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Abstract

A spectral theory of linear operators on rigged Hilbert spaces (Gelfand triplets) is devel-
oped under the assumptions that a linear opefiatur a Hilbert spacé is a perturbation

of a selfadjoint operator, and the spectral measure of the selfadjoint operator has an an-
alytic continuation near the real axis in some sense. It is shown that there exists a dense
subspaceX of H such that the resolventl - T) 1¢ of the operatoiT has an analytic
continuation from the lower half plane to the upper half plane axX’aralued holomor-

phic function for anyp € X, even whernTl has a continuous spectrum By whereX’ is

a dual space oK. The rigged Hilbert space consists of three spaes H c X'. A
generalized eigenvalue and a generalized eigenfunctighame defined by using the an-
alytic continuation of the resolvent as an operator fidimto X’. Other basic tools of the

usual spectral theory, such as a spectrum, resolvent, Riesz projection and semigroup are
also studied in terms of a rigged Hilbert space. They prove to have the same properties as
those of the usual spectral theory. The results are applied to estimate asymptotic behavior
of solutions of evolution equations.

Keywords: generalized eigenvalue; resonance pole; rigged Hilbert space; Gelfand triplet;
generalized function

1 Introduction

A spectral theory of linear operators on topological vector spaces is one of the central
issues in functional analysis. Spectra of linear operators provide us with much information
about the operators. However, there are phenomena that are not explained by spectra.
Consider a linear evolution equatidx/dt = T x defined by some linear operafbr It is

known that if the spectrum df is included in the left half plane, any solutior@) decay

to zero ag — oo with an exponential rate, while if there is a point of the spectrum on the
right half plane, there are solutions that divergé as o (this is true at least for a sectorial
operator [11]). On the other hand, if the spectrum set is included in the imaginary axis,
the asymptotic behavior of solutions is far from trivial; for a finite dimensional problem,

a solutionx(t) is a polynomial int, however, for an infinite dimensional case, a solution

can decay exponentially even if the spectrum does not lie on the left half plane. In this
sense, the spectrum set does not determine the asymptotic behavior of solutions. Such
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an exponential decay of a solution is known as Landau damping in plasma physics [6],
and is often observed for Sdidinger operators [13, 23]. Now it is known that such an
exponential decay can be induced by resonance poles or generalized eigenvalues.

Eigenvalues of a linear operatdrare singularities of the resolvent £ T)™%. Reso-
nance poles are obtained as singularities of a continuation of the resolvent in some sense.
In the literature, resonance poles are defined in several wayst heta selfadjoint op-
erator (for simplicity) on a Hilbert spac# with the inner product {, -). Suppose that
T has the continuous spectrum(T) on the real axis. For Schdinger operators, spec-
tral deformation (complex distortion) technique is often employed to define resonance
poles [13]. A given operatof is deformed by some transformation so that the continu-
ous spectruna(T) moves to the upper (or lower) half plane. Then, resonance poles are
defined as eigenvalues of the deformed operator. One of the advantages of the method is
that studies of resonance poles are reduced to the usual spectral theory of the deformed
operator on a Hilbert space. Another way to define resonance poles is to use analytic
continuations of matrix elements of the resolvent. By the definition of the spectrum, the
resolvent § — T)™! diverges in norm when € o(T). However, the matrix element
(1-T) 19, ¢) for some “good” functionp € H may exist ford € o(T), and the function
f(1) = (1 - T) ¢, ») may have an analytic continuation from the lower half plane to
the upper half plane through an interval @(T). Then, the analytic continuation may
have poles on the upper half plane, which is called a resonance pole or a generalized
eigenvalue. In the study of reactionfiision equations, the Evans function is often used,
whose zeros give eigenvalues of a giveffadiential operator. Resonance poles can be
defined as zeros of an analytic continuation of the Evans function [33]. See [13, 22, 23]
for other definitions of resonance poles.

Although these methods work well for some special classes ofi8uoiger operators,
an abstract spectral theory of resonance poles has not been developed well. In particular,
a precise definition of an eigenfunction associated with a resonance pole is not obvious
in general. Clearly a pole of a matrix element or the Evans function does not provide an
eigenfunction. In Chiba [4], a definition of the eigenfunction associated with a resonance
pole is suggested for a certain operator obtained from the Kuramoto model (see Sec.4).
It is shown that the eigenfunction is a distribution, not a usual function. This suggests
that an abstract theory of topological vector spaces should be employed for the study of a
resonance pole and its eigenfunction of an abstract linear operator.

The purpose in this paper is to give a correct formulation of resonance poles and
eigenfunctions in terms of operator theory on rigged Hilbert spaces (Gelfand triplets).
Our approach based on rigged Hilbert spaces allows one to develop a spectral theory of
resonance poles in a parallel way to “standard course of functional analysis”. To explain
our idea based on rigged Hilbert spaces, let us consider the multiplication op&fator
#(w) — we(w) on the Lebesgue spaté(R). The resolvent is given as

My ey = [ w)Y(w)dw
=M 0.0 = [ oo

wherey* = y(w), which is employed to avoid the complex conjugat&ab) in the right
hand side. This function of is holomorphic on the lower half plane, and it does not exist



for 1 € R; the continuous spectrum @fl is the whole real axis. However,gfandy have
analytic continuations near the real axis, the right hand side has an analytic continuation
from the lower half plane to the upper half plane, which is given by

ji——¢wwwmw+%wuwu)

where i = V-1. LetX be a dense subspace I{(R) consisting of functions having
analytic continuations near the real axis. A mapping, which mapsX to the above
value, defines a continuous linear functionalXnthat is, an element of the dual space
X', if X'is equipped with a suitable topology. Motivated by this idea, we define the linear
operatorA(1) : X — X' to be

.ﬁ;§;wwwme+2mw@a@ (Im(2) > ).

w1 = fim [ i) (x=1€R). (@)

f——MMWMw (IM(A) < 0),

for y,¢ € X, where(-|-) is a paring for X’, X). When Im@) < 0, A(2) = (1 - M),
while when Im@) > 0, A(1)y is not included inL?(R) but an element oX’. In this sense,
A(1) is called the analytic continuation of the resolveniMfin the generalized sense. In
this manner, the tripleX c L?(R) c X', which is called the rigged Hilbert space or the
Gelfand triplet [9, 19], is introduced.

In this paper, a spectral theory on a rigged Hilbert space is proposed for an operator
of the formT = H + K, whereH is a selfadjoint operator on a Hilbert spakg whose
spectral measure has an analytic continuation near the real axis, when the domain is re-
stricted to some dense subspacef H, as above K is an operator densely defined on
X satisfying certain boundedness conditions. Our purpose is to investigate spectral prop-
erties of the operator = H + K. At first, the analytic continuatioA(2) of the resolvent
(A-H)1is defined as an operator froxinto X’ in the same way as Eq.(1.1). In general,
A(1) : X —» X is defined on a nontrivial Riemann surfacet$o that whem lies on
the original complex plane, it coincides with the usual resolvgént {H)™1. The usual
eigen-equationd— T)v = 0 is rewritten as

(A-H)o (id—-(-H)Kv=0.

By neglecting the first factor and replacing{H)* by its analytic continuatio’\(), we
arrive at the following definition: If the equation

(id — AQ)K ) = 0 (1.2)

has a nonzero solutiom in X', such ax is called a generalized eigenvalue (resonance
pole) andu is called a generalized eigenfunction, wh&re: X’ — X’ is a dual operator
of K. When2 lies on the original complex plane, the above equation is reduced to the
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usual eigen-equation. In this manner, resonance poles and corresponding eigenfunctions
are naturally obtained without using spectral deformation technique or poles of matrix
elements.

Similarly, the resolvent in the usual sense is given by

A-T)t=(U-H) o (id-K@a-H™™

Motivated by this, an analytic continuation of the resolvent oh the generalized sense
is defined to be
R, =A) o (id - KAL) : X - X, (1.3)

(the operatoK*A(1) is well defined because of the assumption (X8) below). Whies

on the original complex plane, this is reduced to the usual resoleenfl)~t. With the

aid of the generalized resolveRy;, basic concepts in the usual spectral theory, such as
eigenspaces, algebraic multiplicities, pgaontinuougresidual spectra, Riesz projections

are extended to those defined on a rigged Hilbert space. It is shown that they have the
same properties as the usual theory. For example, the generalized Riesz prdjgction
for an isolated resonance polg is defined by the contour integral of the generalized

resolvent. 1

2ri J,
Properties of the generalized Riesz projectignis investigated in detail. Note that in
the most literature, the eigenspace associated with a resonance gefsmexito be the
range of the Riesz projection. In this paper, the eigenspace of a resonance pole is defined
as the set of solutions of the eigen-equation, and jiravedthat it coincides with the
range of the Riesz projection as the standard functional analysis. Any furctoiX
proves to be uniquely decomposedfas u; + up, Whereu; € IgX andu, = (id — Ilp) X,
both of which are elements &f. These results play an important role when applying the
theory to dynamical systems [4]. The generalized Riesz projection around a resonance
pole 1o on the left half plane (resp. on the imaginary axis) defines a stable subspace
(resp. a center subspace) in the generalized sense, both of which are subspéces of
Then, the standard idea of the dynamical systems theory may be applied to investigate the
asymptotic behavior and bifurcations of an infinite dimensional dynamical system. Such
a dynamics induced by a resonance pole is not captured by the usual eigenvalues.

Many properties of the generalized spectrum (the set of singulariti&;)oivill be

shown. In general, the generalized spectrum consists of the generalized point spectrum
(the set of resonance poles), the generalized continuous spectrum and the generalized
residual spectrum (they are not distinguished in the literature). If the opdfaatisfies
a certain compactness condition, the Riesz-Schauder theory on a rigged Hilbert space ap-
plies to conclude that the generalized spectrum consists only of a countable number of
resonance poles having finite multiplicities. It is remarkable that even if the opdrator
has the continuous spectrum (in the usual sense), the generalized spectrum consists only
of a countable number of resonance poles wKesatisfies the compactness condition.
Since the topology on the dual spaxeis weaker than that on the Hilbert spagg the
continuous spectrum df disappears, while eigenvalues remain to exist as the generalized
spectrum. This fact is useful to estimate embedded eigenvalues. Eigenvalues embedded

Iy R/ld/l X = X, (14)
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in the continuous spectrum is no longer embedded in our spectral theory. Thus, the Riesz
projection is applicable to obtain eigenspaces of them. Our theory is also used to estimate
an exponential decay of the semigro&ipf generated byTi. It is shown that resonance
poles induce an exponential decay of the semigroup even if the operatasino spec-

trum on the left half plane.

Although resonance poles have been well studied for&lthger operators, a spectral
theory in this paper is motivated by establishing bifurcation theory of infinite dimensional
dynamical systems, for which spectral deformation technique is not applied. In Chiba [4],
a bifurcation structure of an infinite dimensional coupled oscillators (Kuramoto model) is
investigated by means of rigged Hilbert spaces. It is shown that when a resonance pole
of a certain linear operator, which is obtained by the linearization of the system around
a steady state, gets across the imaginary axis as a parameter of the system varies, then a
bifurcation occurs. For this purpose, properties of generalized eigenfunctions developed
in this paper play an important role. In Section 4 of the present article, the linear stability
analysis of the Kuramoto model will be given to demonstrate how our new theory is
applied to the study of dynamical systems. In particular, a spectral decomposition theorem
of a certain non-selfadjoint non-compact operator will be proved, which seems not to be
obtained by the classical theory of resonance poles.

Throughout this papei(-) and R(-) denote the domain and range of an operator,
respectively.

2 Spectral theory on a Hilbert space

This section is devoted to a review of the spectral theory of a perturbed selfadjoint operator
on a Hilbert space to compare the spectral theory on a rigged Hilbert space developed after
Sec.3. LetH be a Hilbert space ove&®. The inner product is defined so that

(ap,y) = (¢, @) = al¢. ¥), (2.1)

wherea is the complex conjugate @& € C. Let us consider an operatdr := H + K
defined on a dense subspace+HofwhereH is a selfadjoint operator, aridl is a compact
operator o+ which need not be selfadjoint. Latandv = v, be an eigenvalue and an
eigenfunction, respectively, of the operalodefined by the equatiotv = Hv+ Kv. This
is rearranged as

(A= H)(@id = (1 -H)K)v=0, (2.2)

whereid denotes the identity ofi{. In particular, whent is not an eigenvalue di, it is

an eigenvalue of if and only ifid — (1 — H)!K is not injective inH. Since the essential
spectrum is stable under compact perturbations (see Kato [14], Theorem 1V-5.35), the
essential spectrumg(T) of T is the same as that &f, which lies on the real axis. Since

K is a compact perturbation, the Riesz-Schauder theory shows that the spectrum outside
the real axis consists of the discrete spectrum; for&any0, the number of eigenvalues
satisfying|lm(2)| > ¢ is finite, and their algebraic multiplicities are finite. Eigenvalues
may accumulate only on the real axis. To find eigenvalues embedded in the essential
spectrumo¢(T) is a dificult and important problem. In this paper, a new spectral theory
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on rigged Hilbert spaces will be developed to obtain such embedded eigenvalues and
corresponding eigenspaces.

LetR, = (- T)! be the resolvent. Let; be an eigenvalue &F outside the real axis,
andy; be a simple closed curve enclosingseparated from the rest of the spectrum. The
projection to the generalized eigensp&ge= | J,.; Ker(4; — T)" is given by

1
I _ﬁfﬁRﬁda. (2.3)

Let us consider the semigrowg't generated byTi. Since H generates th&’-
semigroupe™t and K is compact, T also generates th&°-semigroup (see Kato [14],
Chap.IX). It is known tha€™" is obtained by the Laplace inversion formula (Hille and
Phillips [12], Theorem 11.6.1)

. Xy
ety = 271ﬂ )[[T;Iof A -T)pdt, xyeR, (2.4)
iy

fort > 0 and¢ € D(T), wherey > 0 is chosen so that all eigenvalueof T satisfy
Im(2) > -y, and the limitx — oo exists with respect to the topology #{. Thus the
contour is the horizontal line on the lower half plane. ket 0 be a small number and
Ao, -+, Ay eigenvalues of satisfying Im@;) < —&, j = 0,---,N. The residue theorem
provides

eiTt¢ — % feixt+st(x —is— T)_ld)dx
R

1o (e 4
+%;L_é (1—T) 2gda,

wherey; is a suficiently small closed curve enclosing. Let M; be the smallest integer
such that {; - T)™iII; = 0. This is less or equal to the algebraic multiplicity.gf Then,
€™ is calculated as

ey = i.feix”“(x—ia—T)lqbdx

+Ze|/lt2( it)« W - )kHJ¢)

The second term above divergestass o because Re{i) > . On the other hand, if
there are no eigenvalues on the lower half plane, we obtain

. 1 .
Tt, _ _ Xtret(y i _ T)1
€''¢ | fRe' (x—ie—=T) " ¢dx
for any smalle > 0. In such a case, the asymptotic behaviogbfis quite nontrivial.

One of the purposes in this paper is to give a further decomposition of the first term above
under certain analyticity conditions to determine the dynamies'bf
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3 Spectral theory on a Gelfand triplet

In the previous section, we give the review of the spectral theory of the op@&ratdt + K

onH. In this section, the notion of spectra, eigenfunctions, resolvents and projections are
extended by means of a rigged Hilbert space. It will be shown that they have similar prop-
erties to those ofH{. They are used to estimate the asymptotic behavior of the semigroup
€t and to find embedded eigenvalues.

3.1 Rigged Hilbert spaces

Let X be a locally convex Hausddrtopological vector space ove& and X’ its dual
space.X’ is a set of continuous anti-linear functionals ¥nForu € X’ and¢ € X, u(¢)
is denoted by(u | ¢). For anya,b € C, ¢, € X andu, £ € X/, the equalities

(ulag + by = alul ) + bu|v), (3.1)
(au + bE| gy = alu| d) + XE| B), (3.2)

hold. In this paper, an element & is called a generalized function [8, 9]. Several
topologies can be defined on the dual spaceTwo of the most usual topologies are the
weak dual topology (weak * topology) and the strong dual topology (strong * topology).
A sequencéy;} c X' is said to be weakly convergentgos X' if (u;|¢) — (u|¢) for each
¢ € X; asequencéu;} c X' is said to be strongly convergentjice X if (uj|¢) — (u|¢)
uniformly on any bounded subset Xf

Let H be a Hilbert space with the inner product {) such thatX is a dense subspace
of H. Since a Hilbert space is isomorphic to its dual space, we olffam X’ through
H~H.
Definition 3.1. If a locally convex Hausddi topological vector spack is a dense sub-
space of a Hilbert spacH and a topology oK is stronger than that of{, the triplet

XcHcX (3.3)

is called theigged Hilbert spacer theGelfand triplet Thecanonical inclusiont X —
X" is defined as follows; fog € X, we denote(y) by (|, which is defined to be

i(W)(@) = Wl¢) = (¥, ) (3.4)

for any¢ € X (note that we also use+ V-1). The inclusion frontH into X’ is also
defined as above. It is easy to show that the canonical inclusion is injective if and only
if X is a dense subspace ®f, and the canonical inclusion is continuous (for both of the
weak dual topology and the strong dual topology) if and only if a topologyisfstronger
than that ofH (see Téves [30]).

A topological vector spack is called Montel if it is barreled and every bounded set
of X is relatively compact. A Montel space has a convenient property that on a bounded
setA of a dual space of a Montel space, the weak dual topology coincides with the strong
dual topology. In particular, a weakly convergent series in a dual of a Montel space also



( 0

Fig. 1: A domain on whicle[y, ¢](w) is holomorphic.

converges with respect to the strong dual topology (see€k[30]). Furthermore, a linear
map from a topological vector space to a Montel space is a compact operator if and only
if it is a bounded operator. It is known that the theory of rigged Hilbert spaces works
best when the space is a Montel or a nuclear space [9]. See Grothendieck [10] and
Komatsu [15] for stficient conditions for a topological vector space to be a Montel space
or a nuclear space.

3.2 Generalized eigenvalues and eigenfunctions

Let H be a Hilbert space oveZ andH a selfadjoint operator densely defined&nwith

the spectral measuf&(B)}g.g; that is,H is expressed ad = wad E(w). LetK be some
linear operator densely defined #h Our purpose is to investigate spectral properties of
the operatoil := H + K. LetQ c C be a simply connected open domain in the upper
half plane such that the intersection of the real axis and the closupei®ft connected
interval . Let| = i\dl be an open interval (see Fig.1). For a given= H + K, we
suppose that there exists a locally convex Hausdeictor spaceX(Q2) overC satisfying
following conditions.

(X1) X(Q) is a dense subspace#f.

(X2) A topology onX(Q2) is stronger than that of.

(X3) X(Q) is a quasi-complete barreled space.

(X4) For any¢ € X(Q), the spectral measur&(B)¢, ¢) is absolutely continuous on the
interval I. Its density function, denoted b[¢, #](w), has an analytic continuation to
QuUl.

(X5) For eacht € | U Q, the bilinear formE[ -, -](1) : X(QQ) x X(2) — C is separately
continuous (i.eE[ -, ¢](1) : X(2) — C andE[ ¢, -](1) : X(Q2) — C are continuous for
fixed ¢ € X(Q)).

Because of (X1) and (X2), the rigged Hilbert spat®) c H c X(Q) is well defined,
whereX(Q)’ is a space of continuoumnti-linear functionals and the canonical inclusion

is defined by Eq.(3.4). Sometimes we den¢td by v for simplicity by identifyingiX(Q)

with X(€Q2). The assumption (X3) is used to define Pettis integrals and Taylor expansions of
X(Q)’-valued holomorphic functions in Sec.3.5 (refer téves [30] for basic terminology

of topological vector spaces such as quasi-complete and barreled space. In this paper, to
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understand precise definitions of them is not so important; it fiscgnt to know that

an integral and holomorphy of(Q2)’-valued functions are well-defined X(Q2) is quasi-
complete barreled. See Appendix for more detail). For example, Montel spaeebgEr
spaces, Banach spaces and Hilbert spaces are barreled. Due to the assumption (X4) with
the aid of the polarization identity, we can show tHa{g)¢, v) is absolutely continuous

onl for anyg, ¥ € X(Q). Let E[¢, ¥](w) be the density function;

d(E(w)¢,y) = E[¢, ¥](w)dw, wel. (3.5)

Then, E[¢, y](w) is holomorphic inw € 1 U Q. We will use the above notation for
anyw € R for simplicity, although the absolute continuity is assumed only.o8ince
E[¢, y](w) is absolutely continuous dn H is assumed not to have eigenvalued ofX5)

is used to prove the continuity of a certain operator (Prop.3.7).

Let A be a linear operator densely defined X¥2). Then, the dual operatdX is
defined as follows: the domain(A’) is the set of elementg € X(Q)" such that the
mappingp — (u|A¢) from D(A) c X(Q) into C is continuous. Therd' : D(A") —» X(Q)
is defined by

(Aul¢) =ulAg), ¢ <D(A), ueDA). (3.6)

If Ais continuous orX(Q), thenA’ is continuous orX(Q2)’ for both of the weak dual
topology and the strong dual topology. The (Hilbert) adjdMtof A is defined through
(Ag, ¥) = (¢, A*Y¥) as usual wher is densely defined of.

Lemma 3.2.Let A be a linear operator densely definedn Suppose that there exists a
dense subspacéof X(Q2) such thatA*Y c X(Q2) so that the dual/*)’ is defined. Then,
(A) is an extension of andi o A = (A") o i |p(. In particular,D((A*)’) > iD(A).

Proof. By the definition of the canonical inclusionwe have

i(AV)(9) = (A, @) = (U, A'p) = WA G) = (A) ¥ | 9), (3.7)
for anyy € D(A) andg € Y. |

In what follows, we denoteX’)’ by A*. Thus Eq.(3.7) means A = A*oi|px). Note
thatA* = A’ whenA is selfadjoint. For the operatok$ andK, we suppose that

(X6) there exists a dense subspacef X(Q2) such thaHY c X(Q).
(X7) K is H-bounded and&K*Y c X(Q).
(X8) K*A(Q)iX(2) c iX(Q) foranya € {Im(1) <0jul UQ.

The operatorA(1) : iX(Q) — X(Q) will be defined later. Recall that whef is H-
bounded (relatively bounded with respecttp D(T) = D(H) andK (1 - H)~! is bounded

on H for 1 ¢ R. In some sense, (X8) is a “dual version” of this condition because
A(2) proves to be an extension of ¢ H)~. In particular, we will show thak*A(1)i =
i(K(2 — H)™Y) when Im@) < 0. Our purpose is to investigate the operafoe H + K

with these conditions. Due to (X6) and (X7), the dual operatoof T* = H + K* is well
defined. It follows thaD(T*) = D(H*) N D(K*) and

D(T*) iD(T) = iD(H) > iY.
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In particular, the domain oF* is dense inX(Q2)’.
To define the operatak(1), we need the next lemma.

Lemma 3.3. Suppose that a functia(w) is integrable orR and holomorphic o2 U I.
Then, the function

Lq(a))d(,u (Im(2) < 0),
Q1) = i (3.8)
f —q(w)dw + 27iq(1) (1€ Q),

is holomorphic or{A|Im(2) < OQJU QU I.
Proof. Puttingd = x + iy with x,y € R yields

Due to the formula of the Poisson kernel, the equalltles

- y
y“—To L WQ(w)dw = mq(X), y“_mo fR mqw)dw = —nq(X),

hold whenqg is continuous ak € | (Ahlfors [1]). Thus we obtain

JL@O fR ﬁq(w)dw = Jl_To( fR ﬁq(w)dw + 27riq(/1)) = 7V (X) + miq(X),

where

y—0 711

V(X) := lim 1fﬁq(w)dw

is the Hilbert transform of}. It is known thatV(x) is Lipschitz continuous oh if g(x)

is (see Titchmarsh [29]). Therefore, two holomorphic functions in Eq.(3.8) coincide with
one another oh and they are continuous dn This proves tha@Q(1) is holomorphic on
{A1Im(2) <0t UuQUI. |

Putu, = (1 - H)™Yy for ¢ € H. In general,u, is not included inH whena € |
because of the continuous spectrunHofThusu, does not have an analytic continuation
from the lower half plane t@ with respect tol as an/{-valued function. To define
an analytic continuation ofi;, we regard it as a generalized functionXfQ)’ by the
canonical inclusion. Then, the actioni¢fl — H)~1y) is given by

(= HY ")) = (@~ H)"0.0) = [ Bl dl()do, Im() <0

Because of the assumption (X4), this quantity has an analytic continuatidtoas
1 .
[ B d@)do + e (D, aco
R/l - W
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Motivated by this observation, define the operakt) : iX(Q) — X(Q)’ to be

[ B dle)do + 2El () (D)

R w

Buio =1 fm [ Bl @=xeD. (39
[ v e (i) < 0).

for anyy € iX(Q), ¢ € X(Q). Indeed, we can prove by using (X5) thaft)y is a
continuous functional. Due to Lemma 3@&()y | ¢) is holomorphic onflm(1) < 0} U
QuU . When ImQ) < 0, we havg A()y | ¢) = (A - H)Yy, ¢). In this sense, the operator
A(Q) is called the analytic continuation of the resolveht H)* as a generalized function.
By using it, we extend the notion of eigenvalues and eigenfunctions.

Recall that the equation for eigenfunctionsTofs given by {d - (1 — H)"*K)v = 0.
Since the analytic continuation oft & H)™! in X(Q)’ is A(1), we make the following
definition.

Definition 3.4. Let R(A(1)) be the range of(1). If the equation
(id = AWK )u =0 (3.10)

has a nonzero solutignmin R(A(1)) for somed € QU | U {1]Im(2) < 0}, 1 is called a
generalized eigenvalug T andu is called ageneralized eigenfunctiassociated witQd.
A generalized eigenvalue @his called aesonance poléhe word “resonance” originates
from quantum mechanics [23]).

Note that the assumption (X8) is used to defifa)K*u for u € R(A(1)) because the
domain ofA(1) is iX(Q2). Applied byK*, EqQ.(3.10) is rewritten as

(id — K*A))K*y = 0. (3.11)

If K“u = 0, Eq.(3.10) shows = 0. This means that ift # O is a generalized eigen-
function,K*u # 0 andid — K*A(1) is not injective onX(Q2). Conversely, ifid — K*A(1)

is not injective oniX(Q2), there is a functio® € iX(Q2) such thatid — K*A(1))¢ = 0.
Applying A(2) from the left, we see thaA(1)¢ is a generalized eigenfunction. Hende,
is a generalized eigenvalue if and onlydf— K*A(Q) is not injective onX(Q).

Theorem 3.5.Let 1 be a generalized eigenvalueDfandu a generalized eigenfunction
associated witll. Then the equality

T u = Au (3.12)

holds.
Proof. At first, let us showD(2 — H*) > R(A(1)). By the operational calculus, we have
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E[v, (1 — H)¢)(w) = (1 — w)E[y, ¢](w). Whena € Q, this gives
A1 A~ H0) = [ = Elw (- M) + 20iELy. (1 - H)I(D
R w

- [ Ew @) + 2604 - )i El A1)
= Ylé),

for anyy € X(Q) and¢ € Y. It is obvious thaky | ¢) is continuous inp with respect
to the topology ofX(Q2). This proves thaD(1 — H*) > R(A(1)) and @ — H)A(1) =
id 1 iX(Q) — iX(Q). Wheny is a generalized eigenfunction,e D(1 — H*) because
u = A(A)K*u. Then, Eq.(3.10) provides

(A= H¥)(id = AQK<)u = (1= H* =KX)u = (A= T¥)u = O.

The proofs for the caseke | and Im@) < O are done in the same way. ]

This theorem means thats indeed an eigenvalue of the dual operdtor In general,
the set of generalized eigenvalues is a proper subset of the set of eigenvalteSoifce
the dual spac&(Q)’ is “too large”, typically every point o2 is an eigenvalue of*
(for example, consider the triplet ¢ L?(R) ¢ X’ and the multiplication operato¥ on
L2(R), whereX is the set of entire functions. Every point @his an eigenvalue of the
dual operatoiM* : X’ — X', while there are no generalized eigenvalues). In this sense,
generalized eigenvalues are wider concept than eigenvallgsadfile narrower concept
than eigenvalues af* (see Prop.3.17 for more details). In the literature, resonance poles
are defined as poles of an analytic continuation of a matrix element of the resolvent [23].
Our definition is based on a straightforward extension of the usual eigen-equation and it
is suitable for systematic studies of resonance poles.

3.3 Properties of the operatorA(2)

Before defining a multiplicity of a generalized eigenvalue, it is convenient to investigate
properties of the operat@x(1). Forn = 1,2,--- let us define the linear operataf’ (1) :

iX(QQ) — X(Q)' to be

(_1)n—1 dn—l
(n=1'd2 1=

" _ )y 1 _
APy 16) =1 lim, fR oy dle)de. (1= xe),

f 1 E[v, ¢](w)dw + 2ni
R

=ar ElY, 412, (1€ Q),

1
j;(/l — w)nE[w, $l(w)dw, (IMm(2) < 0).
(3.13)
It is easy to show by integration by parts tR&"(1)y | ¢) is an analytic continuation
of (1 — H)™y, ¢) from the lower half plane t®. AY(1) is also denoted by(1) as

before. The next proposition will be often used to calculate the generalized resolvent and
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projections.

Proposition 3.6.For any integerg > n > 0. the operatoA (1) satisfies
() (1 = H)"AD (L) = AGM(2), whereA@(1) := id.

(i) ADD)(A = H) lix@rp@ia-rm = AT (Dlix@rp@i -t -

In particular A - H)u = pwhen @ — H*)u € iX(Q).

(i) d = A1) = YA, = 0.1,

(iv) For eachy € X(Q), A(A)y is expanded as

Ay = i(ﬂo - ) AT o)y, (3.14)
-0

where the right hand side converges with respect to the strong dual topology.

Proof. (i) Let us show g — H¥)AD (1) = AU-Y(1). We have to prove thdad(1 — H*) o
R(AMD(2)). For this purpose, put,(y) = (AD)y | (1 — H)y) for ¢ € X(Q) andy € Y. It
is suficient to show that the mapping— wu,(y) from Y into C is continuous with respect
to the topology orX(Q2). Suppose that Im) > 0. By the operational calculus, we obtain

-1 qj-1
o) = [ T ED. (- M@)o + 20 |l (T MM
~1 qj-1
= (ﬁ )]E[w y](a))dw+27r|((J )Jl),j;Jl\ (4 - 2E[¥.YI(2
2 2
= (@-Hy v O ) (315)

SinceE[y, y](2) is continuous iry € X(Q) (the assumption (X5)) anB[v, y](2) is holo-
morphic inz, for anye > 0, there exists a neighborhoadi of zero in X(Q) such that
I(di=2/dZ~2)E[y, Y](2)| < eatz= Afory € U; NnY. Let U, be a neighborhood of zero in
H such thatlyll« < € fory € U,. Since the topology oX(Q) is stronger than that o,
U, N X(Q) is a neighborhood of zero K(Q). If ye U; n U, N'Y, we obtain

(-2
(-2

Note that § — H)/ is bounded when ¢ R and 1- j < 0 becauseH is selfadjoint.
This proves thaj, is continuous, so that, = (1 — H)AD)y e X(Q). The proof
of the continuity for the case Imj < 0 is done in the same way. Whane I, there
exists a sequendd,; Yo in the lower half plane such that(y) = limj_. u(y). Since
X(Q) is barreled, Banach Steinhaus theorem is applicable to conclude that the, lohit
continuous linear mappings is also continuous. This praMds- H*) > R(AD(2)) and
(A-HX)AD(Q) is well defined for any € {Im(2) < 0juluQ. Then, the above calculation
immediately shows thati(— H*)AD (1) = AU=Y(2). By the induction, we obtain (i).

W) < 112 = H)Y ylle + 2xi
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(i) is also proved by the operational calculus as above, and (iii) is easily obtained by
induction.
For (iv), since(A()y | ¢) is holomorphic, it is expanded in a Taylor series as

1 d :
A1 = 3 ], A9 - o)
jZO H 0

> (o= VAT o)y | 9), (3.16)

=0

for each¢,y € X(Q). This means that the function&(1)y is weakly holomorphic

in 2. Then, A(2)y turns out to be strongly holomorphic and expanded as Eq.(3.14) by
Thm.A.3(iii) in Appendix, in which basic facts 0K(Q2)’-valued holomorphic functions
are given. |

Unfortunately, the operatofA(1) : iX(Q) — X(Q)' is not continuous ifiX(Q) is
equipped with the relative topology frodk(Q2)’. Even if (¢| — 0 iniX(Q) c X(Q),
the valueE[y, ¢](1) does not tend to zero in general because the topology(Q) is
weaker than that oX(Q2) . However,A(1) proves to be continuous iX(Q) is equipped
with the topology induced fronX(Q2) by the canonical inclusion.

Proposition 3.7. A(2) o i : X(Q) — X(Q) is continuous ifX(Q)" is equipped with the
weak dual topology.

Proof. Supposel € Q and fixg € X(Q2). Because of the assumption (X5), for any O,
there exists a neighborhod&di of zero inX(Q2) such thatE[y, ¢](1)| < & for ¢ € U;. Let
U, be a neighborhood of zero {H such that|y|l. < € for ¥ € U,. Since the topology
on X(Q) is stronger than that o/, U, N X(Q) is a neighborhood of zero iK(Q). If
/S U:=U;NnUy,

KAy | 4)]

IA

102 = H) Mgt - 1l - Wil + 27 |ELw, 1))
(11 = HY Mg - ligllac + 27) .

This proves tha#\(1) o i is continuous in the weak dual topology. The proof for the case
Im(2) < 0 is done in a similar manner. Where |, there exists a sequentg}:, in the
lower half plane such tha&(2) o i = limj_ A(1;) o i. SinceX(Q) is barreleof, Banach-
Steinhaus theorem is applicable to conclude that the igl) o i of continuous linear
mappings is also continuous. ]

Now we are in a position to define an algebraic multiplicity and a generalized eigenspace
of generalized eigenvalues. Usually, an eigenspace is defined as a set of solutions of the
equation g — T)"v = 0. For example, when = 2, we rewrite it as

(A-H-K)1-H-K)v=(1-H)?@{d - (1-H)2K(2-H)) o (id - (1 - H)*K)v=0.
Dividing by (1 — H)? yields
(id — (A= H)2K( = H))o (id - (1 = H)™*K)v = 0.

14



Since the analytic continuation of & H)™ in X(Q)’ is A™(1), we consider the equation
(id — A@DK*(A = HX)) o (id — A()K*) e = 0.

Motivated by this observation, we define the operd&6t(1) : D(BM(1) c X(Q) —
X(Q)' to be
B™(2) = id — AW(Q)K*(1 - H)" L. (3.17)

Then, the above equation is rewritten{8(1)B®(1)u = 0. The domain oBM (1) is the
domain of AMW(1)K*(1 — H*)"1. The following equality is easily proved.

(A = H)*BD(Q) = BI W) - H)b@awy, | >k (3.18)
Definition 3.8. Let A be a generalized eigenvalue of the operdtorThe generalized
eigenspace ot is defined by

V. =|_JKerB™(2) o B™ () o -+ 0 BY(2). (3.19)
m>1

We call dimV, the algebraic multiplicity of the generalized eigenvalue
Theorem 3.9.For anyu € V,, there exists an integdsl such that{ — T*)Mu = 0.

Proof. Suppose thaB™)(1)o---0BY()u = 0. Puté = BMD(2)o-- -0 BY(A)u. Eq.(3.18)
shows

o
Il

(21— HM1BM ()&
BY) (A — H)M ¢ = (id — AQ)KX)(A1 — H)M L&,

SinceD(4 — HX) o R(A(1)), it turns out that{ — H*)M-1¢ € D(1 — HX). Then, we obtain

0 = (1-H(>d - AKX - H)M ¢
= (A-H*-=K)-HYMLe = -T9H0 - H)M e,

By induction, we obtain{ - T*)Mu = 0. n

In general, the spaceé, is a proper subspace of the usual eigenspage Ker (1 —
TX)™ of T*. Typically |Ums1 Ker (2 — T*)™ becomes of infinite dimensional because the
dual spaceX(Q)’ is “too large”, howevery, is a finite dimensional space in many cases.

3.4 Generalized resolvents

In this subsection, we define a generalized resolvent. As the usual theory, it will be used
to construct projections and semigroups. Ret= (1 — T)™! be the resolvent of as an
operator orH. A simple calculation shows

Rw = (1 - H)™(id - K@ - H)™) o (3.20)

Since the analytic continuation o GAH)_l in the dual space i8(1), we make the fol-
lowing definition. In what follows, pu© = QU | U {1]Im(2) < 0}.
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Definition 3.10. If the inverse id — KXA(1))™! exists, define the generalized resolvent
R,y 1 iX(Q) - X(Q) to be

R, = AL o (id — KAWL = (id - AWK Lo AQ), 1eQ.  (3.21)

The second equality follows fromd — A(1)K*)A(1) = A(Q)(id — K*A(1)). Recall that
id — K*A(Q) is injective oniX(Q) if and only ifid — A(1)K* is injective onR(A(1)).

SinceA(1) is not continuousR, is not a continuous operator in general. However, it
is natural to ask whethe®, o i : X(Q) — X(Q)’ is continuous or not becaugél) o i is
continuous.

Definition 3.11. The generalized resolvent 3€T) is defined to be the set of points= 9
satisfying following: there is a neighborho& c Q of A such that for anyl’ € V,,
Ry o i is a densely defined continuous operator frE(8) into X(Q2)’, whereX(Q)’ is
equipped with the weak dual topology, and the{$&t o i(¥)} ey, is bounded inX(€2)’
for eachy € X(QQ). The setr(T) := Q\o(T) is called thegeneralized spectruwf T. The
generalized point spectruin,(T) is the set of pointd € ¢(T) at whichid — K*A(1) is not
injective (this is the set of generalized eigenvalues). déeeralized residual spectrum
0+(T) is the set of pointal € ¢(T) such that the domain &®, o i is not dense IrK(Q).
Thegeneralized continuous spectrusdefined to berd(T) = a(T)\(p(T) U 6+(T)).

By the definition,o(T) is an open set. To require the existence of the neighborhood
V, in the above definition is introduced by Waelbroeck [31] (see also Maeda [18]) for the
spectral theory on locally convex spaces.o(T J were simply defined to be the set of
points such thaR; o i is a densely defined continuous operator as in the Banach space
theory,o(T) is not an open set in general. X(Q2) is a Banach space and the operator
i~tK*A(2)i is continuous orX(Q) for each € Q, we can show that € §(T) if and only
if id — i~tK*A(2)i has a continuous inverse ®{Q) (Prop.3.18).

Theorem 3.12.

() For eachy € X(Q), Riiy is anX(Q2)'-valued holomorphic function in € o(T).

(ii) Suppose Imf) < 0 anda € o(T) N o(T), wherep(T) is the resolvent set of in
H-sense. ThenRw | ¢) = (1 — T) Ly, ¢) for anyy, ¢ € X(Q).

This theorem means théR i | ) is an analytic continuation of {(- T) 1y, ¢) from
the lower half plane to(T) through the interval. We always suppose that the domain of
R, o i is continuously extended to the whot€Q2) whenAa ¢ 6(T). The significant point
to be emphasized is that to prove tsteongholomorphy ofR, o i(y), it is suficient to
assume thak, o i : X(Q2) — X(Q)" is continuous in theveakdual topology onX(€2)'.

Proof of Thm.3.12. Sinceo(T) is open, whem € o(T), R, exists for stficiently small
h e C. Puty, = i71(id — K*A(1)) ti(y) for y € X(Q). It is easy to verify the equality

Rl () = Rai (@) = (A + 1) = AQ))i(Y) + Rasni 0 I7HKX (A + h) = AQ))i(¥)-

Let us show that*K*A(2)i(y) € X(Q) is holomorphic in1. For anyy, ¢ € X(Q), we
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obtain

(BIK*AWiY) = (4, i K*AQ)iy) = (KA, ¢)
= (K*AQ)iy | ¢) = (AW)iy | K ).

From the definition ofA(1), it follows that(¢|i~*K*A(1)iy) is holomorphic inl. Since
X(Q) is dense inX(Q)’, (u|i"tK*A(2)iy) is holomorphic inA for any u € X(Q)" by
Montel’s theorem. This means thiat K*A(2)iy is weakly holomorphic. SincX(Q) is
a quasi-complete locally convex space, any weakly holomorphic function is holomorphic
with respect to the original topology (see Rudin [25]). This proves itHé&tA(1)iy is
holomorphic ina (note that the weak holomorphy inimplies the strong holomorphy in
A because functionals X(Q2)" areanti-linear).

Next, the definition op(T) implies that the familfR, oi},ev, Of continuous operators
is bounded in the pointwise convergence topology. Due to Banach-Steinhaus theorem
(Thm.33.1 of [30]), the family is equicontinuous. This fact and the holomorph(of
andi~tK*A(2)i(y) prove thatR,.ni(y) converges tR,i(y) ash — 0 with respect to the
weak dual topology. In particular, we obtain

Rawnl = Ri

im KR ) = B + Rio KA. (3:22)

h—0

which proves thaiR;i(y) is holomorphic ind with respect to the weak dual topology
on X(Q)'. SinceX(Q) is barreled, the weak dual holomorphy implies the strong dual
holomorphy (Thm.A.3 (iii)).

Let us prove (ii). Suppose Im) < 0. Note thatR, o i is written asR, oi = A(1) o
(id — i"tK*A(1)i)"1. We can show the equality

(id — it K*AW)) T = (id - K(1 = H)™Hf e X(Q). (3.23)
Indeed, for anyf, ¢ € X(Q2), we obtain

(i = KA lyy = f [Y) — (AQ)If [K*y)
(if lgy = (io(A=H)f|K'y)
(f.¥) = (KA = H)™ f,9) = ((id = K(2 = H) ™) f,¢).

Thus,R, satisfies forp = (id — i*K*A(1)i) f that

Rip = Ao (id —itK*AW)i) ¢
= iA-H)to(d-K@A-HD g =i1-T)s.
Sinced € p(T), (id — itK*A()i)X(Q) is dense iNX(Q) andR,i : X(Q) — X(Q) is

continuous. Since € p(T), i(A1—T)™*: H — X(Q) is continuous. Therefore, taking the
limit proves thatR,i¢ = i(1 — T) ¢ holds for anyp € X(Q). ]

Remark. Even whent is in the continuous spectrum ©f Thm.3.12 (ii) holds as long as
(A-T)texistsand o (1 - T)™? : H — X(Q) is continuous. In general, the continuous
spectrum ofT is not included in the generalized spectrum because the topologi()f
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is weaker than that of{.

Proposition 3.13.The generalized resolvent satisfies

(i) (1 =T) o Ry = idlix)

(i) If u e X(Q) satisfies{ — T*)u € iX(Q), thenR, o (1 — T™)u = p.
(iii) T o Raliy = Rao Tiv.

Proof. Prop.3.6 (i) givesd = (1 — H*)A(1) = (1 — T* + K¥)A(1). This proves

(A=T*) o A1) = id — K*A(1)
= 1-T)oAWo (id-KAW)=1-T)oR, =id.

Next, when  — T*)u € iX(Q), A(1)(1 — T)u is well defined and Prop.3.6 (ii) gives
A =T = A - H* = K)u = (id = A()K ).

This provesu = (id — AQ)KX)TA) (A — T)u = Ry(4 — T)u. Finally, note that { —
T¥)IY =i(A1-T)Y c iX(Q) because of the assumptions (X6), (X7). Thus part (iii) of the
proposition immediately follows from (i), (ii). |

3.5 Generalized projections

LetX c 6(T) be a bounded subset of the generalized spectrum, which is separated from
the rest of the spectrum by a simple closed cyneeQ U | U {2|Im(2) < 0}. Define the
operatofls : iX(Q) — X(Q)' to be

My¢ = i f&qﬁ di, ¢ €iX(Q), (3.24)

2ri J,

where the integral is defined as the Pettis integral. SK{€¥ is assumed to be barreled by
(X3), X(Q) is quasi-complete and satisfies the convex envelope property (see Appendix
A). SinceR,¢ is strongly holomorphic i (Thm.3.12), the Pettis integral &,¢ exists by
Thm.A.1. See Appendix A for the definition and the existence theorem of Pettis integrals.
SinceR,oi : X(Q) — X(Q) is continuous, Thm.A.1 (ii) proves thHik o is a continuous

operator fromX(Q2) into X(Q2)' equipped with the weak dual topology. Note that the
equality

TX fR/ld) d/l = fTXRﬂ(p d/l, (325)
Y Y
holds. To see this, it is sficient to show that the s¢{T*R,¢ | ¥)} ., IS bounded for each
Y € X(Q) due to Thm.A.1 (iii). Prop.3.13 (i) yield$*R¢p = AR ¢ — ¢. SinceAR, is
holomorphic and is compact{{T*R.¢ | ¥)} ., is bounded so that Eq.(3.25) holds.

AlthoughTls o ITy is not defined, we callly the generalized Riesz projectidor X
because of the next proposition.

Proposition 3.14.T15(iX(2)) N (id — I15)(iX(2)) = {0} and the direct sum satisfies

iX(Q) ¢ Mx(IX(Q)) & (id - ;) (X(Q)) © X(QY. (3.26)
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In particular, for any € X(Q), there exisj, u, such thaw is uniquely decomposed as
i(¢) = (¢l = p1 + po, 1 € M (IX(Q)), w2 € (id — ) (IX(€2)). (3.27)

Proof. We simply denoteg¢| as ¢. It is suficient to show thafls(iX(2)) N (id —
IT5)(iX(Q)) = {0}. Suppose that there exigty € iX(Q) such thatllygp = ¢ — Iy
Sincells(¢ + ¥) = ¢ € iX(Q), we can again apply the projection to the both sides as
Iy o IT5(¢ + ) = IIsy. Lety’ be a closed curve which is slightly larger thanThen,

(%)Z f R ( f RA(¢+w)d/l)d/l’
( ) f (f(ﬂ ﬂ/); %,_TX)R4(¢+¢)d/l) av

(Zm) fﬂﬁ (fﬂ Rﬂ(¢+w)dﬂ) da’.
Eq.(3.25) shows

1\ A-Tx
Motio+w) = (o) [Re( [T R+ v ar
Y Y

1 2
—(%) LR/er(/l—T)(
Prop.3.13 shows

B [ [z2se)or-3] [ e s
0- (Zjn)fym@w) f—d/l da

Iz o s(¢ + )

- )d/l’.
,A=2

1
= on Ra(fﬁ +y)da = z(¢ + ¥).
This proves thallz¢ = 0. [

The above proof also shows that as londlag < iX(Q), [1x oIy is defined andlzolls¢ =
5.

Proposition 3.15.11s iy is T*-invariant: Iz o T*|y = T* o Igliy.

Proof. This follows from Prop.3.13 (iii) and Eq.(3.25). |

Let 19 be an isolated generalized eigenvalue, which is separated from the rest of the
generalized spectrum by a simple closed cyrye QU | U {1|Im(2) < 0}. Let

1

11
0= oni

Rﬂda (3.28)
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be a projection forg andVy = et KerBM(1p) o - - - 0 BY (o) a generalized eigenspace
of 1o. The main theorem in this paper is stated as follows:

Theorem 3.16.1f T1iX(Q) is finite dimensional, theRliX(Q) = Vy

In the usual spectral theory, this theorem is easily proved by using the resolvent equation.
In our theory, the compositioR oR, is not defined becau$?, is an operator fronX (<)

into X(Q2)’. As a result, the resolvent equation does not hold and the proof of the above
theorem is rather technical.

Proof. LetR, = X7 (4o - A)E; be a Laurent series &?,, which converges in the
strong dual topology (see Thm.A.3). Since

id=QA-T)oRi=—-T =(1p—-1)o Z (/lo—ﬂ)jEj,
j=—c0
we obtainE_,_; = (10— T¥)E_,forn=1,2,---. Thus the equality
En1=o—-T")"Ey (3.29)

holds. Similarly,idfiy = Ry o (1 — T¥)liy (Prop.3.13 (ii)) provide&_, 1liy = E_no (1o —
T9)|iy. Thus we obtairR(E_n_1liy) € R(E_,) for anyn > 1. SinceY is dense inX(Q2)
and the range dE_; = —IIj is finite dimensional, it turns out thm(E_nhY) = R(E_n) and
R(E_..1) € R(E_,) for anyn > 1. This implies that the principle paR-2 (1, — A)IE; of
the Laurent series is a finite dimensional operator. Hence, there exists an iMtegdr
such thate_y_; = 0. This means that, is a pole ofR, :

R, = Z (1o — A)'E;. (3.30)
=M
Next, from the equalityiff — A(1)K*) o R, = A(1), we have
id = > (1o = YADIK [0 3™ (1o = DIEj = " (A0 — A% ().
k=0 j=—M k=0
Comparing the cd@cients of (lo — 1)~ on both sides, we obtain

M
(id = A(o)K*)E 1 = > AD(10)K*E_; = 0. (3.31)
=2
Substituting Eq.(3.29) and_, = —I1, provides
M . .
BO (o) — Z AD()K* (o = T, = 0. (3.32)
=2
In particular, this implieR(I1o) ¢ D(BY(1y)). Hence, o — TX)II, can be rewritten as

(2o = T = (Ao — H*) o (id — A(0)K*)To = (Ao — H*)BV(Ao)To.
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Then, by using the definition &®@(1,), Eq.(3.32) is rearranged as

M
BO(1) B ()T — ) AD(1)K* (Ao — T¥) "I = 0.
j=3

Repeating similar calculations, we obtain
BM(1g) o - -+ 0 BY(o)IIp = 0. (3.33)

This proved1iX(Q) c Vo.
Let us showl1iX(2) > Vo. From the equalityR, o (id — K*A(2)) = A(1), we have

> (o= Ejofid = K* > (10 = DAY Do) [ = > (1o - A% D(L).  (3.34)
j=M k=0 k=0
Comparing the ca@cients of Qo — 1)* on both sides fok = 1,2, - - -, we obtain
E(id ~ K*A(0)d ~ ) E-jud AT (lo)p = A4 D (o), (3.35)

=1

for any ¢ € iX(Q), where the left hand side is a finite sum. Note tKaAD (10)iX(Q) c
iX(Q) forany j = 1,2,--- because&K*A(1)iX(Q) c iX(Q) for any A (the assumption
(X8)).

Now suppose that € V, is a generalized eigenfunction satisfyiB§"(1y) o --- o
BM(1o)u = 0. For thisu, we need the following lemma.

Lemma. Foranyk=0,1,--- ,M -1,
(i) (A0 — T)u = (A0 — H)*B®(Ag) o - - - 0 B (Ag)p.
(i) K*(2o = TX)Ku € iX(Q).

Proof. Due to Thm.3.94 is included in the domain oftg — T*)X. Thus the left hand side
of (i) indeed exists. Then, we have

(lo = H)*BY(lo) = (o~ H)(id — A¥(10)K*(1 — H*) ")
= (Ao —H* = K*)(lo — H)*™" = (A = T¥)(Ao — H*)*™.

Repeating this procedure yields (i). To prove (ii), let us calculate
0 = K*(1o — H)*BM (1) 0 - - - 0 B (o).
Eq.(3.18) and the part (i) of this lemma give

0 = KXB(M"‘)(/IO) 0---0 B(k+1)(/10) o (Ao — HX)k o B(k)(/lo) 0--+0 B(l)(/lo)u
K*BM™™M(0) o -+ 0 B¥D(0) o (Ao — T)u.

For example, whek = M — 1, this is reduced to

0 = KX(id — A(19)K*) o (1o — T)M 1.
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This provesK*(1g — T)M-1y = KXA(1)K*(1o — T)M 1y € iX(Q). This is true for
anyk =0,1,---,M —1; it follows from the definition 0B (1y)’s thatK*(1y — TX)Xu is
expressed as a linear combination of elements of the ForAi) (10)¢;, &; € iIX(Q). Since
KXAD(10)iX(Q) C iX(Q), we obtaink*(lo — T¥) u € iX(Q). n

SinceK*(1 — T)Xu € iX(Q), we can substitute = K*(1g — T*)ku into Eq.(3.35).
The resultant equation is rearranged as

k
EK*(id — A(20)K*) (Ao — T¥)u — [id + Z E_jK* (Ao — )T [ AMD(0)K* (20 — T)u
i=1

= 3 E K AT (o - T

j=k+1
Further, Qo — T¥)X = (1o — H)*B® (1) o - - - 0 BY(1p) provides
ExK* (Ao — H)*B* (o) o - - - o BY (o)

k
—|id + Z E_jcK*(20 — H) [ A% D) K* (20 - H)*BM(20) 0 - - - 0 BP (o)

j=1

_ Z E_ KX AT K= (Ao — T u. (3.36)

j=k+1
On the other hand, comparing the fiogents of 1y — 1)° of Eq.(3.34) provides
Eo(id — K*A(d0))¢ — i E_jK*AT ()¢ = A(do),
j=1
for any¢ € iX(Q). Substitutingps = K*u € iX(Q) provides
(id + EgK*)B®(o)u = pt + i E_jK*AUD Q) K*p. (3.37)
j=1
By adding Eq.(3.37) to Egs.(3.36) far=1,--- ,M — 1, we obtain

(id + EoK*)B®( o)
M-1 K '
- id + Z E_jcK*(20 — H)* [ A%D0)K* (20 — H)*BY(20) 0 - - - 0 BV (o)

k=1 =1
M-1
+ ) Bk (o = H) B D(g) o - - 0 BY(Ao)u
k=1
M-1 o -
= u+ E_iK*AURD0)K* (1 — T*) u. (3.38)
k=0 j=1
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The left hand side above is rewritten as
(id + EoK* + E1K* (1o — HX)) BD(10) BY(Ao)u

M-1 k
- [id + > E_jkK*(A0 - Hx)k_j)A(kﬂ)(/lo)KX(/lo — H*)*BY (1) o - - 0 BP(Ao)u
k=2 j=1
M-1
+ ) ExK*(1o — H)*B& (1) o - - - o BY (o).
k=2

Repeating similar calculations, we can verify that Eq.(3.38) is rewritten as

M-1
[id * Z E;jK*(4o - Hx)j] B™() o - - - 0 BY(Ao)
=0

M S
= =) ) B AR (1 - T (3.39)

k=0 j=1

SinceBM(1g) o - - - o BO(1)u = 0, we obtain

M-1
ll =
k=

Z E—j KXA(j+k+1)(/lo)KX(/lQ _ Tx)k/.l.
0 j=1

SinceR(E-;) c R(E-1) = R(Ilp), this provedIsiX(€2) > Vo. Thus the proof ofloiX(€2) =
Vo is completed. ]

3.6 Properties of the generalized spectrum

We show a few criteria to estimate the generalized spectrum. Recadt (B} € o-o(T*)
because of Thm.3.5. The relation betwedi )ando(T) is given as follows.

Proposition 3.17. Let C_ = {Im(1) < O} be an open lower half plane. Let,(T) and

o(T) be the point spectrum and the spectrum in the usual sense, respectively. Then, the
following relations hold.

(i) o(T)NC_ c o(T) n C_. In particularo’®p(T) N C_ C op(T) N C_

(i) Let ¥ c C_ be a bounded subset of(T) which is separated from the rest of the
spectrum by a simple closed curye Then, there exists a point of(T) insidey. In
particular, ifA1 € C_ is an isolated point of(T), thena € o(T).

Proof. Note that whem € C_, the generalized resolvent satisfi@so i = io (1 - T)™?
due to Thm.3.12.

(i) Suppose thaft € o(T) N C_, wherep(T) is the resolvent set of in the usual
sense. Sincé{ is a Hilbert space, there is a neighborhagdc o(T) N C_ of A such that
(A’ = T) Lis continuous orH for any A’ € V, and the set(l’ — T) Y} vy, is bounded in
H for eachy € X(Q). Sincei : H — X(Q)’ is continuous and since the topologyX(Q)
is stronger than that off, R, oi =i o (4’ — T) ! is a continuous operator frod(Q2) into
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X(Q) for any A’ € V,, and the setRy o iy} ey, is bounded inX(Q2)’. This proves that
Aeo(MnC._.

Next, suppose that € C_ is a generalized eigenvalue satisfyimndj-{ K*A(1))i(y) = 0
fory € X(Q). Sinced—H is invertible o whena € C_, puttingg = (1—H) 1y provides

(id — K*A())i(1 - H)¢ = (i(A = H) — K} = i(1 = T)¢ = 0,

and thust € o ,(T).

(i) Let £ be the Riesz projection faL c o(T) N C_, which is defined ag® =
(2ni)~t fy(/l - T)~'dA. Sincey encloses a point af(T), PH # 0. SinceX(Q) is dense in
H, PX(Q) # 0. This factandR, oi = i o (1 — T)~! prove that the range of the generalized
Riesz projection defined by Eq.(3.24) is not zero. Hence, the closed glemeloses a
point of &(T). |

A few remarks are in order. If the spectrum Bfon the lower half plane consists
of discrete eigenvalues, (i) and (ii) show thgy(T) N C_ = o(T)NC_ = 6(T) N C_.
However, it is possible that a generalized eigenvalukeismot an eigenvalue in the usual
sense. See [4] for such an example. In most cases, the continuous spectrum on the lower
half plane is not included in the generalized spectrum because the topolo¢{¥nis
weaker than that o, although the point spectrum and the residual spectrum may remain
to exist as the generalized spectrum. Note that the continuous spectrum on the interval
also disappears; for the resolveat T)™* = (1 - H)"}(id — K(1 — H)"})~1 in the usual
sense, the factori(- H)=! induces the continuous spectrum on the real axis bedduse
is selfadjoint. For the generalized resolvent,«( H)™! is replaced byA(1), which has
no singularities. This suggests that obstructions when calculating the Laplace inversion
formula by using the residue theorem may disappear.

Recall that a linear operatarfrom a topological vector spacg to another topologi-
cal vector spac; is said to be bounded if there exists a neighborhdad X; such that
LU c X, is a bounded set. Whdn= L(2) is parameterized by, it is said to be bounded
uniformly in A if such a neighborhood is independent of. When the domairX; is a
Banach spacd,(1) is bounded uniformly im if and only if L(2) is continuous for each
(U is taken to be the unit sphere). Similailyis called compact if there exists a neighbor-
hoodU c X; such that.U c X; is relatively compact. Wheh = L(1) is parameterized
by 4, it is said to be compact uniformly in if such a neighborhootd is independent of
A. When the domaiiX; is a Banach spacé(1) is compact uniformly im if and only if
L(12) is compact for each. When the rang&; is a Montel space, a (uniformly) bounded
operator is (uniformly) compact because every bounded set in a Montel space is relatively
compact. Puf := {Im(1) < 0} U | U Q as before. In many applicationis:K*A()i is
a bounded operator. In such a case, the following proposition is useful to estimate the
generalized spectrum.

Proposition 3.18. Suppose that fonr € Q, there exists a neighborhoddl, c Q of A
such thati tK*A(X)i : X(Q) — X(Q) is a bounded operator uniformly itf € U,. If
id — i"tK*A(2)i has a continuous inverse M{Q), thena ¢ &(T).

Proof. Note thatR, oi is rewritten asR; oi = A(1) oi o (id —i~*K*A(1)i)~L. SinceA(1) oi
is continuous, it is sficient to prove that there exists a neighborhd@af A such that the
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set{(id —itK*A)i) Yy} vev, is bounded inX(Q) for eachy € X(Q). For this purpose, it
is suficient to prove that the mapping — (id —i—tK*A(2')i)~1y is continuous in” € V,.
Sincei~*K*A(2)i is holomorphic (see the proof of Thm.3.12), there is an ope@tarh)
on X(Q2) such that

id —i'K*A(1+ h)i = id —i*K*A(1)i — hD(4, h)

(id — hD, h)(id — i K*ACDI) ™) o (id — i *K*A)i).

Sincei~*K*A(1)i is a bounded operator uniformly ine U, D(4, h) is a bounded operator
whenh is suficiently small. Sinceil — i*K*A(1)i)™! is continuous by the assumption,
D(A, h)(id — i7tK*A(1)i)"! is a bounded operator. Then, Bruyn’s theorem [3] shows that
id — hD(4, h)(id — i~*K*A(2)i)~! has a continuous inverse forfeaiently smallh and the
inverse is continuous ih (whenX(Q) is a Banach space, Bruyn’s theorem is reduced to
the existence of the Neumann series). This proves idhati(*K*A(1 + h)i) 1y exists and
continuous irh for eachy. |

As a corollary, if X(QQ) is a Banach space andtK*A(A)i is a continuous operator on

X(Q) for eacha, thena € 5(T) if and only if id — i~*K*A(1)i has a continuous inverse

on X(Q2). Because of this proposition, we can apply the spectral theory on locally convex
spaces (for example, [2, 7, 20, 21, 24, 26]) to the opeidteri—tK*A(1)i to estimate the
generalized spectrum. In particular, like as Riesz-Schauder theory in Banach spaces, we
can prove the next theorem.

Theorem 3.19.In addition to (X1) to (X8), suppose thatt K*A)i : X(Q) — X(Q) is

a compact operator uniformly in € Q := {Im(1) < O} U | U Q. Then, the following
statements are true. A

(i) For any compact seD c Q, the number of generalized eigenvaluesDnis finite

(thus o,(T) consists of a countable number of generalized eigenvalues and they may
accumulate only on the boundaryf@for infinity).

(if) For eachly € 7,(T), the generalized eigenspa¥®g is of finite dimensional and
IMHiX(Q) = Vo.

(iii) o¢(T) = 6+(T) = 0.

If X(Q2) is a Banach space, the above theorem follows from well known Riesz-Schauder
theory. Even ifX(Q) is not a Banach space, we can prove the same result (see below).
Thm.3.19 is useful to find embedded eigenvaluesof

Corollary 3.20. Suppose that is selfadjoint. Under the assumptions in Thm.3.19, the
number of eigenvalues af = H + K (in H-sense) in any compact sbtc | is finite.
Their algebraic multiplicities dim Ketl(— T) are finite.

Proof. Let 1; € | be an eigenvalue dF. It is known that the projectiof® to the corre-
sponding eigenspace is given by

Pop = lim ie- (lo+ic=T) "9, ¢eH, (3.40)

where the limit is taken with respect to the topology®n When Im@) < 0, we have
Rii(¢) = i(2—T) ¢ for ¢ € X(Q). This shows

io 7)O¢ = ||rT_]O|8 ' R/lo+i£ o I(¢)’ ¢ e X(Q)
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Let Ry = 252 (Ao — A)'E; be the Laurent expansion ;, which converges arount.
This provides

oo = lim iz > (-ig)E; oi.

J=—00
Since the right hand side converges with respect to the topolog§(Qji, we obtain
loPo=—-Ej0i=1Ilgoi, E,=Ejz=---=0, (3.41)

wherell, is the generalized Riesz projection foy. Sincelg is an eigenvaluePoH + 0.
SinceX(Q) is a dense subspace®f, PoX(2) # 0. Hence, we obtaihlyiX () # 0, which
implies thatl, is a generalized eigenvalue,(T) c 65(T). Sinces,(T) is countable, sois
oo(T). SincelliX(Q) is a finite dimensional space, sofgX(€2). Then,PoH = PoX(Q)
proves to be finite dimensional becadH is the closure ofPoX(Q). |

Our results are also useful to calculate eigenvectors for embedded eigenvalues. In the
usual Hilbert space theory, if an eigenvalues embedded in the continuous spectrum of

T, we can not apply the Riesz projection fbbecause there are no closed curve€in
which separata from the rest of the spectrum. In our theary(T) = 7,(T) = 0. Hence,

the generalized eigenvalues are indeed isolated and the Riesz projégi®applied to

yield TTHiX(Q2) = V. Then, the eigenspace fi-sense is obtained & N D(T).

Proof of Thm.3.19. The theorem follows from Riesz-Schauder theory on locally convex
spaces developed in Ringrose [24]. Here, we give a simple review of the argument in
[24]. We denoteX(Q) = X andi~tK*A(1)i = C(1) for simplicity. A pairing for (X', X) is
denoted by - | - )x.

SinceC(1) : X — X is compact uniformly i1, there exists a neighborhodd of
zero in X, which is independent ot, such thatC(1)V c X is relatively compact. Put
p(x) = inf{|4]; X € AV}. Then,p is a continuous semi-norm oXandV = {x| p(x) < 1}.
Define a closed subspatéin X to be

M={xeX|p(xX)=0}cV. (3.42)

Let us consider the quotient spakgM, whose elements are denoted by. [The semi-
norm p induces a norn® on X/M by P([X]) = p(x). If X/M is equipped with the norm
topology induced by, we denote the space &8s The completion of3, which is a Banach
space, is denoted I#,. The dual spacs; of B, is a Banach space with the norm

Iulls, := sup Kul[XDsgl, (3.43)
P([x]) <1

where(- | - )g, is a pairing for (B, Bo). Define a subspace c X' to be

S={ueX| suvp|<u | X)x| < oo}, (3.44)

The linear mapping " S — B (u +— [) defined through |[X])s, = (1| X)x is bijective.
Define the operata®(1) : 8 — Bto beQ(A)[X] = [C(1)X]. Then, the equality

@1 QIIX])s, = (I C(A)X)x (3.45)
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holds foru € S andx € X. Let Qu(1) : By — By be a continuous extension Qf(1).
Then,Qp(1) is a compact operator on a Banach space, and thus the usual Riesz-Schauder
theory is applied. By using Eq.(3.45), it is proved that C is an eigenvalue o£(1) if

and only if it is an eigenvalue dPy(1). In this manner, we can prove that

Theorem 3.21 [24].The number of eigenvalues of the opera@gn) : X — X is at most
countable, which can accumulate only at the origin. The eigenspgggXer (z—C(1))™

of nonzero eigenvaluesare finite dimensional. i # 0 is not an eigenvalug— C(1) has
a continuous inverse aX. See [24] for the complete proof.

Now we are in a position to prove Thm.3.19. Suppose et not a generalized
eigenvalue. Then, 1 is not an eigenvalueCéf) = i—tK*A(1)i. The above theorem con-
cludes thatd — C(1) has a continuous inverse &{<Q2). SinceC(1) is compact uniformly
in A, Prop.3.18 implied ¢ o(T). This proves the part (iii) of Thm.3.19.

Let us show the part (i) of the theorem. L2t z(1) be an eigenvalue d(1). We
suppose that(1p) = 1 so thatlg is a generalized eigenvalue. As was proved in the proof
of Thm.3.12,(u|C(2)x)x is holomorphic ind. EQq.(3.45) shows thafi| Q(2)[X])sg, IS
holomorphic for any:"e B; and [x] € 8. SinceB, is a Banach space arftlis dense in
Bo, Qo(1) is a holomorphic family of operators. Recall that the eigenvajaeof C(2) is
also an eigenvalue @o(1) satisfyingz(1p) = 1. Then, the analytic perturbation theory of
operators (see Chapter VIl of Kato [14]) shows that there exists a natural nymsiieh
thatz(1) is holomorphic as a function ofi ¢ A0)Y/P. Let us show that(1) is not a constant
function. If z(1) = 1, every point inQ is a generalized eigenvalue. Due to Prop.3.17, the
open lower half plane is included in the point spectrunT oHence, there exists = f,
in H such thatf = K(1 — H)~*f for any1 € C_. However, since& is H-bounded, there
exist nonnegative numbeasandb such that

IK(2 = H)7HI < @ll(2 = H)7H + blIH(A = H) 7l = ali(2 = H) 7l + blla(a — H)™ —idll,

which tends to zero 48| — oo outside the real axis. Therefoiid)| < ||[K(1-H)™Y||-||f|| —

0, which contradicts with the assumption. Sirg@) is not a constant, there exists a
neighborhoodJ c C of 4 such thatz(1) # 1 whenA € U andA # Ao. This implies that

A € U\{40} is not a generalized eigenvalue and the part (i) of Thm.3.19 is proved.

_ Finally, let us prove the part (i) of Thm.3.19. PG(z) = (z-1)-id + C(2) and
Q2 = (z—1)-id + Q(2). They satisfyit | Q(A)[X])s, = (1| C(2)X)x and

@1 - Q@) Mg, = 1l (2 - C@) ™ Xx.

Since an eigenspace Qi(2) is finite dimensional, an eigenspace @(z) Is also finite
dimensional. Thus the resolvent £ Q(z))! is meromorphic iM € Q. SinceQ(2) is
holomorphic, § — Q1)) is also meromorphic. The above equality shows thati —
C(/l))‘lx>x is meromorphic for anyt € S. SinceS is dense inX’, it turns out that
(1-C(2))~*xis meromorphic with respect to the topologyXnTherefore, the generalized
resolvent

Ry oi = A()oio(id—itK*AWI)™ = A() o o (1 - C))™ (3.46)

is meromorphic orf2. Now we have shown that the Laurent expansiomRefis of the
form (3.30) for someéM > 0. Then, we can prove Eq.(3.33) by the same way as the proof
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of Thm.3.16. To prove thdilliX(Q) is of finite dimensional, we need the next lemma.
Lemma 3.22.dim KerB™(1) < dimKer (d — K*A(A)) for anyn > 1.
Proof. Suppose thaB™(1)u = 0 with u # 0. Then, we have

KX =H)"'BO(u = K*(A—H)"(id - AP(Q)K*(2 - H)")u
(id — K*A(1)) o K*(1 = H)"u = 0.
If K¥(A = H)" 1 = 0, BP()u = 0 yieldsu = ADQ)K*(1 — H)"Iu = 0, which
contradicts with the assumptignz 0. Thus we obtaitK*(1-H*)""1u € Ker (id—K*A(1))
and the mapping — K*(1 — H*)"14 is one-to-one. ]

Due to Thm.3.21, Kelid — K*A(Q)) is of finite dimensional. Hence, K& (1) is
also finite dimensional for any > 1. This and Eq.(3.33) prove thakiX(Q) is a finite
dimensional space. By Thm.3.184i X (Q2) = Vo, which completes the proof of Thm.3.19

(ii). =

3.7 Semigroups

In this subsection, we suppose that
(S1) The operatorT = i(H + K) generates &°-semigroupe™ onH (recall i= vV-1).
For example, this is true whek is bounded orH or T is selfadjoint. By the Laplace
inversion formula (2.4), the semigroup is given as
1 X-iy

— lim (A -T) ", ¢)d1, xyeR, (3.47)
271 x—e0 —x—iy
where the contour is a horizontal line in the lower half plane below the spectrdm of
In Sec.2, we have shown that if there is an eigenvalu€ oh the lower half planeg™
diverges a$ — oo, while if there are no eigenvalues, to investigate the asymptotic behav-
ior of €Tt is difficult in general. Let us show that resonance poles induce an exponential
decay of the semigroup.

We use the residue theorem to calculate Eq.(3.47)44.etQ be an isolated resonance
pole of finite multiplicity. Suppose that the contouis deformed to the contoyf, which
lies abovely, without passing the generalized spectr (i )'except fordy, see Fig.2. For
example, it is possible under the assumptions of Thm.3.19. Recall thap i X(Q2),
(1 — T) Yy, ¢) defined on the lower half plane has an analytic continuat®m | ¢)
definedom U 1 U {1|Im(1) < 0} (Thm.3.12). Thus we obtain

€My, ¢) =

- 1 . 1 .
€My, ¢) = o f e (R | p)yda — ot MR | pyda, (3.48)
y

Yo

wherey, is a suficiently small simple closed curve enclosing LetR, = 372 (4o —
A)'E; be a Laurent series &, as the proof of Thm.3.16. Due to Eq.(3.29) d&hd = —Il,,
we obtain

1 _ M-1 _ (—lt)k
o f YR gyl = ) (o = T Tloys | 9),
Y0 k=0 '
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Fig. 2: Deformation of the contour.

wherelly is the generalized projection to the generalized eigenspage 8fnce Img,) >
0, this proves that the second term in the right hand side of Eq.(3.48) decays to zero as
t — oo. Such an exponential decay (of a part of) the semigroup induced by resonance
poles is known as Landau damping in plasma physics [6], and is often observed for
Schibdinger operators [23]. A similar calculation is possible without defining the gen-
eralized resolvent and the generalized spectrum as long as the quantifly)(ty, ¢) has
an analytic continuation for someand¢. Indeed, this has been done in the literature.

Let us reformulate it by using the dual space to find a decaying state corresponding to
Ao. For this purpose, we suppose that

(S2)the semigroug(e™Y)*}i»0 is an equicontinuou§, semigroup orX(Q).

Then, by the theorem in 1X-13 of Yosida [32], the dual semigra@p)¢ = ((€ )" is
also an equicontinuou, semigroup generated by’i. A convenient sfiicient condition
for (S2) is that:

(S2)" K*|x(q) Is bounded ange™)o is an equicontinuou§, semigroup orX(Q).

Indeed, the perturbation theory of equicontinu@gssemigroups [27] shows that (S2)’
implies (S2). By using the dual semigroup, Eq.(3.47) is rewritten as

) X-iy
CRYE i lim ¢R ydA. (3.49)
2]T| X—00 —x—iy
for anyy € iX(Q). Similarly, Eq.(3.48) yields
. 1 . S (itk
@™y = o f MR ydA — Z e”otv(/lo — Ty, (3.50)
i Jy e !

when 4y is a generalized eigenvalue of finite multiplicity. For the dual semigroup, the
following statements hold.

Proposition 3.23.Suppose (S1) and (S2).
(i) A solution of the initial value problem

dﬂt =T, ¢(0)= e D(TY), (3.51)
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in X(Q)’ is uniquely given by(t) = (€79)*u.

(ii) Let 1o be a generalized eigenvalue grga corresponding generalized eigenfunction.
Then, €7)*uo = €"uq.

(iii) Let I, be a generalized projection fdg. The spacdlyiX(Q) is (€TY)*-invariant:
(€™)*Mo = o(€ ™) lixy-

Proof. Since{(€")*}s0 is an equicontinuou€, semigroup generated by, (i) follows
from the usual semigroup theory [32]. Because of Thm.3.5, we hBY@yi= i Aguo.
Then,

dgtéﬂotﬂo = i Ao€ "o = IT*(e ).

Thusé(t) = €'y, is a solution of the equation (3.51). By the uniqueness of a solution,
we obtain (ii). Because of Prop.3.13 (iii), we have

d i X LT X i X

@R =T (@R,).

d - R . -
aRA(e'Tt)XhY =Ry (@) T |y =iT" (Rﬂ(én)x) liv -

Hence, both ofdT)*R, andR,(€T")* are solutions of the equation (3.51). By the unique-
ness, we obtaire( )*R,liy = R.(€7)*|iv. Then, the definition of the projectidi, proves
(€T Tgly = Ho(€™)*|iy with the aid of Eq.(3.25). Sinc¥ is dense inX(Q) and both
operators€9)*IIyoi andlly(€T9)* oi = Iy o i o €Tt are continuous oX(Q), the equality

is true oniX(Q). |

By Prop.3.14, any usual functioh € X(Q) is decomposed a&| = u; + up with
u1 € ToiX(Q) andu, € (id — Ip)iX(€) in the dual space. Due to Prop.3.23 (iii) above,
this decomposition isd')*-invariant. Whenly € Q, (€"™)*u; € TiX(Q) decays to
zero exponentially at —» oo. EQ.(3.50) gives the decomposition explicitly. Such an
exponential decay can be well observed if we choose a function, whicHfisieutly
close to the generalized eigenfunctjay) as an initial state. Sinc&(Q) is dense inX(Q2)’
and since€'")* is continuous, for an§ > 0 ands > 0, there exists a functiogy in X(Q)
such that

KE™ Bol¥) = (€T kol W)l <&,
for0 <t < T andy € X(Q2). This implies that

(€0, 1) ~ (€T o ¢y = "o | ¥, (3.52)

for the interval O< t < T. Thus generalized eigenvalues describe the transient behavior
of solutions.

4  An application

Let us apply the present theory to the dynamics of an infinite dimensional coupled oscil-
lators. The results in this section are partially obtained in [4].
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synchronization de-synchronization

Fig. 3: The order parameter of the Kuramoto model.

4.1 The Kuramoto model

Coupled oscillators are often used as models of collective synchronization phenomena.
One of the important models for synchronization is the Kuramoto model defined by

%—w-+5isin(9-—9-) i=1---,N (4.1)
dt_ | szl ] 1/ — = s 1Ny .

whered; = 6(t) € [0, 2r) denotes the phase of axth oscillator rotating on a circle,
w; € R is a constant called a natural frequericy, O is a coupling strength, and whexe

is the number of oscillators. Whdn> 0, there are interactions between oscillators and
collective behavior may appear. For this system, the order paranfBtexhich gives the
centroid of oscillators, is defined to be

- N j0;(t)
n() ._N;e' . (4.2)

If |(t)| takes a positive number, synchronous state is formed, whijé)ifis zero on time
average, de-synchronization is stable (see Fig.3).

For many applicationd\ is too large so that statistical-mechanical description is ap-
plied. In such a case, the continuous limit of the Kuramoto model is often employed: At
first, note that Eq.(4.1) can be written as

de, Kk

— = wj +

= o+ 2 (0e ™ — 7).

Keeping it in mind, the continuous model is defined as the equation of continuity of the
form

8pt 0 _
i + 70 (Vor) =0,
K o
Vi=w+ z(ﬂ(t)e_'e - n(t)e?), (4.3)
o
n(t) = fR fo 5,0 )9(w)d0dw.

31



Ke K

Fig. 4: A bifurcation diagram of the order parameter. Solid lines denote stable solutions
and dotted lines denote unstable solutions.

This is an evolution equation of a probability measpre= pi(6, w) on St = [0, 2r) pa-
rameterized by € R andw € R. Roughly speaking(6, w) denotes a probability that

an oscillator having a natural frequeneyis placed at a positiod. Then above is the
continuous version of (4.2), which is also called the order parameteg(ands a given
probability density function for natural frequencies. This system is regarded as a Fokker-
Planck equation of (4.1). Indeed, it is known that the order parameter (4.2) for the finite
dimensional system converges to that of the continuous model-asco in some prob-
abilistic sense [5]. To investigate the stability and bifurcations of solutions of the system
(4.3) is a famous diicult problem in this field [4, 28]. It is numerically observed that
whenk > 0 is suficiently small, then the de-synchronous state= 0 is asymptotically
stable, while ifk exceeds a certain vallg, a nontrivial solution corresponding to the
synchronous statlg| > 0 bifurcates from the de-synchronous state. Indeed, Kuramoto
conjectured that

Kuramoto conjecture [17].

Suppose that natural frequencig& are distributed according to a probability density
function g(w). If g(w) is an even and unimodal function such tigd{0) # O, then the
bifurcation diagram of = || is given as Fig.4; that is, if the coupling strendt¢hs
smaller thark; := 2/(7g(0)), thenr = 0 is asymptotically stable. On the other hand i
larger thark., the synchronous state emerges; there exists a positive conssach that
r = r. is asymptotically stable. Near the transition pdigtr. is of orderO((k — k;)/?).

A function g(w) is called unimodal (atv = 0) if g(w;) > g(wy) for 0 < w1 < Wy
andg(w;) < g(wy) for wy < w, < 0. See [17] and [28] for Kuramoto’s discussion. The
purpose here is to prove the linear stability of the de-synchronous|sgtater = O for
0 < k < k. by applying our spectral theory whexw) = e“*/2/ v2r is assumed to be the
Gaussian distribution as in the most literature. See Chiba [4] for nonlinear analysis and
the proof of the bifurcation & = k..

At first, let us observe that thefticulty of the conjecture is caused by the continuous
spectrum. Let

Zj(t,w) = f(;zne”gpt(e, w)do (4.4)

be the Fourier cdéicient of pi(6, w). Then,Zy(t,w) = 1 andZ; satisfy the diferential
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equations

dz, . K K——
i iwZy + én(t) - én(t)zz, (4.5)

and
dz;
dt
for j=2,3,---. LetL?(R, g(w)dw) be the weighted Lebesgue space andf(b) := 1 €
L2(R, g(w)dw). Then, the order parameter is writtenig8 = (Z1, Po) by using the inner

product onL?(R, g(w)dw). Since our purpose is to investigate the dynamics of the order
parameter, let us consider the linearized systei gfiven by

dz; | k
E = (lM + ép) Zs, (47)

= iz + Koz - 1022, (4.6)

whereM : ¢(w) — we(w) is the multiplication operator ob?(R, g(w)dw) and® is the
projection onL?(R, g(w)dw) defined to be

Po(w) = fR #(@)g(w)dw = (¢, Po)Po. .8)

To determine the linear stability of the de-synchronous staté, we have to investigate
. . Kk
the spectrum and the semigroup of the operataeE iM + EP.

4.2 Eigenvalues of the operatoil;

The domain ofT; = iM + 550 is given byD(M) N D(P) = D(M), which is dense in

L2(R, g(w)dw). Since M is selfadjoint and sinc® is boundedT; is a closed operator

[14]. Leto(T,) be the resolvent set df, ando(T;) = C\o(T1) the spectrum. Let(T1)
ando(T;) be the point spectrum (the set of eigenvalues) and the continuous spectrum of
Ty, respectively.

Lemma 4.1. (i) Eigenvaluest of T, are given as roots of

[ gon=2 @9

—iw
(i) The continuous spectrum @f, is given by
0¢(Ty) =o(iM) =IR. (4.10)

Proof. Part (i) follows from a straightforward calculation of the equatin= Tyv.
Indeed, this equation yields

. k k
(A-iw)v = EPV =5 (v, Po)Po.
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This is rewritten aw = k/2 - (v, Po)(1 — iw)™tPy. Taking the inner product witRy, we
obtain

1= 51~ i) *Po.Py),

which gives the desired result. Part (ii) follows from the fact that the essential spectrum
is stable under the bounded perturbation. The essential spectrimi®the same as
o(iM). SinceM is defined on the weighted Lebesgue space and the wgights the
Gaussiang(iM) =i - supp@) = iR. |

Our next task is to calculate roots of Eq.(4.9) to obtain eigenvaluds.oPutk. =

(0)
Lemma 4.2. Whenk is larger thark., there exists a unique eigenvaluék) of T, on
the positive real axis. Ak decreases, the eigenvalagk) approaches to the imaginary
axis, and ak = k., it is absorbed into the continuous spectrum and disappears. When
0 < k < k¢, there are no eigenvalues.

which is called Kuramoto’s transition point.

Proof. PutA = x+ iy with X,y € R, EQq.(4.9) is rewritten as

X 2
Sy =
fR #_Xy)zg(w)dw 0.

The first equation implies that if there is an eigenvalueiy for k > 0, thenx > 0. Next,
the second equation is calculated as

(4.11)

- [eio o = [y o) - oy - o)de

Sinceg is an even functiony = 0 is a root of this equation. Sinagis unimodal,g(y +
w) —g(y - w) > 0wheny < 0,w > 0 andg(y + w) — g(y — w) < 0 wheny > 0,w > 0.
Hence,y = 0 is a unique root. This proves that an eigenvalue should be on the positive
real axis, if it exists.

Let us show the existence. | is large, Eq.(4.9) is expanded as

o) =

Thus Rouck’s theorem proves that Eq.(4.9) has a réot k/2 if k > 0 is suficiently
large. Its positioni(K) is continuous (actually analytic) ik as long as it exists. The

eigenvalue disappears only whér- +0 ask — k. for some valuék.. Substitutingy = 0
and taking the limix — +0, k — k;, we have

: X 2
LY
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The well known formula

, X
fm, J s el = 900
providesk, = 2/7g(0). Sincek. is uniquely determined, the eigenvalag) exists for
k > k., disappears & = k. and there are no eigenvalues for& < k. [

This lemma shows that whéxis larger thark., Z; = 0 of the equation (4.7) is unstable
because of the eigenvalue with a positive real part. However, wkek @ k., there are no
eigenvalues and the spectrumlafconsists of the continuous spectrum on the imaginary
axis. Hence, the usual spectral theory does not provide the stability of solutions. To
handle this dficulty, let us introduce a rigged Hilbert space.

4.3 Arigged Hilbert space forT;

To apply our theory, let us define a test function spé(®). Let Exp, (8, n) be the set of
holomorphic functions on the regid®y, := {z€ C|Im(2) > —1/n} such that the norm

Igllsn = sup e (4.12)

Im(2=>-1/n

is finite. With this norm, Exp(8, n) is a Banach space. Let EX{8) be their inductive
limit with respectton=1,2,---

Exp, (8) = lim Exp, (8,1) = |_]Exp, (8.1). (4.13)
>1

li
—
n n>1

Next, define Exp to be their inductive limit with respect = 0,1, 2, - - -

Exp, = I;Ln) Exp, (8) = [UO Exp, (8). (4.14)

Thus Exp is the set of holomorphic functions near the upper half plane that can grow at
most exponentially. Then, we can prove the next proposition.
Proposition 4.3.EXxp, is a topological vector space satisfying

(i) Exp, is a complete Montel space (see Sec.3.1 for Montel spaces).

(i) Exp, is a dense subspacelof(R, g(w)dw).

(iii) the topology of Exp is stronger than that df?(R, g(w)dw).

(iv) the operators\ and® are continuous on Exp In particular, T, : Exp, — EXxp, is
continuous (note that it is not continuous bR, g(w)dw)).

See [4] for the proof. ThusX(Q2) := Exp, satisfies (X1) to (X3) and the rigged Hilbert
space
Exp, ¢ LR, g(w)dw) c Exp, (4.15)

is well-defined. Furthermore, the operator

T:=Tii=M+ %P (4.16)
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satisfies the assumptions (X4) to (X8) with= M andK = %P. Indeed, the analytic
continuationA(1) of the resolvent{ — M)~ is given by

jF; ﬁw(w)qﬁ(w)g(w)dw + 2nig()p(2)g(A) (Im(2) > 0),
(A | ¢) = JLFUO jr; ﬁw(w)gb(w)g(w)dw (x=1€R), (4.17)
f;ﬁw(w)qﬁ(w)g(w)dw (|m(/1) < 0),

for ¢, ¢ € Exp,. Since functions in Expare holomorphic near the upper half plane, (X4)
and (X5) are satisfied with = R andQ = (the upper half plane). Sincé and® are
continuous on Exp (X6) and (X7) are satisfied withl = Exp,. For (X8), note that the
dual operatoK* of K is given as

k . :
K*u = 5(/” Po)X(Pol €iEXp, = iX(Q). (4.18)

Since the range df* is included iniX(Q2), (X8) is satisfied. Therefore, all assumptions
in Sec.3 are verified and we can apply our spectral theory to the op@&kgtor

Remark. T, is not continuous on Ex3, n) for fixed 8 > 0 because of the multiplication
M ¢ — we. The inductive limit ing is introduced so that it becomes continuous. The
proof of Lemma 4.1 shows that the eigenfunctiolgfassociated withl is given by

V, = 1—io’ 1> 0.
If 2 > 0is small,v, is not included in Exp(3, n) for fixed n. The inductive limit inn is
introduced so that any eigenfunctions are elements of Bxprthermore, the topology of
Exp, is carefully defined so that the strong dual EXgecomes a FErchet Montel space.
It is known that the strong dual of a Montel space is also Montel. Since Bxgefined
as the inductive limit of Banach spaces, its dual is realized as a projective limit of Banach
spaces ExpB, n)’, which is Féchet by the definition. Hence, the contraction principle is
applicable on Exp, which allows one to prove the existence of center manifolds of the
system (4.3) (see [4]), though nonlinear problems are not treated in this paper.

4.4 Generalized spectrum off /i

For the operatof,/i, we can prove that (see also Fig.5)

Proposition 4.4.

(i) The generalized continuous and the generalized residual spectra are empty.

(i) For anyk > 0, there exist infinitely many generalized eigenvalues on the upper half
plane.

(i) For k > ke, there exists a unique generalized eigenvali® on the lower half plane,
which is an eigenvalue af, /i in L?(R, g(w)dw)-sense. Ak decreasesl(k) goes upward
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Fig. 5: Ask decreases, the eigenvalu€lgfi disappears from the original complex plane
by absorbed into the continuous spectrum on the real axis. However, it still exists as a
resonance pole on the second Riemann sheet of the generalized resolvent.

and atk = k., A(k) gets across the real axis and it becomes a resonance pole. When
0 < k < kg, A(K) lies on the upper half plane and there are no generalized eigenvalues on
the lower half plane.

Proof. (i) SinceK* given by (4.18) is a one-dimensional operator, it is easy to verify the
assumption of Thm.3.19. Hence, the generalized continuous and the generalized residual
spectra are empty.

(i) Let 2 andu be a generalized eigenvalue and a generalized eigenfunction. By
Eq.(3.11),1 andu satisfy {d — K*A(1))K*u = 0. In our case,

k
(K*ul¢)y = z(/ﬂ Po){(Pol &)
and
k 2
(K*AQK 1] ¢y = (A)K u | K ¢y = (Z) (U Po){Po | ¢){A(1)Pq | Po),

for any¢ € Exp,. Hence, generalized eigenvalues are given as roots of the equation

"
= (AP Py) =

f ﬁg(w)dw +27ig(1) (Im(2) > 0),
R (4.19)

fR ﬁg(w)dw (Im(2) < 0).

Sinceg is the Gaussian, it is easy to verify that the equation (4.19) for)n¥ 0 has
infinitely many rootg,};. , such that Im{,) — co and they approach to the rays aig¢
/4, 3r/4 asn — oo,

(i) When Im(2) < 0, the equation (4.19) is the same as (4.9), in which replaced
by id. Thus Lemma 4.2 shows that whkn k., there exists a root(k) on the lower half
plane. Ask decreasesi(k) goes upward and for @ k. < k, it becomes a root of the first
equation of (4.19) because the right hand side of (4.19) is holomorphic in ]
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Eq.(3.10) shows that a generalized eigenfunction associatedivistigiven byu =
AQK*u = %(,ul Po)-A(1){Po |. We can choose a constant Po) as{u | Po) = 2i/k. Then,
u = APy | = A)i(Py). When ImQ@) < 0, u is a usual function written gg = (1 —
w)™! € Exp,, although when Im{) > 0, i is not included in_?(R, g(w)dw) but an element
of the dual space EXp In what follows, we denote generalized eigenvalueg.by;’
such thafa,| < |A,4] forn = 0,1,---, and a corresponding generalized eigenfunction
by pn = A(An){Pol. Thm.3.5 proves that they satis®y‘u, = idu,. Note that when
0 < k < k., all generalized eigenvalues satisfy lx) > O.

Next, let us calculate the generalized resolveritgf. Eq.(3.21) yields
k
Raig = ALK Rip = A()p =  Rip = AlD)g + EW{MM Po)A(A)(Pol, (4.20)

for any¢ € Exp,. Taking the inner product witRy, we obtain

(AP (A)Pol¢)

Ri¢| Po) = - '
(R1¢ | Po) 1—%(A(/1)P0|Po> 1_%(A(/1)P0|Po>

Substituting this into Eq.(4.20), we obtain
Rugp = A + (2i/k = (A()Po | Po) ™ (A())Po | 4) - A(1)(Pol. (4.21)

Then, the generalized Riesz projection for the generalized eigenalsgiven by

1
¢ = P fﬂ,@d/l = Dn¢A(1)Po | ¢) - A(20){Po| = Dndutn | @) - tin, (4.22)
y

or
(ng | ) = Dnlun| @) - {un | ¥), (4.23)

whereD,, is a constant defined by

Dn = lim (4 - 2n) - (2i/k = (A()Po| Po)) .

As was proved in Thm.3.16, the rangeltf is spanned by the generalized eigenfunction
Hn.

4.5 Spectral decomposition of the semigroup

Now we are in a position to give a spectral decomposition theorem of the semigroup
generated bf; = i M+ &P. Since M generates th€°-semigroup on.*(R, g(w)dw) and
# is boundedT; also generates tf&°-semigroup given by

X+iy

ety = lim i (1 - Ty) pda, (4.24)

y=oo 2t Jx-iy

fort > 0, wherex is a suficiently large number. 1h1.2(R, g(w)dw)-theory, we can not
deform the contour from the right half plane to the left half plane becdudsas the
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continuous spectrum on the imaginary axis. Let us use the generalized res®)veint
T1/i. For this purpose, we rewrite the above as
1 y—ix
ey = lim =— f (A - Ty/i) eda, (4.25)
y—eo 27l —y—ix
whose contour is the horizontal line on the lower half plane (Fig.6 (a)). Recall that when
Im(2) < 0, (A - T1/i)1p, ) = (Rup | ¢) for ¢,y € Exp, because of Thm.3.12. Thus we
have _
.1 v
€™ |yy = lim — (R ¢ | y)ydA. (4.26)
y—o0 2ni —y-ix
Since(R,¢ | ) is ameromorphic function whose poles are generalized eigenvalygs,
we can deform the contour from the lower half plane to the upper half plane. With the aid

of the residue theorem, we can prove the next theorems.

Theorem 4.5 (Spectral decomposition).
For anyg¢, € Exp,, there exist$, > 0 such that the equality

(€g1y)y = > Da€™un ) - (un W) (4.27)
n=0
holds fort > t,. Similarly, the dual semigrou(*)* satisfies
(€6 = > Do€"un|®) - (4.28)
n=0

for ¢ € Exp, andt > t5, where the right hand side converges with respect to the strong
dual topology on Exp.

Theorem 4.6 (Completeness).

(i) A system of generalized eigenfunctiojps}? , is complete in the sense thatf, | ) =
Oforn=0,1,---, theny = 0.

(i) po,p1,--- are linearly independent of each other}jf , anun, = 0 with a, € C, then
a, = 0 for everyn.

(iii) The decomposition ofe’*")* using{un}, is uniquely expressed as (4.28).

Corollary 4.7 (Linear stability).
When 0 < k < k., the order parametef(t) = (Zi, Po) for the linearized system (4.7)
decays exponentially to zero tis»> oo if the initial condition is an element of Exp

Proof. We start with the proof of Corollary 4.7. When an initial condition of the system
(4.7) is given byp € Exp,, the order parameter is given i) = (Z;, Po) = (e™'g, Py).
If 0 < k < ke, all generalized eigenvalues lie on the upper half plane, so thatRe{i0
forn=0,1,---. Then the corollary follows from Eq.(4.27).

Next, let us prove Thm.4.6.

() If {un|ywy = O for all n, Eq.(4.27) providesel*'¢, y) = (¢, (€™")*y) = O for any
¢ € Exp,. Since Exp is dense inL(R, g(w)dw), we obtain €"")*y = 0 for anyt > t,,
which proves) = 0.
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(if) Suppose tha}’;’ , anun = 0. Prop.3.23 provides
0= (")) ann= ) an(€™yun= > ae"u,
n=0 n=0 n=0

Changing the label if necessary, we can assume that
Re[ilg] > Re[il1] > Refidg] > -+,

without loss of generality. Suppose that Rgli= - - - = Re[id] and Re[iy] > Re[idy,1].
Then, the above equality provides

k (o)
0= Z a,dmilt, Z g, el nRelitat,

n=0 n=k+1
Taking the limitt — oo yields

k
0= ‘!I_TO aneilm[i/ln]t’un.
n=0
Since the finite sefo,--- ,ux of eigenvectors are linearly independent as in a finite-
dimensional case, we obtagy = 0 forn = 0,--- ,k. The same procedure is repeated
to provea, = 0 for everyn.
(i) This immediately follows from Part (ii) of the theorem.
Finally, let us prove Thm.4.5. Recall that generalized eigenvalues are roots of the
equation (4.19). Hence, there exist positive num&asnd{r,-}l?‘;l such that

1- %(A(/I)Po| Po)| > B (4.29)

holds ford = r;€? (0 < 6 < ). Take a positive numbet so that Im@,) > —d for all
n=0,1,---. Fixasmall positive numberand define a closed cur&j) =C;+---+Cg

by

={X-id| =r; <x<rj}
Co={rj—iy|0<y<d}
Cs=1rjd’|0<0<4)

Ci={rid’|6<6<n-6),

andCs andCg are defined in a similar manner @ andC,, respectively, see Fig.6 (b).

Let Ao, 41, - - -, An(j) be generalized eigenvalues inside the closed cGfyg Due to
Eq.(4.22), we have

N(j)

1 . )
—— é/lt ﬂ d/lz Dnel/lnt n n .
2 oo (Rud ) Z; (tin | ) ptn | 1)
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(a) (b)

Fig. 6: The contour for the Laplace inversion formula.

Taking the limitj — oo (rj — oo) provides

@ww=mif ™ Rg | yyda
joeo 2l Co+--+Cg

N(j) _
+lim Dnel/lnt<,un | @) - (un [¥).

J—)OO
n=0

We can prove by the standard way that the integrals ali)@s, Cs andCg tend to zero
asj — oo. The integral along:, is estimated as

IA

/2 ]
maxRio |- [ 2re o
/IEC4 Py

éW%MWM‘

Cs

IA

/2
max|{(R¢ | )| - f 2rje it dg
A€Cy 5

IA

T (2rist/n et
maxi(Ry | ) G e™).

It follows from (4.21) that

1
2i/k— (A(D)Po [ Poy

Rad ) =
i
f(A(ﬂ)ab [y = (A()Po | Po){A()¢ | ) + (A(A)Po | p){A()Po | t//>) :
Sinceg, ¥ € Exp,, there exist positive constars, C,, 51, 3, such that

lp(2)] < C1PM, |y ()] < CePM,
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Using the definition (4.17) oA(1), we can show that there exist positive consténgs - - , D4
such that

Do + (D1 + D,C,e8M + D3Ce5M + D4C1C29('61+B2)|/”) -9l

R .
KR Y| < 12i/k = (A(2)Pg | Po)|

(4.30)

When|g(4)] — oo as|d| — oo, this yields
Do + (D1 + DyC1811 + D3CoPM + D,4C1C eb1+42I)
21

When|g(1)| is bounded a$l| — oo, EQ.(4.29) is used to estimate (4.30). For both cases,
we can show that there exiddg > 0 such that

KRap ) < +0(|1)).

(R |y)] < DserP2ri (1 = 1,€").

Therefore, we obtain

(R | yydA

< 7TD5 (e(ﬂl+ﬁ2—25t/ﬂ)rj _ e(ﬁ1+/32—t)ri) .
Ca t

Thus ift > ty := #(B1 + B2)/(29), this integral tends to zero gs— oo, which proves

Eq.(4.27). Since Eq.(4.27) holds for eaghe Exp,, the right hand side of Eq.(4.28)
converges with respect to the weak dual topology on,Egince Exp is a Montel space,
a weakly convergent series also converges with respect to the strong dual topolamyy.

A Pettis integrals and vector valued holomorphic func-
tions on the dual space

The purpose in this Appendix is to give the definition and the existence theorem of Pettis
integrals. After that, a few results on vector-valued holomorphic functions are given. For
the existence of Pettis integrals, the following property

(CE) for any compact s, the closed convex hull df is compact,

which is sometimes called the convex envelope property, is essentially used. For the
convenience of the reader,fBaient conditions for the property are listed below. We also
give conditions forX to be barreled because it is assumed in (X3). Xdie a locally
convex Hausddf vector space, and’ its dual space.

e The closed convex hutio(K) of a compact seK in X is compact if and only if
Cco(K) is complete in the Mackey topology ot (Krein’s theorem, see #the [16],
§24.5).

e X has the convex envelope propertyiis quasi-complete.

¢ If Xis bornological, the strong du! is complete. In particular, the strong dual of
a metrizable space is complete.
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e If X is barreled, the strong dud’ is quasi-complete. In particulaX’ has the
convex envelope property.

e Montel spaces, [echet spaces, Banach spaces and Hilbert spaces are barreled.

e The product, quotient, direct sum, (strict) inductive limit, completion of barreled
spaces are barreled.

See Teves [30] for the proofs.

Let X be a topological vector space ovgiand S, 1) a measure space. Let S —» X
be a measurabl¥-valued function. If there exists a uniglie € X such thai¢|ls) =
fs<§| fydu for any & € X', I is called thePettis integralof f. It is known that ifX is a
locally convex Hausddi vector space with the convex envelope propestis a compact
Hausdoft space with a finite Borel measusgand if f : S — X is continuous, then the
Pettis integral off exists (see Rudin [25]). In Sec.3.5, we have defined the integral of the
form fyRAqu/l, whereR,¢ is an element of the dua{(Q2)’. Thus our purpose here is to
define a “dual version” of Pettis integrals.

In what follows, letX be a locally convex Hausdivector space ovet, X’ a strong
dual with the convex envelope property, and $ebe a compact Hausddrspace with
a finite Borel measurg. For our purpose in Sec.3.5,is always a closed path on the
complex plane. Lef : S — X’ be a continuous function with respect to the strong dual
topology onX'.

Theorem A.1l. (i) Under the assumptions above, there exists a uni@jtles X’ such that
<|(f)|X>=f<f|X>dﬂ (A1)
S

foranyx e X. I(f) is denoted by (f) = fsfd,u and called the Pettis integral 6f

(i) The mappingf — I(f) is continuous in the following sense; for any neighborhood
U of zero inX’ equipped with the weak dual topology, there exists a neighborkicaid
zero inX’ such that iff (s) € V for anys e S, thenl(f) € U.

(iii) Furthermore, suppose thXtis a barreled space. L&tbe a linear operator densely
defined onX andT’ its dual operator with the doma(T’) c X'. If f(S) c D(T’) and
the set(T’ f(S)| X)}ss is bounded for eack € X, then,I(f) € D(T’) andT’I(f) = I(T’f)

holds; that is,
T'ffdu:fT'fd,u (A.2)
S S
holds.

The proof of (i) is done in a similar manner to that of the existence of Pettis integrals
on X [25]. Note thatT is not assumed to be continuous for the part (iii). WHers
continuous, the sé{T’ f(9) | X)}«s is bounded becaud€ and f are continuous.

Proof. At first, note that the mapping | x) : X’ — C is continuous becaus¢ can be
canonically embedded into the dual of the strong d¢fal Thus(f(:)|x) : S — Cis
continuous and it is integrable on the compact&etith respect to the Borel measure.
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Let us show the uniqueness. If there are two elemeértty, I,(f) € X’ satisfying
Eq.(A.1), we haveél (f)|x) = (Io(f) | x) for anyx € X. By the definition ofX’, it follows
11(F) = 12(f).

Let us show the existence. We can assume without loss of generality thatvector
space oveR andu is a probability measure. L&t c X be a finite set and put

Vi(f)=VL =X e X |[{(X|X) = f(f | Xydu, VX e L}. (A.3)
S

Since(- | X) is a continuous mappiny, is closed. Sincé is continuousf (S) is compact
in X’. Due to the convex envelope property, the closed convexclo(il(S)) is compact.
Hence W, := VN To(f(S)) is also compact. By the definition, it is obvious thet, N
WL, = W,u,- Thus if we can prove thad/_ is not empty for any finite sdt, a family
{WL}Legiinite sey has the finite intersection property. Thgn, W, is not empty because
co(f(S)) is compact. This implies that there exi${$) € () WL such thal(f)|x) =
JF1xdu foranyx e X.

Let us prove thaWV_ is not empty for any finite sdt = {x,--- , X,} € X. Define the
mappingL : X’ — R"to be

LX) = (X X0, (X [ X)) -

This is continuous and(f(S)) is compact irR". Let us show that the element

y:=(fs<f|xl>du,---,fs<f|xn>du) (A.4)

is included in the convex hulto(L(f(S))) of L(f(S)). If otherwise, there exist real
numberscy, - - - , ¢, such that for any#,, - - - , z,) € co(L(f(S))), the inequality

n n
Dez< o Y=
i=1 i=1

holds (this is a consequence of Hahn-Banach theoreR™orn particular, sincel(f(S)) c

co(L(f(S))),

ici(f I %) < iCiYi-
i1 =

Integrating both sides (in the usual sense) yiellls ciy; < Y., cyi. This is a contra-
diction, and thereforg € co(L(f(S))). SinceL is linear, there existg € co(f(S)) such
thaty = £(v). This implies thatv € V_ n co(f(S)), and thusW_ is not empty. By the
uniqueness; ). W = {I(f)}. Part (ii) of the theorem immediately follows from Eq.(A.1)
and properties of the usual integral.

Next, let us show Eq.(A.2). WheX is a barreled spacé(f) is included inD(T’) so
thatT’I(f) is well defined. To prove this, it is flicient to show that the mapping

X ((F)|Tx = f(f | Txdu = f(T’f | Xydu
s S
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from D(T) c X into C is continuous. By the assumption, the $€t’'f(S)|X)}«s IS
bounded for eaclx € X. Then, Banach-Steinhaus theorem implies that the family
{T’f(s)}ss Of continuous linear functionals are equicontinuous. Hence, forsany0,
there exists a neighborhodd of zero in X such that(T’'f(s)|x)| < € foranys € S
andx € U. This proves that the above mapping is continuous, soltiate D(T’) and
TI(f) =T WL.

For a finite set. c X, put

V(T f) ={X e X KX |X) = f(T’f | Xydu, VX e€ L},
S
TV (f) ={T'X e X' |X € D(T’), (X' |X) = f(f | Xydu, Yx e TL}.
S

Put W (f) = V() nTo(f(S)) as before. It is obvious tha®, W.(f) c N Wr ().
Therefore,

{T"1(f)}

T/ ((\WL(F) € T'( Wi (F) N D(T)
L L

N

(1) (Vru(f) N TO(F(S)) N D(T")
L

N

()TVILH) N T'EAF(S) NR(TY).
L

On the other hand, ¥ € T'V1(f), there exist¢ € X’ such thaty = T’X and(X' | X) =
fs<f | xydu for anyx € TL. Then, for anyx € L N D(T),

YIX)=(TX|x)=(X|Tx = f(f | TX)du = f(T’f | X)du.
S S
This implies thay’ € Vi ~pm) (T’ f), and thusT V7 (f) € Vipm (T’ f). Hence, we obtain

(T (VT H N TAT'H(S)) = [ | Weom(T').
L L

If (X'|X) = fs<f | xydu for dense subset of, then it holds for any € X. Hence, we have
(T 6)) = (YWL(T' ) = () Wenom(T'f) 2 {T'1(F)). (A.5)
L L

which provesT’I(f) = I(T’f). ]

Now that we can define the Pettis integral on the dual space, we can develop the “dual
version” of the theory of holomorphic functions. L&tand X’ be as in Thm.A.1. Let
f : D - X’ be anX’-valued function on an open sbtc C.

Definition A.2. (i) f is called weakly holomorphic if | x) is holomorphic orD in the
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classical sense for anye X (more exactly, it should be called weak-dual-holomorphic).
(i) f is called strongly holomorphic if

lim 1 (f(z) — f(2)), (the strong dual limit) (A.6)
w27y — Z

exists inX’ for anyz € D (more exactly, it should be called strong-dual-holomorphic).

Theorem A.3. Suppose that the strong duélsatisfies the convex envelope property and
f . D — X’ is weakly holomorphic.

(i) If fis strongly continuous, Cauchy integral formula and Cauchy integral theorem hold:
f
Q=57 [ 7 osin [ f@dz=o

wherey c D is a closed curve enclosire D.

(i) If f is strongly continuous and K’ is quasi-completef is strongly holomorphic and

is of C* class.

(i) If Xis barreled, the weak holomorphy implies the strong continuity. Thus (i) and (i)
above hold;f is strongly holomorphic and is expanded in a Taylor series as

f(2 = Z fo .(a)( —a)", (strong dual convergence) (A.7)

n=0

neara € D. Similarly, a Laurent expansion and the residue theorem hofdhés an
isolated singularity.

Proof. (i) Sincef is continuous with respect to the strong dual topology, the Pettis integral

1 (f(@)
I(Z)_ﬁfyzo—zdzo

exists. By the definition of the integral,

<f(Zo)|X>

|
(@)% = -2

27r|
for anyx € X. Since(f(2) | x) is holomorphic in the usual sense, the right hand side above
is equal to(f(2) | x). Thus we obtair(z) = f(2), which gives the Cauchy formula. The
Cauchy theorem also follows from the classical one.

(i) Let us prove thaf is strongly holomorphic a&,. Suppose tha = 0 andf(z) = 0
for simplicity. By the same way as above, we can verify that

@ _ 1 [ _f)
"z 'f20(20 5%

_ f(20) z [ H(=)
- 2m 2 %750 | 2z-2 %
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SinceX’ is quasi-complete, the above convergeg as 0 to yield

f f

In a similar manner, we can verify that

(0@ = 10 = o i s (A8)

exists foranyn=0,1,2,---

(i) If Xis barreled, weakly bounded sets{hare strongly bounded (see Thm.33.2 of
Tréves [30]). By using it, let us prove that a weakly holomorphis strongly continuous.
Suppose that(0) = 0 for simplicity. Since(f(2)|x) is holomorphic in the usual sense,
Cauchy formula provides

(f@x _ 1 1 (f(2)|x
z _Znij;zo—z % dz

Suppose thay < § andy is a circle of radius & centered at the origin. Singé(-) | x) is
holomorphic, there exists a positive numiérsuch that(f(z) | x)| < M for anyz, € y.
Then,

25 25 OS5

This shows that the s@& = {f(2)/z| |Z < ¢} is weakly bounded iX’. SinceX is bar-
reled,B is strongly bounded. By the definition of bounded sets, for any convex balanced

neighborhoodJ of zero inX’ equipped with the strong dual, there is a numtelO such
thattB c U. This proves that

‘(f(z)lx) 1 1 M M

ﬂ@—ﬂ@:f@€§UC%U

for |z— 0] < 8, which implies the continuity of with resect to the strong dual topology.

If Xis barreledX’ is quasi-complete and has the convex envelope property. Thus the
results in (i) and (ii) hold.

Finally, let us show thaf(z) is expanded in a Taylor series aroumd& D. Suppose
a = 0 for simplicity. Let us prove that

forms a Cauchy sequence with respect to the strong dual topology. It follows from (A.8)
that

F@) 1%
dz
y Z8+1
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for any x € X. Suppose that is a circle of radius & centered at the origin. There exists
a constanM, > 0 such that(f(z)|x)| < My for anyz, € v, which implies that the set
{f(20) ]2 € y} is weakly bounded. Becauseis barreled, it is strongly bounded. There-
fore, for any bounded s& c X, there is a positive numbédg such that(f(z) | X)| < Mg
for x e Bandz € y. Then, we obtain

1 1 M M

_f(n)o '<_—B4 = B_
'n!< O] < 22 oyt ¥ = oy
By using this, it is easy to verify thgtSy | x)}_, is a Cauchy sequence uniformly in
x € Bwhen|z < 6. SinceX’ is quasi-completeS,, converges am — oo in the strong
dual topology. By the Taylor expansion in the classical sense, we obtain

(fF@1% = (@) 1%7' = Z—<f<”>(0)|x>z“

Idzg'

Since limy. Sm exists and - | X) : X’ — C is continuous, we have
<f(z)|x>_<§ L1002 %)
Bl 4n! ’
n=

for anyx € X. This proves Eq.(A.7) foa = 0. The proof of a Laurent expansion, when
f has an isolated singularity, is done in the same way. Then, the proof of the residue
theorem immediately follows from the classical one. |

Remark. In a well known theory of Pettis integrals on a spacp5], not a dualX’, we

need not assume thAtis barreled because every locally convex spadeas the property

that any weakly bounded set is bounded with respect to the original topology. Since the
dual X’ does not have this property, we have to assume Xhat barreled so that any
weakly bounded set iK' is strongly bounded.
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