoto model (Sec. 2). Since the self-adjoint oper-
atorM is multiplied by i =

√
−1, the right (resp. left) half plane play the same

role as the lower (resp. upper) half plane in the previous sections.
Since the continuous spectrum of T1 is the whole imaginary axis, we cannot

determine the stability of the de-synchronization state within Hilbert space theory.
Thus, we suitably introduce the Gelfand triplet X ⊂ L2(R, g(ω)dω) ⊂ X′ so that if
the resolvent (λ−T1)−1 is regarded as an operator from X into X′, it has an analytic
continuation from the right half plane to the left half plane across the continuous
spectrum. We can show that the resolvent is calculated as

((λ − T1)−1ϕ, ψ∗) = D[ϕ, ψ](λ) +
K

2 − KD[P0, P0](λ)
D[ϕ, P0](λ) · D[P0, ψ](λ),

D[ϕ, ψ](λ) :=
∫

R

1
λ − iω

ϕ(ω)ψ(ω)g(ω)dω,

where P0(ω) ≡ 1 is a constant function and ψ∗(x) := ψ(x). If D[ϕ, ψ](λ) has an
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analytic continuation from the right to the left half plane, it is given by∫
R

1
λ − iω

ϕ(ω)ψ(ω)g(ω)dω + 2πϕ(−iλ)ψ(−iλ)g(−iλ).

For the existence of the second term, ϕ and ψ should be holomorphic on the upper
half plane. Thus, we define X to be some class of functions that are holomorphic
on the upper half plane and are in L2(R, g(ω)dω) on the real axis (see [3] for the
precise definition). With a suitable topology on X, T1 and X ⊂ L2(R, g(ω)dω) ⊂
X′ satisfy the assumptions (X1) to (X8). Further, they satisfy the assumption for
Thm. 5.16 ; the generalized spectrum consists of discrete generalized eigenvalues
with finite multiplicities (actually the multiplicities are 1).

The generalized eigenvalues are defined by (5.2). More convenient way to
obtain them is as follows: An eigenvalue in the usual sense is given by the root of
the equation (3.2). The analytic continuation of this equation from the right to the
left half plane is given by∫

R

1
λ − iω

g(ω)dω + 2πg(−iλ) =
2
K
, (Re(λ) < 0), (6.1)

whose root gives a generalized eigenvalue. When g is the Gaussian distribution,
there are infinitely many generalized eigenvalues on the left half plane. Recall that
when K > Kc, there exists a unique eigenvalue λ0 = λ0(K), which is a root of (3.2),
on the positive real axis. For K ≤ Kc, it becomes a root of (6.1). This implies that
at K = Kc, λ0(K) crosses the imaginary axis (now it is a branch cut of the Riemann
surface), goes to the second Riemann sheet and becomes a generalized eigenvalue
(Fig. 4).

A generalized eigenvector is calculated in a similar manner. When K > Kc,
the eigenvector v ∈ L2(R, g(ω)dω) of the usual eigenvalue λ is given by (3.3). By
the embedding i : L2(R, g(ω)dω) → X′ we regard v as an element in X′, which is
denoted by µλ. Its action on X is defined by

〈µλ | ϕ∗〉 = (v, ϕ∗) =
∫

R

1
λ − iω

ϕ(ω)g(ω)dω, (Re(λ) > 0).

The generalized eigenvector µλ associated with a generalized eigenvalue on the
left half plane λ is given by the analytic continuation, that is

〈µλ | ϕ∗〉 =
∫

R

1
λ − iω

ϕ(ω)g(ω)dω + 2πϕ(−iλ)g(−iλ), (Re(λ) < 0).

It is not an element of L2(R, g(ω)dω) but of X′.
Let {λn}∞n=0, {µn}∞n=0 be the set of generalized eigenvalues and their generalized

eigenvectors, respectively. By deforming the integral path of the Laplace inversion
formula as in Fig. 3 and using the residue theorem, we can prove the next theorem.
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Theorem 6.1 (Spectral decomposition) For any ϕ ∈ X, the dual operator of the
semigroup eT1t generated by T1 is expanded as

(eT1t)×ϕ =
∞∑

n=0

eλnt〈µn | ϕ〉µn, (6.2)

where the right hand side converses in X′ with respect to the strong dual topology.
When, 0 < K < Kc, Re(λn) < 0 for all n = 0, 1, · · · , which proves that (eT1t)×ϕ
converges to 0 as t → ∞ in X′ (asymptotic stability of the de-synchronization).

Note that T1 is not a self-adjoint nor compact operator. Thus, a spectral de-
composition does not hold within Hilbert space theory. Nevertheless, it is possible
by using elements in X′.

6.2 Bifurcation to the synchronized state
The remaining task is to show a bifurcation from the de-synchro state to the syn-
chro state. To investigate a bifurcation in dynamical systems, one of the most
effective ways is to apply the center manifold reduction. In our problem, there is
a continuous spectrum on the imaginary axis, so that the center manifold is not
well-defined within Hilbert space. To treat this difficulty, by using generalized
eigenvalues λn and their generalized eigenvectors µn, we define the generalized
center subspace Ec by

Ec := span{µn | λn ∈ iR} ⊂ X′.

This is the range of the generalized projection associated with generalized eigen-
values on the imaginary axis. For the Kuramoto model, when K = Kc there is a
generalized eigenvalue λ0 = 0 with the multiplicity 1. Thus, there exists a cor-
responding 1-dimensional center subspace Ec. Furthermore, we can prove the
existence of a center manifold in X′ which is tangent to Ec.

In Sec.2, we derive the system of equations for the Fourier coefficients Z j. For
example, the equation of Z1 is

dZ1

dt
= iωZ1 +

K
2
η(t) − K

2
η(t)Z2 = T1Z1 −

K
2

(Z1, P0)Z2.

This defines an equation on L2(R, g(ω)dω), however, it is difficult to investigate
it in Hilbert space because of the continuous spectrum of T1. Thus, by using the
embedding i : L2(R, g(ω)dω) → X′, we regard this equation as an equation given
on X′. To this end, the operator T1 is replaced by its dual, the inner product (Z1, P0)
is replaced by the paring 〈Z1 | P0〉：

dZ1

dt
= T×1 Z1 −

K
2
〈Z1 | P0〉Z2, Z j ∈ X′.
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On the dual space, the center subspace Ec is well-defined. Let fix an element
µ0 ∈ Ec (generalized eigenvector of λ0 = 0). Let α be a coordinate of Ec and
we decompose Z1 into the direction of the center subspace and its complement as
Z1 = α(t)µ0 + Y1, where Y1 is given by Y1 = (id − Π0)Z1 by using the projection
Π0. Since Y1 and Z2,Z3, · · · are vector that are outside the center subspace, we
can assume that they are of order O(α2). By substituting Z1 = α(t)µ0 + Y1 into the
equation and after a long calculation, the dynamical system on the center manifold
is obtained as

d
dt
α = (K − Kc)p1α + p3α|α|2 + O(α5), (6.3)

where p1 and p3 are constants given by

p1 =
D0

Kc
, p3 =

πD0K3
c g′′(0)

16
,

and D0 is a constant related to the residue around λ0 = 0. This equation is a normal
form of the pitchfork bifurcation. Hence, it is easy to see that when −p1/p3 > 0
and K > Kc, there exists a steady state (fixed point) approximately given by

|α| =
√
−p1

p3

√
K − Kc + O(K − Kc).

Since r = |α| + O(α2), this result gives Kuramoto’s bifurcation diagram (Fig. 2).
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