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Abstract

The renormalization group (RG) method is one of the singular perturbation methods which
is used in search for asymptotic behavior of solutions of differential equations. In this arti-
cle, time-independent vector fields and time (almost) periodic vector fields are considered.
Theorems on error estimates for approximate solutions, existence of approximate invariant
manifolds and their stability, inheritance of symmetries from those for the original equation
to those for the RG equation, are proved. Further it is proved that the RG method unifies
traditional singular perturbation methods, such as the averaging method, the multiple time
scale method, the (hyper-) normal forms theory, the center manifold reduction, the geometric
singular perturbation method and the phase reduction. A necessary and sufficient condition
for the convergence of the infinite order RG equation is also investigated.

1 Introduction

Differential equations form a fundamental topic in mathematics and its application to nat-
ural sciences. In particular, perturbation methods occupy an important place in the theory of
differential equations. Although most of the differential equations can not be solved exactly,
some of them are close to solvable problems in some sense, so that perturbation methods,
which provide technigues to handle such class of problems, have been long studied.

Thisarticle deals with asystem of ordinary differential equations (ODESs) on amanifold M

of the form

% =eg(t,x, ), XeM, (1.0

which is amost periodic in t with appropriate assumptions (see the assumption (A) in
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Sec.2.1), wheree € R or C isasmall parameter.
Since e issmall, it is natural to try to construct a solution of this system as a power series

in g of theform
X = X(t) = Xo(t) + exa(t) + &2Xo(t) + - - - . (1.2)

Substituting Eq.(1.2) into Eq.(1.1) yields a system of ODESs on X, X3, X2, - - - . The method to
construct X(t) in thismanner is called the regular perturbation method.

Itisknown that if thefunction g(t, x, &) isanalyticin g, the series (1.2) convergesto an exact
solution of (1.1), while if it is not analytic, (1.2) diverges and no longer provides an exact
solution. However, the problem arising immediately is that one can not calculate infinite
series like (1.2) in genera whether it converges or not, because it involves infinitely many
ODESs 0N Xg, X1, Xo, - - - . If the seriesis truncated at a finite-order term in &, another problem
arises. For example, suppose that Eq.(1.1) admits an exact solution X(t) = sin(et), and that
we do not know the exact solution. In this case, the regular perturbation method provides a

series of the form
. 1, 5 1, ¢
x(t):st—g(st) +§(st) 4 (1.3)

If truncated, the series becomes a polynomial in t, which diverges ast — oo although the
exact solution isperiodic in t. Thus, the perturbation method fails to predict qualitative prop-
erties of the exact solution. Methods which handle such a difficulty and provide acceptable
approximate solutions are called singular perturbation methods. Many singular perturbation
methods have been proposed so far [1,3,6,38,39,43,44,47,50] and many authors reported that
some of them produced the same results though procedures to construct approximate solu-
tions were different from one another [9,38,43,44,47].

The renormalization group (RG) method is the relatively new method proposed by Chen,
Goldenfeld and Oono [8,9], which reduces a problem to a more simple equation called the
RG equation, based on an idea of the renormalization group in quantum field theory. In
their papers, it is shown (without a proof) that the RG method unifies conventional singular
perturbation methods such as the multiple time scale method, the boundary layer technique,
the WKB analysis and so on.

After their works, many studies of the RG method have been done [10-13,16,21,22,26-
32,35,36,42,45,46,48,49,53,55-59]. Kunihiro [28,29] interpreted an approximate solution
obtained by the RG method as the envelope of a family of regular perturbation solutions.
Nozaki et al. [45,46] proposed the proto-RG method to derive the RG equation effectively.
Ziane[53] , DeVilleet al. [32] and Chiba[10] gave error estimates for approximate solutions.
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Chiba[10] defined the higher order RG equation and the RG transformation to improve error
estimates. He also proved that the RG method could provide approximate vector fields and
approximate invariant manifolds as well as approximate solutions. Ei, Fujii and Kunihiro
[16] applied the RG method to obtain approximate center manifolds and their method was
rigorously formulated by Chiba [12]. DeVille et al. [32] showed that lower order RG equa-
tions are equivalent to normal forms of vector fields, and this fact was extended to higher
order RG equations by Chiba[11]. Applicationsto partial differential equations are appeared
in [16,31,42,45,46,55-59].

One of the purposes of this paper is to give basic theorems on the RG method extending
author’s previous works [10-12], in which the RG method is discussed for more restricted
problems than Eq.(1.1). At first, definitions of the higher order RG equations for Eq.(1.1)
are given and properties of them are investigated. It is proved that the RG method provides
approximate vector fields (Thm.2.5) and approximate solutions (Thm.2.7) aong with error
estimates. Further, it is shown that if the RG equation has a normally hyperbolic invariant
manifold N, the original equation (1.1) also has an invariant manifold N, which is diffeomor-
phicto N (Thms.2.9, 2.14). The RG equation proves to have the same symmetries (action of
Lie groups) as those for the origina equation (Thm.2.12). In addition, if the original equa-
tion is an autonomous system, the RG equation is shown to have an additional symmetry
(Thm.2.15). These facts imply that the RG equation is easier to analyze than the origina
equation. An illustrative example to verify these theoremsis also given (Sec.2.5).

The other purpose of this paper isto show that the RG method extends and unifies other tra-
ditional singular perturbation methods, such as the averaging method (Sec.4.1), the multiple
time scale method (Sec.4.2), the (hyper-) normal forms theory (Sec.4.3), the center manifold
reduction (Sec.3.2), the geometric singular perturbation method (Sec.3.3), the phase reduc-
tion (Sec.3.4), and Kunihiro's method [28,29] based on envelopes (Sec.4.4). A few of these
results were partially obtained by many authors [9,38,43,44,47]. The present arguments will
greatly reveal the relations among these methods.

Some properties of the infinite order RG equation are also investigated. It is proved that
the infinite order RG equation convergesif and only if the original equation isinvariant under
an appropriate torus action (Thm.5.1). Thisresult extends Zung's theorem [54] which givesa
necessary and sufficient condition for the convergence of normal forms of infinite order. The
infinite RG equation for a time-dependent linear system proves to be convergent (Thm.5.6)
and be related to monodromy matrices in Floquet theory.



Throughout this paper, solutions of differential equations are supposed to be defined for all
teR.

2 Renormalization group method

In this section, we give the definition of the RG (renormalization group) equation and main
theorems on the RG method, such as the existence of invariant manifolds and inheritance
of symmetries. An illustrative example and comments on symbolic computation of the RG
equation are also provided.

2.1 Setting, definitions and basic lemmas

Let M be an n dimensional manifold and U an open set in M whose closure V] is compact.
Let g(t, -, £) beavector field on U parameterized by t € R and ¢ € C. We consider the system
of differential equations

dx

4 = X=#0(t. x 2). (2.1)

For this system, we make the following assumption.

(A) The vector field g(t, x, £) is C* with respect to timet € R and C* with respect to x € U
and e € & where& c Cisasmall neighborhood of the origin. Further, gisan amost periodic
function with respect to t uniformly in x € U and ¢ € &, the set of whose Fourier exponents
has no accumulation points on R.

In general, afunction h(t, X) is called almost periodic with respect to t uniformly in x € U
if the set

T(h,0):={r||lht+7,X)-h{t, x| <6, VteR,¥xeU}cCR

isrelatively densefor any § > O; that is, there exists apositive number L suchthat [a,a+ L] N
T(h,0) # 0 foral ae R. Itisknown that an almost periodic function is expanded in a Fourier
series as h(t, X) ~ Y a,(X)€™t, (i = V-1), where 1, € R iscaled a Fourier exponent. See
Fink [20] for basic facts on amost periodic functions. The condition for Fourier exponentsin
the above assumption (A) is essentially used to prove Lemma 2.1 below. We denote Mod(h)
the smallest additive group of real numbers that contains the Fourier exponents A, of an
almost periodic function h(t) and call it the module of h.



Let 352, *k(t, X) be the formal Taylor expansion of eg(t, X, &) ine

X = egu(t, X) + £2go(t, X) + - - - . (2.2)

By the assumption (A), we can show that g;i(t, X) (i = 1,2, --) are aimost periodic functions
with respect to t € R uniformly in x € U such that Mod(g;) ¢ Mod(g).

Though EQ.(2.1) is mainly considered in this paper, we note here that Egs.(2.3) and (2.5)
below are reduced to Eq.(2.1): Consider the system of the form

x = f(t,X) + eg(t, X, &), (2.3)

where f(t,-) isaC> vector field on U and g satisfies the assumption (A). Let ¢; be the flow
of f; that is, ¢i(Xp) is a solution of the equation x = f(t, X) whose initial value is xg at the
initial timet = 0. For this system, changing the coordinates by x = ¢;(X) provides

%= 2200\ gt 0,6 = et X 24
—+(5200) atta00.2) = egtt o) 24

We suppose that

(B) the vector field g satisfies the assumption (A) and there exists an open set W c U such
that ¢i(W) c U and ¢;(X) is amost periodic with respect to t uniformly in x € W, the set of
whose Fourier exponents has no accumulation points.

Under the assumption (B), we can show that the vector field g(t, X, €) in the right hand side of
Eq.(2.4) satisfies the assumption (A), in which g isreplaced by §. Thus Eq.(2.3) is reduced
to Eq.(2.1) by the transformation x — X.

In many applications, Eq.(2.3) is of the form

X =FXx+eg(X &)
= Fx+&g1(X) + £2g2(X) +--- , xe C", (2.5)
where

(C1) the matrix F isadiagonalizable n x n constant matrix all of whose eigenvalues are on
the imaginary axis,
(C2) each gi(x) isapolynomial vector field on C".

Then, the assumptions (C1) and (C2) imply the assumption (B) because ¢i(X) = €"'x isamost
periodic. Therefore the coordinate transformation x = €™ X brings Eq.(2.5) into the form of
Eq.(2.1): X = se Fig(eFX, &) := &(t, X, &). Inthis case, Mod(§) is generated by the absolute
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values of the eigenvalues of F. Note that any equations x = f(x) with C* vector fields f such
that f(0) = O take the form (2.5) if we put x — ex and expand the equationsin &.

In what follows, we consider Eq.(2.1) with the assumption (A). We suppose that the system
(2.1) is defined on an open set U on Euclidean space M = C". However, al results to be
obtained below can be easily extended to those for a system on an arbitrary manifold by
taking local coordinates. Let us substitute X = Xg + £Xq + £2% + - - - into the right hand side
of Eq.(2.2) and expand it with respect to £. We write the resultant as

[o¢] [e]

DUt X0+ exa + &%+ o) = ) Gl Xo X, X, (2.6)
k=1 k=1

For instance, G, G,, Gz and G4 are given by

Ga(t, X0) = 9u(t, Xo), (2.7)
Galt, Yo, 31) = 2t X0} + ot o), (29
Golt 10, 30) = 52 Bt 10 + 2 B 0 (00 + ot %), (29
Ga(t. X0, X1, X, X3) = 6((993g31 (t, x0)3 + 2 (t Xo) X1 Xz + —(t X0)X3
13292

2 8 2 (t XO)X]_ X (t’ XO)XZ + W(t’ XO)Xl + g4(t’ XO)’ (210)

respectively. Notethat G; (i = 1,2,---) are dmost periodic functions with respect to t uni-

formly in x € U such that Mod(G;) ¢ Mod(g). With these G;’s, we define the C* maps
R.u”:U > Mtobe

t
Ri(y) = Jim < f Gi(s y)ds (2.11)
ud(y) = f (Gy(sY) - Ru(y)) ds (2.12)
and
1 | SWNC
RO)=lim ¢ [ (G(s Y.t o D) - 2% (213)

i-1

_ t
0= [ (G(ey. i) il ) - 2%
k=1

k

VR« - R(y))ds.  (2.14)

fori = 2,3,---, respectively, where f " denotes the indefinite integral, whose integral con-
stants are fixed arbitrarily (see also Remark 2.4 and Section 2.4).
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Lemma2l. (i) ThemapsR (i =1,2,---) are well-defined (i.e. the limits exist).
(i) Themapsu(y) (i = 1,2,---) are aimost periodic functions with respect to t uniformly
iny e U such that Mod(u®) c Mod(g). In particular, u’ are boundedint € R.

Proof. We prove the lemma by induction. Since G;(t,y) = gi(t,y) isamost periodic, it is
expanded in aFourier series of the form

aty) = > ameh, neR, (2.15)
An€Mod(g1)

where 1o = 0. Clearly Ry(y) coincides with ag(y). Thus ugl) (y) iswritten as

U o) = f 'S anlyeids (216)

An#20
In general, it is known that the primitive function f h(t, y)dt of an uniformly aimost periodic
function h(t,y) is also uniformly almost periodic if the set of Fourier exponents of h(t,y) is
bounded away from zero (see Fink [20]). Since the set of Fourier exponents of g;(t,y) — Ru(Y)
is bounded away from zero by the assumption (A), uEl) (y) is amost periodic and calculated

as

u®(y) = Z %an(y)eunt + (integral constant). (2.17)
170

ThisprovesLemma2.1fori = 1.

Suppose that Lemma 2.1 holds for i = 1,2,---,k — 1. Since Gy(t, Xo, - , Xk_1)
and ufl)(y),--- ,ut(k‘l)(y) are uniformly amost periodic functions, the composition
Gi(t, Y, uP(y), - -, u*V(y)) is aso an uniformly almost periodic function whose mod-

uleisincluded in Mod(g) (see Fink [20]). Since the sum, the product and the derivative with
respect to a parameter y of uniformly almost periodic functions are also uniformly almost
periodic (see Fink [20]), the integrand in Eq.(2.13) is an uniformly almost periodic function,
whose module is included in Mod(g). The Ry(y) coincides with its Fourier coefficient
associated with the zero Fourier exponent. By the assumption (A), the set of Fourier
exponents of the integrand in Eq.(2.13) has no accumulation points. Thus it turns out that
the set of Fourier exponents of the integrand in Eq.(2.14) is bounded away from zero. This
proves that ugk) (y) isuniformly almost periodic and the proof of Lemma 2.1 is completed. m

Before introducing the RG equation, we want to explain how it is derived according to
Chen, Goldenfeld and Oono [8,9]. The reader who is not interested in formal arguments can
skip the next paragraph and go to Definition 2.2.
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At first, let us try to construct a formal solution of EQ.(2.1) by the regular perturbation
method; that is, substitute Eq.(1.2) into Eq.(2.1). Then we obtain a system of ODES

Xo =0,
X1 = Ga(t, Xo),

Xn = Gn(t, XO’ ) Xn—l),

Let Xo(t) = y € C" be asolution of the zero-th order equation. Then, the first order equation
issolved as

t t
xi(t) = f Gi(s y)ds = Riy)t + f Gi(sY) - Ru(y)) ds= Ri)t + uO ).

where we decompose x; (t) into the bounded term u§1) (y) and the divergenceterm Ry (y)t called
the secular term. In a similar manner, we solve the equations on Xy, X, - - - step by step. We
can show that solutions are expressed as

n-1

Xa(t) = U™ (y) + {Rn(y) + aa—(Y)Rn k(y)]t +0(t%),
i Y

(see Chiba [10] for the proof). In this way, we obtain aformal solution of the form

00 (o) n— 1
O = R(ty) =y+ ) &Py + Y e [Rn(y Z % L Rk |t + 0
n=1

n=1 k=1

Now we introduce a dummy parameter r € R and replace polynomials t! in the above by
(t — 7)). Next, weregard y = y(r) as a function of 7 to be determined so that we recover the
formal solution X(t, y):

n-1

() = y(r) + Z " (y(r)) + 2 [Rn(y(r)) +

n=1

a—(Y(T))Rn k(Y(T))] (t—7) +O((t - 7)%).

k=1
Since X(t, y) has to be independent of the dummy parameter , we impose the condition
d| .
EL:IX(L y) B O’
which is called the RG condition. This condition provides

= 6ut > n < ouf
+ Z Zg Ra(y) + Z 3y y)Rn_k(y)
n=1 k=1
S SN
_ (id ¥ ana—;(y)] %’ - [id # e “; (y)] SRA(Y).

n=1
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Thus we see that y(t) has to satisfy the equation dy/dt = Yi°; e“Ri(y), which gives the RG
equation. Motivated this formal argument, we define the RG equation as follows:

Definition 2.2. Along with R and u{’, we define the m-th order RG equation for Eq.(2.1) to

be
Y = eRu(y) + £°Ro(y) + - - + €™Rm(Y). (2.18)

and the m-th order RG transformation to be

ad™(y) =y + euD(y) + - + e™uM(y). (2.19)

Domains of Eq.(2.18) and the map afm) are shown in the next lemma.

Lemma 2.3. If |¢| is sufficiently small, there exists an open set V = V(¢) ¢ U such
that o{™(y) is a diffeomorphism from V into U, and the inverse (o{™)1(x) is also an almost
periodic function with respect to t uniformly in x.

Proof.  Since the vector field g(t, x, &) is C* with respect to x and &, so is the map afm).
Since o{™ is close to the identity map if || is small, there is an open set V; ¢ U such that
a§m> is adiffeomorphism on V;. Since V;’s are e-close to each other and since aﬁm) is almost
periodic, theset V := Mg V; is not empty. We can take the subset V  V if necessary so that
™ (V) c U.

Next thing to do is to prove that (a{m))‘l is an uniformly almost periodic function. Since
a§m> isuniformly almost periodic, the set

T@™,6) = {r]1l™(y) - ™ (y)l| <6, VteR, VyeV} (2.20)

isrelatively dense for any small § > 0. Fory € V, put x = a{™(y). Then

™) - @™ Nl = @) @™ y) - (@) D)
< Liscllof™(y) = eIl < Lusrd, (2.21)

if 7 € T(a™, 6), where L, isthe Lipschitz constant of the map (a{™)1|y. Since o™ isalmost
periodic, we can prove that there exists the number L := maxr L;. Now the inequality

@™ - (@™l < Ls (2.22)

t+71

holds for any small § > 0, 7 € T(a{™, ) and x € o{™ (V). This proves that (a{™) 1 is an
almost periodic function with respect to t uniformly in x € afm) (V). |



In what follows, we suppose that the m-th order RG equation and the m-th order RG trans-
formation are defined on the set V above. Note that the smaller || is, the larger set V we may
take.

Remark 2.4. Since the integral constants in Egs.(2.11) to (2.14) are left undetermined, the
m-th order RG equations and the m-th order RG transformations are not unique athough
Ri(y) is uniquely determined. However, the theorems described below hold for any choice
of integral constants unless otherwise noted. Good choices of integral constants ssimplify the
RG equations and it will be studied in Section 2.4.

2.2 Main theorems

Now we arein a position to state our main theorems.

Theorem 2.5. Let aﬁm) be the m-th order RG transformation for Eq.(2.1) defined on V as
Lemma2.3. If || issufficiently small, there exists avector field S(t, y, €) on V parameterized
by t and & such that

(i) by changing the coordinates as x = a{™(y), Eq.(2.1) is transformed into the system

Y = eRu(Y) + °Ra(y) + - - + £"Ren(Y) + €™ S(t, Y, ), (2.23)

(i) S isan amost periodic function with respect to t uniformly iny € V with Mod(S) c
Mod(g),

(iii) S(t,y, &) isC* with respect to t and C™ with respect to y and &. In particular, S and its
derivativesare bounded ase — Oandt — oo.

Proof. The proof is done by simple calculation. By putting X = a§m> (y), the left hand side of
Eq.(2.1) iscaculated as

- 2ol ”‘)(y)

dt
Z (y)y Zs—(y)
k=1 4 (j)

m m a
[.d + Z i (y)) N [Gk(t, you, - i) - ;—t(y)Rk_ i)~ Ray) |-

k=1 k=1 =1 y
(2.24)
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On the other hand, the right hand side is calculated as

(o]

2t o™ (y), &) = > sok(ty + eud(y) + £2uPy) + - -)
k=1

= ) #Gy(ty. U (), U ). (2.25)
k=1

Thus Eq.(2.1) istransformed into

m. au® 1m k=l gy
= [ld + Z ek—(y)) D (Rk(Y) £ a_;(Y)Rk—j(Y)]

k=1 k=1 =1
m 1
+[id+Zek (y)] 2, #Gty.ul). - u )
k=1 k=m+1
m m (k) m-k
:[id+Z( 1) (Z (y)])[z kRk(y)+Zsk—(y)Zs’RJ(y)J
=1 k=1 k=1 k=1
m ( -1
+[id+Zsk - (y)] >, FGty. o). )
k=1 k=m+1
m m (k) I m _
_ZskRk<y)+Z< 1)'(2 ‘ (y)] >, RO
i=m-k+1
N kaugk) R ... D
elid+ D 0] D dGEy U U0, (2.26)
k=1 k=m+1

The last two terms above are of order O(s™!) and almost periodic functions because they
consist of amost periodic functions u(') and G;. This proves Theorem 2.5. [

Remark 2.6. To prove Theorem 2.5 (i),(iii), we do not need the assumption of amost
periodicity for g(t, X, ) aslong as Ri(y) are well-defined and g, u; u® and their derivatives are
bounded in t so that the last two termsin Eq.(2.26) are bounded. In Chiba[10], Theorem 2.5
(i) and (iii) for m = 1 are proved without the assumption (A) but assumptions on boundedness
of g, u!’ and their derivatives.

Thm.2.5 (iii) implies that we can use the m-th order RG equation to construct approximate
solutions of EQ.(2.1). Indeed, a curve a{m) (y(t)), a solution of the RG equation transformed
by the RG transformation, gives an approximate solution of Eq.(2.1).

Theorem 2.7 (Error estimate). Let y(t) be a solution of the m-th order RG equation and
a§m> the m-th order RG transformation. There exist positive constants 9, C and T such that a
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solution x(t) of Eq.(2.1) with x(0) = ! (y(0)) satisfies the inequality
IX(t) - a{™ (y(®))I| < Cle|™, (2.27)

aslongas|el < g, Y(t) eVand 0 <t < T/lgl.

Remark 2.8. Since the velocity of y(t) is of order O(e), y(0) € V implies y(t) € V for
0 < t < T/l¢| unless y(0) is e-close to the boundary of V. If we define u’ so that the
indefinite integrals in Egs.(2.12, 14) are replaced by the definite integrals fot : ag") is the
identity and (" (y(0)) = y(0).

Proof of Thm.2.7. Since afm) isadiffeomorphismonV and bounded int € R, it is sufficient
to prove that a solution y(t) of Eq.(2.18) and a solution y(t) of Eq.(2.23) with y(0) = §(0)

satisfy the inequality N
I9(t) -yl < Clel™, 0 <t <T/lel, (2.28)

for some positive constant C.

Let L; > 0 be the Lipschitz constant of the function Ry(y) + eRx(Y) + - - - + €™ Rn(Y) on vV
and L, > O aconstant such that supcg ey IS(t, Y, €)Il < La. Then, by Eq.(2.18) and Eq.(2.23),
y(t) and §(t) prove to satisfy

150 - YOI < Ly fo 15(9) - y(Sllds + Loe™1t. (2.29)

Now the Gronwall inequality proves that

o L
I90) - YOI < e - ). (2.30)
Theright hand sideisof order O(cs™ if 0 <t < T/e. [
In the same way as this proof, we can show that if Ry(y) = --- = Rk(y) = 0 holds with

k < m, the inequality (2.27) holds for the longer time interval 0 < t < T/|g[**1. This fact
is proved by Murdock and Wang [41] for the case k = 1 in terms of the multiple time scale
method.

We can al so detect existence of invariant manifolds. Note that introducing the new variable
s, we can rewrite Eq.(2.1) as the autonomous system

(2.31)



Then we say that Eq.(2.31) is defined on the (s, x) space.

Theorem 2.9 (Existence of invariant manifolds). Supposethat Ry(y) = --- = Rc1(y) =0
and e“Ry(y) isthefirst non-zero termin the RG equation for Eq.(2.1). If the vector field Ry(y)
has a boundaryless compact normally hyperbolic invariant manifold N, then for sufficiently
small £ > 0, Eq.(2.31) hasan invariant manifold N, on the (s, X) space which is diffeomorphic
to R x N. In particular, the stability of N, coincides with that of N.

To prove this theorem, we need Fenichel’s theorem :
Theorem (Fenichel [18]). Let M be a C* manifold and X(M) the set of C* vector fields
on M with the C! topology. Suppose that f € X(M) has a boundaryless compact normally
hyperbolic f-invariant manifold N ¢ M. Then, the following holds:

(i) There is a neighborhood U c X(M) of f such that there exists a normally hyperbolic
g-invariant manifold Ny ¢ M for any g € U. The Ny is diffeomorphic to N.

(i) If |If — gl ~ O(e), Ng lies within an O(g) neighborhood of N uniquely.

(iif) The stability of N, coincides with that of N.

Note that for the case of a compact normally hyperbolic invariant manifold with boundary,
Fenichel’s theorem is modified asfollows : If avector field f has acompact normally hyper-
bolic invariant manifold N with boundary, then a vector field g, whichisC* closeto f, hasa
locally invariant manifold Ny which is diffeomorphic to N. In this case, an orbit of the flow
of g on Ng may go out from Ny through its boundary. According to this theorem, Thm.2.9
has to be modified so that N, islocally invariant if N has boundary.

See [18,24,51] for the proof of Fenichel’s theorem and the definition of normal hyperbol-
icity.

Proof of Thm.2.9. Changing thetime scale ast — t/* and introducing the new variable s,
we rewrite the k-th order RG equation as

d
3 = RO,
& (2.32)
a - b
and Eq.(2.23) as
Y Ry) + eRenly) + -+ 8™ Ry(y) + M IKS(5/6K y, &),
dt (2.33)
ds 1 '
a — 4
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respectively. Suppose that m > 2k. Since S is bounded in sand since

ISl o) ~ O, MRS (6 ) ~ O (234

Eq.(2.33) is e-close to Eq.(2.32) on the (s, y) space in the C? topology.

By the assumption, Eq.(2.32) has a normally hyperbolic invariant manifold R x N on the
(s,y) space. At thistime, Fenichel’s theorem is not applicable because R x N is not compact.
To handle this difficulty, we do as follows:

Since S isamost periodic, the set

T(S,6) = {(711IS((s= 1) /5.y, &) — S(s/€5, y, &)l < 6, VseR} (2.35)

isrelatively densefor any small 6 > 0. Let usfix ¢ so that it is sufficiently smaller than & and
fix T € T(S,9) arbitrarily. Then W := [0, 7] x N is acompact locally invariant manifold of
Eq.(2.32) with boundaries {0} x N and {7} x N (see Fig.1).

Now Fenichel’s theorem proves that Eq.(2.33) has alocally invariant manifold W, which
is diffeomorphic to W and lies within an O(g) neighborhood of W uniquely.

To extend W, along the s axis, consider the system

Y = RY) + Rea(y) + - + ™ KRu(y) + £™4S((s - 1)/, . 8),

_ (2.36)
s=1

Since the above system is §-close to Eq.(2.33), it hasalocally invariant manifold W, s, which

is diffeomorphic to W,. By putting $ = s— 7, EQ.(2.36) isrewritten as

{ y = Re(y) + eRea(y) + -+ + e™ Ru(y) + e™*S(5/6 .y, &), (2.37)

~

S=1,
and it takes the same form as EQ.(2.33). This means that the set

K:={(sy)I(s—1Y) € W,s}

isalocally invariant manifold of EQ.(2.33). Since W, s is§-closeto W, and since § < &, both
of W, n{s=t}and KN {s = 1} are e-close to W. Since an invariant manifold of Eq.(2.33)
which lies within an O(g) neighborhood of W is unique by Fenichel’s theorem, K N {s = 7}
has to coincide with W, N {s = 7}. This provesthat K is connected to W, and K U W, givesa
locally invariant manifold of Eq.(2.33).

This procedureisdone for any T € T(S, ¢). Thusit turns out that W, is extended along the
saxisand it gives an invariant manifold N, ~ R x N of Eq.(2.33). An invariant manifold N,
of Eq.(2.1) is obtained by transforming N, by (™.

14



Note that by the construction, projections of the sets N, N {s = 7}, T € T(S,5) onto they

space are §-close to each other. Thisfact is used to prove the next corollary. ]
S A
21: \ \ /
K

We

Wes

Fig. 1 A schematic view of the proof for the case that N isacircle. The W, is e-close
toWand W, s isé-closeto W,.. The K isthe “copy” of W, .

The next corollary (ii) and (iii) for k = 1 are proved in Bogoliubov, Mitropolsky [6] and
Fink [20] and immediately follow from Thm.2.9.

Corollary 2.10. Suppose that Ri(y) = --- = Re_1(y) = 0 and g*Ry(y) is the first non-zero
term in the RG equation for Eq.(2.1). For sufficiently small € > O,

(i) if the vector field R¢(y) has a hyperbolic periodic orbit yo(t), then EQ.(2.1) has an aimost
periodic solution with the same stability as yo(t),

(i) if the vector field Ry(y) has a hyperbolic fixed point yq, then Eqg.(2.1) has an almost
periodic solution y,(t) with the same stability asyq such that Mod(y.) c Mod(g),

(iii) if the vector field R¢(y) has a hyperbolic fixed point yo and if g is periodic in t with a
period T, then Eq.(2.1) has a periodic solution y,(t) with the same stability as yo and the
period T (it need not be the least period).

Proof. If Re(y) has aperiodic orbit, Eq.(2.33) has an invariant cylinder N, on the (s, y) space
as is represented in Fig.1. To prove Corollary 2.10 (i), at first we suppose that g(t, X, €) is
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periodic with a period T. In this case, since S(t,Y, €) is a periodic function with the period
T, N, is periodic along the s axis in the sense that the projections St := N, N {s = mT}
give the same circle for al integersm. Let y = y(t), s = t be a solution of Eq.(2.33) on the
cylinder. Then y(mT), m = 0,1, --- gives a discrete dynamics on S*. If y(mT) converges
to a fixed point or a periodic orbit asm — oo, then y(t) converges to a periodic function as
t — co. Otherwise, the orbit of y(mT) isdense on St and in this case y(t) is an almost periodic
function. A solution of Eq.(2.1) is obtained by transforming y(t) by the almost periodic map
a§m). This proves (i) of Corollary 2.10 for the case that g is periodic.

If g isalmost periodic, the sets N, N {s = 7} give circles for any = € T(S, 6) and they are
0-close to each other as is mentioned in the end of the proof of Thm.2.9. In this case, there
exists a coordinate transformation Y = ¢(y, t) such that the cylinder N, is straightened along
the saxis. Thefunction ¢ isalmost periodic in t because [|o(y, t + 7) — ¢(y, t)|| is of order O(6)
forany 7 € T(S, §). Now the proof is reduced to the case that g is periodic.

The proofs of (ii) and (iii) of Corollary 2.10 are done in the same way as (i), details of
which are left to the reader. ]

Remark 2.11. Suppose that the first order RG equation Ry (y) # 0 does not have normally
hyperbolic invariant manifol ds but the second order RG equation Ry (y) + £2Ro(y) does. Then
can we conclude that the original system (2.1) has an invariant manifold with the same sta-
bility as that of the second order RG equation? Unfortunately, it is not true in general. For
example, suppose that the RG equation for some system isalinear equation of the form

. 01 10 00
Y/s:(o O)y—s(o 1)y+sz(4 O)y+---, y e R% (2.38)

The origin is a fixed point of this system, however, the first term has zero eigenvalues and
we can not determine the stability up to the first order RG equation. If we calculate up to the
second order, the eigenvalues of the matrix

0 1 10
HEE e e

are —e (double root), so that y = 0 is a stable fixed point of the second order RG equation
if € > 0. Unlike Corollary 2.10 (ii), this does not prove that the original system has a stable
almost periodic solution. Indeed, if we calculate the third order RG equation, the eigenvalues
of the matrix in the right hand side of Eq.(2.38) are 3¢ and —¢. Therefore the origin is an
unstable fixed point of the third order RG equation. This example shows that if we truncate
higher order terms of the RG equation, stability of an invariant manifold may change and
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we can not use Ry (Y) + £2Rx(Y) to investigate stability of an invariant manifold as long as
Ri(y) # 0. This is because Fenichel’s theorem does not hold if the vector field f in his
theorem depends on the parameter ¢.

Theorems 2.7 and 2.9 mean that the RG equation is useful to understand the properties of
theflow of the system (2.1). Sincethe RG equation isan autonomous system while Eq.(2.1) is
not, it seemsthat the RG equation iseasier to analyze than the original system (2.1). Actually,
we can show that the RG equation does not lose symmetries the system (2.1) has.

Recall that integral constantsin Egs.(2.12, 14) are left undetermined and they can depend
ony (see Remark 2.4). To expressthe integral constants B;(y) in Egs.(2.12, 14) explicitly, we
rewrite them as

t
O (y) = Biy) + f Ga(sy) - Ruy) ds

and
i-1 u®

. t .
u(y) = Bi(y) + f (Gi(s y, UP(y), -, ul D) - > ‘96; ()R-(Y) - R(y))ds,
k=1

fori =2,3,---, whereintegral constants of the indefinite integrals in the above formulas are

chosen to be zero.

Theorem 2.12 (Inheritance of symmetries). Suppose that an e-independent Lie group H
actsonU c M. If thevector field g and integral constants Bi(y), i = 1,--- ,m—1inEgs.(2.12,
14) are invariant under the action of H; that is, they satisfy

h h
olt.hy. &) = Z—y(y)g(t, v.e). Bi(hy) = ‘;—y(y)Bi ). (2.40)

forany h € H,y € U,t € R and &, then the m-th order RG equation for Eq.(2.1) is also
invariant under the action of H.

Proof. Since h € H isindependent of &, EQ.(2.40) implies
oh
gi(t,hy) = @(Y)gi (t.y). (2.41)

fori =1,2,---. Weprove by induction that R (y) and ug)(y), i=12,---,areinvariant under
the action of H. At first, Ry(hy), h € H iscalculated as

t
Ruty) = lim ¢ [ Gu(t. s
1 (*oh oh
- im ¢ [ S0G1y)ds= TOR) (242)
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Next, u? is calculated in asimilar way:
t
d2(t) = Ba() + [ (Ga(s hy) - Ru(ry) s

t
- ‘;—;(y)sl(y) + ‘;—S(y) f Gi(sy) - Ri(y)) ds

oh
= 3,0u’0).
Suppose that R and u§k) areinvariant under theactionof Hfork=1,2,--- ,i — 1. Then, itis
easy to verify that

Au oh, ou® [oh \*
hy) = — — 243
) = S0 50 () 243

_ oh _

Gelhy. (). U P ) = TG U U (249
fork = 1,2,---,i — 1. These equalities and Egs.(2.13), (2.14) prove Theorem 2.12 by a
similar calculation to Eq.(2.42). ]

2.3 Main theorems for autonomous systems

In this subsection, we consider an autonomous system of the form

x = f(X) + eg(x &)
= f(X) + e (X) + €2 (X) + -+, xe U c M, (2.45)

where the flow ¢; of f is assumed to be almost periodic due to the assumption (B) so that
Eq.(2.45) is transformed into the system of the form of (2.1). For this system, we restate
definitions and theorems obtained so far in the present notation for convenience. We also
show afew additional theorems.

Definition 2.13. Let ¢; be the flow of the vector field f. For Eq.(2.45), define the C* maps
R,h":U - Mtobe

t
Ri) = im ¢ [ (Do Guls esty)ds (2.46)

t
06) = @y [ (e Gi(s w0 - Riy)ds (2.47)
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and
1 .
R(y) = lim = f ((Dg9)y Gi(s ¢s). P W), - M)
i—1
~(Dgs)y,* > (DhP),R (y))ds (2.48)
k=1
10) = Og, [ (02,6 (5.6 G, HH()
i—-1
~(Dgs)y" > (DhP)R «(y) - R(¥))ds, (2.49)
k=1

fori = 2,3,---, respectively, where (Dh{"), is the derivative of h®(y) with respect to y,
(D¢y)y isthe derivative of ¢(y) with respect to y, and where G; are defined through Eq.(2.6).
With these R and h?) , define the m-th order RG equation for Eq.(2.45) to be

Y = eRu(y) + &°Ro(y) + - - + €™Rm(Y). (2.50)
and define the m-th order RG transformation to be
o™ (y) = @u(y) + ehP(y) + - + ™M (y), (251)

respectively.

In the present notation, Theorems 2.5 and 2.7 are true though the relation Mod(S) c
Mod(g) in Thm.2.5 (ii) is replaced by Mod(S) ¢ Mod(¢;). Note that even if EQ.(2.45) is
autonomous, the function S depends on t as long as the flow ¢; depends on t.

Theorem 2.9 isrefined as follows:

Theorem 2.14 (Existence of invariant manifolds). Supposethat Ri(y) = --- = Re_1(y) = 0
and £XRy(y) isthefirst non-zero termin the RG equation for Eq.(2.45). If the vector field Ry(y)
has a boundaryless compact normally hyperbolic invariant manifold N, then for sufficiently
small € > 0, Eq.(2.45) has an invariant manifold N, which is diffeomorphic to N. In partic-
ular, the stability of N, coincideswith that of N.

Note that unlike Thm.2.9, we need not prepare the (s, X) space, and the invariant manifold
N, lieson M not R x M. This theorem immediately follows from the proof of Thm.2.9.
Indeed, Eq.(2.33) has an invariant manifold N, ~ R x N on the (s,y) space as is shown
in the proof of Thm.2.9. An invariant manifold of Eq.(2.45) on the (s, X) is obtained by
transforming N, by the RG transformation. However, it has to be straight along the s axis
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because EQ.(2.45) is autonomous. Thus its projection onto the x space gives the invariant
manifold N, of Eq.(2.45) (see Fig.2).

...
/ <:> n 1Y ‘ 4 i X
vz »2 2

flow of the RG equation flow of Eq.(2.33) flow of Eq.(2.45)

Fig. 2 A schematic view of the proof for the case that N isacircle. The projection of
the straight cylinder on to the x space gives an invariant manifold of Eq.(2.45).

For the case of Eq.(2.1), the RG equation is simpler than the original system (2.1) in the
sense that it has the same symmetries as (2.1) and further it is an autonomous system while
(2.2) isnot. In the present situation of (2.45), Theorem 2.12 of inheritance of symmetries still
holds aslong asthe assumption for g isreplaced as*the vector field f and g areinvariant under
the action of aLie group H”. However, since Eq.(2.45) is originally an autonomous system,
it isnot clear that the RG equation for EQ.(2.45) is easier to analyze than the original system
(2.45). The next theorem shows that the RG equation for Eq.(2.45) has larger symmetries
than Eq.(2.45).

To express the integral constants B;(y) in Egs.(2.47, 49) explicitly, we rewrite them as

t
h(y) = (Der)yBa(y) + (Der)y f ((Dgs)y " Ga(s ¢(y)) - Ru(y)) ds.

and
h(y) = (Dg)yBi(y) + (Dey)y f t((Dsos);lei(s, es(y), NP (y), -+ h{D(y))
—(Dsos);lz(Dh‘sk))yR_k(y) ~R(y))ds.
fori =2,3,---, whereintegral constants of the indefinite integrals in the above formulas are

chosen to be zero.

Theorem 2.15 (Additional symmetry). Let ¢, be the flow of the vector field f defined on
U c M. If the integral constants B; in Egs.(2.47, 49) are chosen so that they are invariant
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under the action of the one-parameter group {¢; : U — M|t € R}, then the RG equation
for Eq.(2.45) is also invariant under the action of the group. In other words, R, satisfies the

equality
Ri(e(y)) = (DenyRi(Y), (2.52)

fori=1,2,---.

Proof. Since Eq.(2.45) is autonomous, the function Gy(t, Xo, - - - , Xk-1) defined through
Eq.(2.6) isindependent of t and we write it as Gy(Xo, - - - , Xk-1). We prove by induction that
equalities R(g(y)) = (De)yR(y) and h(¢r () = h(y) hold for i = 1,2,---. For all
S € R, Ri(pg(y)) takesthe form

t
Rulps ) = im ¢ [ (D2 Galeso < 0))ds

t
= (Dsos’)yt“_)rpo % f(D(ps+s');1G1(<ps+g(y))dS.

Putting s+ s = s”, we verify that

t+3
Ruls () = (Dgsly fim © [ (Des);"Galos )

) 1 t+5 ~ )
= (Dys)yRu(Y) + (Dys)y t“_m n : (D‘Ps")ylGl(SOs' (¥))ds

= (D(Ps)le(y)-
The h®(¢s(y)) is calculated in asimilar way as
t
h (s (¥)) = (Den)yBilps (¥)) + (Dgt)gy ) f ((Dgs),2 ) Calws © 05 () — Rals (¥))) ds
t
= (Dgts)yB1(Y) + (Depres )y f ((Dgsis)y Gawses (¥)) — Ru(y)) ds.

Putting s+ s = S” provides

t+8
h (s (y)) = (Detes)yBr(Y) + (Dgtes)y f ((Dgs)y " Galps (¥) — Ray)) ds”
_ ht(i)s' ). (2.53)

Suppose that Re(@1(y)) = (Der)yRa(y) and h(ey (y)) = h',(y) hold for k = 1,2,--- i — 1,
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Then, R(¢<(y)) iscaculated as

Ries () = Jim ¢ (@7 Ges0 we) M), H o))
i-1

~(Dg9),t ) D (O, R k(s (¥)))ds
k=1
1 1 &) (-
= ¢l fim 3 [ ((Oees)y Gilpars ) hZ )+ 0 20)

i—-1
~(Dgsis)y* Y (DN )R _k(y))ds
k=1

Putting s+ S = S” provides

t+s )
Rigs) = @es)yfimy [ ((Dpe)yGilew 6020, HE )
i—-1

~(Dps);* > (DN R «(y))ds”
k=1

A o M (-1
~ (DplRO)+ Peelfim [ () Gle 01020+ H20)
i-1

~(Dgs),* ) (DhE)R-(¥))ds”
k=1
= (Des )yRi(y).

We can show the equality h{(¢v (y)) = h(’, (y) in asimilar way. -

2.4 Simplified RG equation

Recall that the definitions of R and u{ given in Eqgs.(2.11) to (2.14) include the indefinite
integrals and we have | eft the integral constants undetermined (see Rem.2.4). In this subsec-
tion, we investigate how different choices of the integral constants change the forms of RG
equations and RG transformations.

Let us fix definitionsof R and u’, i = 1,2,--- by fixing integral constants in Eqs.(2.12,
14) arbitrarily (note that R, and ugi) are independent of the integral constants in Egs.(2.11,
13)). For these R and u{”, we define R and T{" to be

R = lim ¢ [ Gu(sy)ds (259
t —_—
W) =Bi0)+ [ (Gutsy) -Ri)ds (255)
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and

. t _ i—-1 k)
R(y) = Jim % f (Gi(sy. TP, -+ TI) - Z ‘f; YR-«(¥))d (256)
, t . gy _
T(y) = Bi(y) + f (Gi(s Y, TP ), - ,D*;‘l’(y))— ;; (Y)R—«(y) - R(y))ds(2.57)
k=1

fori = 2,3,---, respectively, where integral constants in the definitions of T{") are the same
asthose of uﬁi) andwhere B, i = 1,2, --- arearbitrary vector fields which imply other choice
of integral constants. Along with these functions, We define the m-th order RG equation and
the m-th order RG transformation to be

y = eRi(y) + - + &"Rm(Y). (2.58)
and
a™(y) = y+a0) + -+ M y), (2.59)

respectively. Now we have two pairs of RG equations-transformations, Egs.(2.18),(2.19) and
Egs.(2.58),(2.59). Main theorems described so far hold for both of them for any choices of
Bi(y)'s except to Thms. 2.11 and 2.15, in which we need additional assumptions for Bj(y)'s
as was stated.

Let us examine relations between R;, u(') and R, ﬂfi). Clearly R, coincides with R;. Thus
Y is given asTP(y) = u™(y) + By(y). According to the definition of G, (Eq.(2.8)), R. is

calculated as
—~ . 1 t agl 5~(
- [ (B .

1 (Y og oud
-t [0 R

t
e [ (%980 - TE0R0)ds

R+ Ry - B
= Rey) + 5 H0)B10) - LR (2.60)
If we define the commutator [ -, -] of vector fields to be
_ 0By oRy
[B1, Ru](y) = oy (Y)Ru(Y) Y (¥)Ba(Y), (2.61)

Eq.(2.60) isrewritten as ~
Ra(y) = Ra(y) — [B1, Ra](Y). (2.62)
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Similar calculation provesthat R;, i = 2,3, - -- are expressed as
R(Y) =R() + Pi(Re. - ,R1, By, -+, BLo)(y) - [Bios. Re](¥). (2.63)

where P; isafunction of Ry, --- ,R_1 and By, --- , Bi_». See Chiba[11] for the proof. Thus
appropriate choices of vector fields Bi(y), i = 1,2,--- may simplify R, i = 2,3,--- through
Eq.(2.63).

Supposethat R, i = 1,2,--- are elements of some finite dimensional vector space V and
the commutator [ -, R;] defines the linear map on V. For example if the function g(t, X, €)
in Eq.(2.1) is polynomial in x, V is the space of polynomia vector fields. If Eq.(2.1) isan
n-dimensional linear equation, then V isthe space of all nx n constant matrices. Let ustakea
complementary subspace C to Im[ -, Ry] into V arbitrarily: V = Im[-,R;] €5 C. Then, there
existBieV,i=1,2---,m-1suchtha R € Cfori = 2,3,---, m because of Eq.(2.63).
If R e Cfori = 2,3,---,m, we cal Eq.(2.58) the mth order simplified RG equation.
See Chiba[11] for explicit forms of the smplified RG equation for the cases that Eq.(2.1)
is polynomia in x or alinear system. In particular, they are quite related to the simplified
normal forms theory (hyper-normal forms theory) [2,39,40]. See also Section 4.3.

Sinceintegral constants B;’sin Egs.(2.55) and (2.57) are independent of t, we can show the
next claim, which will be used to prove Thm.5.1.

Claim 2.16. RG eguations and RG transformations are not unique in general because of
undetermined integral constantsin Egs.(2.12) and (2.14). Let o™ and & be two different
RG transformations for a given system (2.1). Then, there exists a time-independent trans-
formation ¢(y, £), which is C* with respect to y and &, such that @™(y) = o™ o ¢(y, £).
Conversaly, o™ o ¢(y, £) gives one of the RG transformations for any C* maps ¢(y, €).

Note that the map ¢(y, €) isindependent of t because it brings one of the RG equations into
the other RG equation, both of which are autonomous systems. According to Claim 2.16, one
of the simplest way to achieve ssimplified RG equations is as follows. At first, we calculate
R and u! by fixing integral constants arbitrarily and obtain the RG equation. It may be
convenient in practice to choose zeros as integral constants (see Prop.2.18 below). Then, any
other RG equations are given by transforming the present RG equation by time-independent
C* maps.
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2.5 An example

In this subsection, we give an example to verify the main theorems. See Chiba[10,11] for
more examples. Consider the system on R?

{ X1 = X + X2 + e2ksin(wt), (2.64)

X2 = —Xl + 82)(2 — X]_XZ + XZ,
where e > 0,k > 0 and w > 0 are parameters. Changing the coordinates by (X3, X)) =
(eXx1, eX0) yields

{ X1 = Xo + axg + ek sin(wt), (2.65)

%o = —X1 + (X5 — X1X2) + £2Xo.
Diagonalizing the unperturbed term by introducing the complex variablezas x; = z+7Z X, =
i(z—2) may ssmplify our calculation :

:z: iz+ g(i(z— 22 - 22 + 222+ ksin(wt)) + 8—22(22— 2), 256
7= —iz+ g(—i(z—Z)z - 22 + 222+ ksin(wt)) - %(2—2),

wherei = V—-1. Let us calculate the RG equation for the system (2.65) or (2.66). In this
example, al integral constantsin Eqgs.(2.47, 49) are chosen to be zero.

(i) When w # 1, 2, the second order RG equation for Eq.(2.66) is given as

. 1 16i
y1= §8z(y1 - 3)’%)/2 - ?Y%YZ),

16i

2 (2.67)
Yo = §8z(y2 — 3y1y5 + ?Yﬂé),

wherethefirst order RG equation R; vanishes. Notethat it isindependent of the time periodic
external force k sin(wt). Thusthis RG equation coincides with that of the autonomous system
obtained by putting k = 0 in Eq.(2.66) and Theorem 2.15 is applicable to Eq.(2.67). Indeed,
since the above RG equation is invariant under the rotation group (y1,Y2) — (€7y1, €77yy),
putting y1 = re?, y, = re™ resultsin

2
8, (2.68)

and it is easily solved. We can verify that this RG equation has a stable periodic orbit r =
V1/3if € > 0. Now Corollary 2.10 (i) proves that the origina system (2.65) has a stable
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almost periodic solution if £ > 0issmall (see Fig.3). If k = 0 and EQ.(2.65) is autonomous,
then Thm.2.14 is applied to conclude that Eq.(2.65) has a stable periodic orbit.

‘]5 T T T T T

0.5}

X2 (0}

05}

1.5 1 1 1 1 1

Fig.3 Numerical resultsof the system (2.65) and itsRG equation (2.68) for w = 3, k =
1.8 and & = 0.01. Thered curve denotesthe stable periodic orbit of the RG equation and
the black curve denotes the amost periodic solution of Eq.(2.65). They almost overlap
with one another.

(i) When w = 2, we prefer Eq.(2.65) to Eq.(2.66) to avoid complex numbers. The second
order RG eqguation for EQ.(2.65) is given by

2
. E
Y1 = 55 (12y1 - 92 — 167y — 91y — 16y3 — K(By +4y2)).

2 (2.69)
Yo = ;_4 (12y2 - 93 + 16y1y2 — 9y2y2 + 16y3 — k(dy1 — By2)).

Since it depends on the time periodic term k sin(w?t), Thm.2.15 is no longer applicable and
to analyze this RG equation is rather difficult. However, numerical simulation shows that
Eq.(2.69) undergoes a typical homoclinic bifurcations (see Chow, Li and Wang [14]) whose
phase portraits are given as Fig.4.

Let us consider the case k = 1.8. In this case, the RG equation has one stable periodic orbit
and two stable fixed points. Thus Corollary 2.10 proves that the original system (2.65) has
one almost periodic solution y(t) and two periodic solutions with the period 7 (see Fig.5).
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: >
k~1.8 i
Fig. 4 Phase portraits of the RG equation (2.69).
(iii) When w = 1, the second RG equation for EQ.(2.65) is given by
2
. £
Vi = o (12y1 — 9y} — 16y2y, — Yy1y5 - 16y3), 270

. k 2
Vo = % + 2 (12y2 9y3 + 16y1y3 — 9y3y + 16y3).

In this case, the first order RG equation does not vanish. For small ¢, Eq.(2.70) has a stable
fixed point y, = Yu(k, €), which tends to infinity as e — 0. For example if k = 1.8 and
e =001, yyisgiven by y, ~ (—4.35,2.31) (see Fig.6). Therefore, the original system has a
stable periodic orbit whose radius tends to infinity ase — O.

2.6 A few remarks on symbolic computation

One can caculate the RG equation and the RG transformation by using symbolic com-
putation softwares, such as Mathematica and Maple, with formulas (2.11) to (2.14). In this
subsection, we provide afew remarks which may be convenient for symbolic computation.

It is not comfortable to compute the limitsin formulas (2.11) and (2.13) directly by sym-
bolic computation softwares because it takes too much time. The next proposition is useful

to compute them.
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Fig.5 Numerical resultsof the system (2.65) and itsRG equation (2.69) for w = 2, k =
1.8and ¢ = 0.01. Thered curve and the red cross points denote the stable periodic orbit
and the stable fixed points of the RG equation, respectively. The black dots represent
pointsy(n/2), n=1,2,--- onthe amost periodic solution y(t) of Eq.(2.65). The black
curves denote the two periodic solutions of Eq.(2.65), which almost overlap with one
another.

Proposition 2.17. Suppose that F(t,y) and its primitive function are aimost periodic func-
tionsint. Then, lime, 1 ftF(t, y)dt gives a coefficient of a linear term of ftF(t, y)dt with
respect to t.

This proposition is easily proved because F is expanded in a Fourier series as
F(ty) ~ Yan(y)e™. Thus, to obtain Ri(y)'s, we compute integrals in Egs.(2.11,13)
and extract linear terms with respect to t. To do so, for example in Mathematica, the
command Coefficient[Integrate[F[t,y],t],t] is available, where F[t,y] is the
integrand in Egs.(2.11, 13).

When computing the integrals in Egs.(2.11) to (2.14), we recommend that the integrands
are expressed by exponential functions with respect to t such as € if they include trigono-
metric functions such as sinAt, cosAt (in Mathematica, it is done by using the command
TrigToExp). It is because if they include trigonometric functions, softwares may choose
unexpected integral constants while if they consist of exponentia functions, then zeros are
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X2

Fig.6 Numerical resultsof the system (2.65) and itsRG equation (2.70) forw = 1, k =
1.8 and ¢ = 0.01. The red cross point denotes the stable fixed point of the RG equation.
The black curve denotes the periodic solution of Eq.(2.65).

chosen asintegral constants. If al integral constantsin Egs.(2.12), (2.14) are zeros, the sec-
ond term in theintegrand in Eq.(2.13) does not include a constant term with respect to t. Thus
we obtain the next proposition, which reduces the amount of calculation.

Proposition 2.18. If we choose zeros as integral constants in the formulas (2.11) to (2.14)
fori=1,---,k-1, then Eq.(2.13) for i = kiswritten as

t
RO) = fim ¢ [[Gis v, - . Hy)ds (272)

If asystem for which we calcul ate the RG equation includes parameters such ask and w in
Eq.(2.65), then softwares automatically assumethat it isin a generic case. For exampleif we
compute the RG equation for Eq.(2.65) by using Mathematica, it is assumed that w # 0, 1, 2.
We can verify that the RG equation (2.67) obtained by softwaresisinvalidwhenw = 0,1, 2 by
computing the second order RG transformation. Indeed, it includesthe factorsw, w -1, w—2
in denominators. The explicit form of the RG transformation for Eq.(2.65) istoo complicated
to show here. To obtain the RG equation for w = 0, 1, 2, substitute them into the original
system (2.65) and compute the RG equation again for each case.
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3 Restricted RG method

Suppose that Eq.(2.3) defined on U ¢ M does not satisfy the assumption (B) on U but
satisfies it on a submanifold Ng ¢ U. Then, the RG method discussed in the previous sec-
tion is still valid if domains of the RG equation and the RG transformation are restricted to
No. This method to construct an approximate flow on some restricted region is called the
restricted RG method and it gives extension of the center manifold theory, the geometric
singular perturbation method and the phase reduction.

3.1 Main results of the restricted RG method

Consider the system of the form

x = f(X) +eg(t, X, &), (3.1)

defined on U c M. For this system, we suppose that

(D1) the vector field f is C* and it has a compact attracting normally hyperbolic invariant
manifold Ng ¢ U. The flow ¢(x) of f on Ny is an amost periodic function with respect to
t € R uniformly in x € Ny, the set of whose Fourier exponents has no accumulation points.
(D2) there exists an open set V > N in U such that the vector field gisClint € R, C™ in
x € V and small &, and that g is an almost periodic function with respect to t € R uniformly
in X € V and small ¢, the set of whose Fourier exponents has no accumulation points (i.e. the
assumption (A) is satisfied on V).

If gisindependent of t and EQ.(3.1) isautonomous, Fenichel’stheorem provesthat Eq.(3.1)
has an attracting invariant manifold N, near No. If g dependson t, we rewrite EQ.(3.1) as
x = f(X) + &g(s X, &),

{ 5= 1 (3.2
so that the unperturbed term (f (x), 1) has an attracting normally hyperbolic invariant manifold
R x Np on the (s, X) space. Then, a similar argument to the proof of Thm.2.9 proves that
Eq.(3.2) has an attracting invariant manifold N, on the (s, X) space, which is diffeomorphic to
R x No.

In both cases, since N, is attracting, long time behavior of the flow of Eq.(3.1) is well
described by the flow on N,. Thus a central issue is to construct N, and the flow on it
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approximately. To do so, we establish the restricted RG method on Ng.

Definition 3.1. For Eq.(3.1), we define C*® maps R, h§i) : No — M tobe

t
Ru) = Jim 3 [ (D¢ Ga(s esy)ds 33
106) = @y [ ((eyGi(s v:0) - Ri)ds (3.4

and

t .
RO) = Jim ¢ [(©edy6i(s 6 W0+ b))
i—-1
~(Dgs)y" > (DhP)R «(y))ds (35)
. t < .
h(y) = (Degy)y f ((Dgs), *Gi(s os(). hP(y). - -+ . hE(y))

i—-1
~(Dgg)y* > (DhP)R «(y) - R(¥))ds, (3.6)
k=1

fori =2,3,---, respectively. Notethat lim;_,, in Eqs.(2.46, 48) are replaced by lim;_,_., and
the indefinite integrals in Egs.(2.47, 49) are replaced by the definite integrals. With these R
and hgi), define the restricted m-th order RG equation for Eq.(3.1) to be

y = eRy(y) + &°Ro(y) + -+ + €™Rn(Y), Y € No, (3.7)
and define the restricted m-th order RG transformation to be
() = @u(y) + ehPy) + -+ e™™(y), y € No, (3.8)

respectively.
Note that the domains of them are restricted to Ny. To see that they make sense, we prove
the next lemma, which corresponds to Lemma 2.1.

Lemma3.2. (i) ThemapsR (i = 1,2,---) arewell-defined and R (y) € TyNg for any y € No.
(if) The maps hg) (i=12---)aedmost periodic functions with respect to t uniformly in
y € Np. In particular, ht(i) areboundedint € R if y € Np.

Proof. Let 75 be the projection from TyM to the stable subspace Es of Np and my, the

projection from TyM to the tangent space TyNo. Note that s + 7y, = id. By the definition of
an attracting hyperbolic invariant manifold, there exist positive constants C; and « such that

l7s(Der)y, vl < o™V, (3.9)
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foranyt < 0,y € Npand v e TyM. Since ¢(y) € Np for al t € R and since G; is amost
periodic in t, there exists a positive constant C, such that ||G4(t, ¢:(Y))Il < Co. Then, nsRy(Y)
proves to satisfy

1t _
RO < fim ¢ [ llrs(De; Guls extids

t
< lim % f C1Coe"5ds = 0. (3.10)

t—>—o0

This means that R;(y) € TyNo.
To prove (ii) of Lemma 3.2, note that the set

T(0) = {tllIG1(s+ 7,y) = G1(sS Y < 6, llpsic(Y) — sl <5, VseR, Vye Ng} (3.11)

isrelatively dense. For 7 € T(5), i (¢-(y)) is calculated as
t
Y (e:(¥)) = (Det)... ) f ((Dgs), ) Ga(s @s © @:(¥)) — Rule(y))) ds

t
- [ (@esGu(s a0 - CepRiletD)ds (312

—00

Putting s = s+ 7 yields

t+7

h(e-(y)) = f ((Dgs—(14n)y "Ga(S — 7. @5 (1) — (Dgt)p.Rule=(y)))ds.  (313)

Since the space TyNp is (Dey)y-invariant, rs(Dey)yRi(y) = 0. Thisand Eq.(3.13) provide that

t+7

Irsh (y) — 7sh® (e () < f I7s(Dgs-en)y I - 1G1(S ¢s()) — Ga(s— 7. ws(¥))llds

—00

t+7
< f 6C,e" M) ds = 6Cy /a. (3.14)

(o]

Thus we obtain

Iesh(y) — eshD W)l < llrsh®. (y) — 7sh® (@ I + lmshi (e (y)) — 7P )
< (Ci/a + Ly)o,

where L;, which isbounded in t, is the Lipschitz constant of nshgl)lNo. This proves that nshﬁl)
is an amost periodic function with respect to t. On the other hand, my, hfl) iswritten as

t

mnoh{(y) = 7n, (D) f (7, (Dgs); Ga(s. ¢s(¥)) - Ru(y)) ds: (3.15)

(e]

Since iy, (D¢y)y is almost periodic, we can show that my, hfl) (y) isamost periodic int in the
same way as the proof of Lemma 2.1 (ii). This proves that hﬁl) = nsh§1> + 7N, hﬁl) isan amost
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periodic function in t. The proof of Lemma 3.2 fori = 2,3,--- isdonein asimilar way by
induction and we omit it here. ]

Since Ri(y) € TyNo, Eq.(3.7) defines adimNo-dimensional differential equation on No.

Remark 3.3. Even if hf) are defined by using indefinite integrals as Egs.(2.47, 49), we can
show that h{" is bounded ast — oo, though it is not bounded ast — —co. In this case, the
theorems listed below are true for large t.

Now we arein a position to state main theorems of the restricted RG method, all proofs of
which are the same as before and omitted.

Theorem 3.4. Let a§m> be the restricted m-th order RG transformation for Eq.(3.1). If |g| is
sufficiently small, there exists afunction S(t, vy, ), y € No such that

(i) by changing the coordinates as x = aﬁm) (y), Eq.(3.1) istransformed into the system

Y = eRy(y) + &°Rao(y) + - - - + £™Rn(y) + £™S(t. Y. ), (3.16)

(i) Sisanamost periodic function with respect to t uniformly iny € No,
(iii) S(t,y, ) isC! with respect to t and C™ with respect toy € Ng and «.

Theorem 3.5 (Error estimate). Let y(t) be a solution of the restricted m-th order RG
eguation and a't(m) the restricted m-th order RG transformation. There exist positive constants
g0, C and T such that asolution x(t) of Eq.(3.1) with x(0) = " (y(0)) € a{"(No) satisfiesthe

inequality
IX(t) — ™yl < Clel™, (3.17)

forlel <ggand 0 <t < T/|g.

Theorem 3.6 (Existence of invariant manifolds). Supposethat Ri(y) = --- = Re1(y) =0
and XR(y) is the first non-zero term in the restricted RG equation for Eq.(3.1). If the vector
field R¢(y) has a boundaryless compact normally hyperbolic invariant manifold L ¢ N, then
for sufficiently small £ > 0, the system (3.2) has an invariant manifold L, on the (s, X) space
which is diffeomorphic to R x L. In particular, the stability of L, coincides with that of L.

Theorem 3.7 (Inheritance of symmetries). Suppose that an e-independent Lie group H
actson Np. If the vector field f and g are invariant under the action of H, then the restricted
m-th order RG equation for Eq.(3.1) isaso invariant under the action of H.

Recall that our purpose is to construct the invariant manifold N, of Eq.(3.1) and the flow
on N, approximately. The flow on N, iswell understood by Theorems 3.4 to 3.6, and N, is
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given by the next theorem.

Theorem 3.8. Let afm) be the restricted m-th order RG transformation for Eq.(3.1). Then,
the set {(t, X)| x € a{™(No)} lies within an O(™1) neighborhood of the attracting invariant
manifold N, of Eq.(3.2).

Proof. Though the maps Ri(y) and o™ are defined on No, we can extend them to the maps
defined on V o Ny so that Eq.(3.7) is C* close to Eq.(3.16) on V and that Ny is an attracting
normally hyperbolic invariant manifold of Eq.(3.7). Then the same argument as the proof of
Thm.2.9 proves Theorem 3.8. ]

If the vector field g isindependent of t and Eq.(3.1) is autonomous, we can prove the next
theorems.

Theorem 3.9 (Existence of invariant manifolds).  Suppose that Ry(y) = --- = Ri_1(y) =
0 and e“Ry(y) is the first non-zero term in the restricted RG equation for Eq.(3.1) with t-
independent g. If the vector field R«(y) has a boundaryless compact normally hyperbolic
invariant manifold L, then for sufficiently small € > 0, Eq.(3.1) has an invariant manifold L.,
which is diffeomorphic to L. In particular, the stability of L. coincides with that of L.

Theorem 3.10 (Additional symmetry). The restricted RG equation for EQ.(3.1) with t-
independent g isinvariant under the action of the one-parameter group {¢: : No — Ng|t € R}.
In other words, R; satisfies the equality

Ri(¢t(Y)) = (DenyR(Y), Y € No, (3.18)

fori=1,2,---.

For autonomous systems, Thm.3.8 is restated as follows: Recall that if the function g
depends on t, the attracting invariant manifold N, of Eq.(3.1) and the approximate invariant
manifold described in Thm.3.8 depend on t in the sense that they lie on the (s, x) space. If
Eq.(3.1) is autonomous, its attracting invariant manifold N, lies on M and is independent
of t. Thus we want to construct an approximate invariant manifold of N, so that it is also
independent of t.

Theorem 3.11. Let a§m> be the restricted m-th order RG transformation for Eq.(3.1). If gis
independent of t, the set «{™(No) = {a{™(y) |y € No} is independent of t and lies within an
O(e™1) neighborhood of the attracting invariant manifold N, of Eq.(3.1).
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Proof. We have to show that the set a/t(m)(No) is independent of t. Indeed, we know the
equality h§i)(<pt, (y) = hf?t, (y) asis shown in the proof of the Thm.2.15. This proves that

o™ (No) = o™ (e (No)) = o™ (No). (3.19)

Therest of the proof is the same as the proofs of Thm.2.14 and Thm.3.8. ]

3.2 Center manifold reduction

The restricted RG method recovers the approximation theory of center manifolds (Carr
[7]). Consider a system of the form

X =FXx+eg(X &)
= Fx+&01(X) + £20(X) + - -+, X R", (3.20)

where unperturbed term Fx islinear. For this system, we suppose that

(E1) al eigenvalues of the n x n constant matrix F are on the imaginary axis or the left half
plane. The Jordan block corresponding to eigenvalues on the imaginary axis is diagonaliz-
able.

(E2) g isC*™ with respect to x and & such that g(0, &) = 0.

If al eigenvalues of F are on the left half plane, the origin is a stable fixed point and the flow
near the origin istrivial. In what follows, we suppose that at least one eigenvalue is on the
imaginary axis. In this case, EQ.(3.20) has a center manifold which is tangent to the center
subspace Ny at the origin. The center subspace Ny, which is spanned by eigenvectors asso-
ciated with eigenvalues on the imaginary axis, is an attracting normally hyperbolic invariant
manifold of the unperturbed term Fx, and the flow of Fx on Ny isamost periodic. However,
since Np is not compact, we take an n-dimensional closed ball K including the origin and
consider Np N K. Then, we obtain the next theorem as a corollary of Thm.3.9 and Thm.3.11.

Theorem 3.12 (Approximation of Center Manifolds, [12]). Let a§m> be the restricted m-th
order RG transformation for Eq.(3.20) and K a small compact neighborhood of the origin.
Then, the set o{™(K N Ny) lies within an O(s™?) neighborhood of the center manifold of
Eq.(3.20). The flow of Eq.(3.20) on the center manifold iswell approximated by those of the
restricted RG equation. In particular, suppose that Ry(y) = --- = Re_1(y) = 0 and e“Ry(y) is
the first non-zero term in the restricted RG equation. If the vector field R¢(y) has a bound-
aryless compact normally hyperbolic invariant manifold L, then for sufficiently small € > 0,
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Eq.(3.20) has an invariant manifold L, on the center manifold, which is diffeomorphic to L.
The stability of L, coincides with that of L.

See Chiba[12] for the detail of the proof and examples.

3.3 Geometric singular perturbation method

The restricted RG method can aso recover the geometric singular perturbation method
proposed by Fenichel [19].
Consider the autonomous system

x= f(X) +sg(x &), xe R" (3.21)

on R" with the assumption that

(F) suppose that f and g are C* with respect to x and &, and that f has an m-dimensional
attracting normally hyperbolic invariant manifold Ny which consists of fixed points of f,
wherem < n.

Note that this system satisfies the assumptions (D1) and (D2), so that Thm.3.9 to Thm.3.11
hold. Theinvariant manifold Ny consisting of fixed points of the unperturbed system is called
the critical manifold (see [1]). For this system, Fenichel[19] proved that there exist local
coordinates (u, v) such that the system (3.21) is expressed as

1 — o m
{ u= Sgl(u, V7 ‘9)7 ue R H (322)

v=f(uv) +eda(uv,s), veR™,

where f(u,0) = 0for any u € R™. In this coordinate, the critical manifold N islocally given
asthe u-plane. Further he proved the next theorem.

Theorem 3.13 (Fenichel [19]). Suppose that the system U = &8:(u, 0,0) has a compact
normally hyperbolic invariant manifold L. If & > O issufficiently small, the system (3.22) has
an invariant manifold L, which is diffeomorphic to L.

This method to obtain an invariant manifold of (3.22) is called the geometric singular
perturbation method. By using the fact that ¢¢(u) = u for u € Ny, it is easy to verify that
the system U = £01(u, 0, 0) described above is just the restricted first order RG equation for
Eq.(3.22). Thus Thm.3.13 immediately follows from Thm.3.9. Note that in our method, we
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need not change the coordinates so that Eq.(3.21) is transformed into the form of Eq.(3.22).

Example 3.14. 0 Consider the system on R?

X]_ = —X1 + (Xl + C)Xg,

{ 85(2 = X1 — (X1 + 1)X2, (323)
where 0 < ¢ < 1isaconstant. This system arises from a model of the kinetics of enzyme
reactions (see Carr [7]). Sett = es and denote differentiation with respect to sby . Then,
the above system is rewritten as

{ X) = &(=X1 + CX + X1 %), (3.24)

X5 = X1 — X2 — X1 X2.
The attracting critical manifold Ny of this system is expressed as the graph of the function

X1
1+x

X2 = h(xy) := (3.25)

Since the restricted first order RG transformation for Eq.(3.24) is given by

) _ Y1 0
o) = (yl/(l + Y1) ) ve ( —(c-Dy1/A+yn)*) (3.26)

Theorem 3.11 proves that the attracting invariant manifold of Eq.(3.24) is given as the graph

of
X (c-Dxg 5
Xo = Tr 8(1+X1)4 + O(&). (3.27)

If |xq| issufficiently small, it is expanded as
X2 = X1 (1 - x1) — &(c — 1)xe (1 - 4x1) + O3, £°)
= (1-e(c-1))x — (1 - de(c— 1))x§ + O3, £2). (3.28)
This result coincides with the result obtained by the local center manifold theory (see Carr

[7]). Therestricted first order RG equation on Ny is given by

(c-Dyx
1+ V1 ’

Y, = (3.29)

This RG equation describes a motion on the invariant manifold (3.27) approximately. Since
it has the stable fixed point y; = 0if ¢ < 1, the system (3.24) also has a stable fixed point
(X1, X2) = (0, 0) by virtue of Theorem 3.9.
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3.4 Phase reduction

Consider a system of the form

x = f(t,x) +e01(t, ), x e R". (3.30)

For this system, we suppose that

(G1) the vector fields f and g are C* in x, Ct int, and T-periodic in t. It need not be the
least period. In particular, f and g are allowed to be independent of t.

(G2) the unperturbed system x = f(t, X) has a k-parameter family of T-periodic solutions
which constructs an attracting invariant torus T c R".

Leta = (ay, - , @) be coordinates on TX, so-called phase variables. It is called the phase
reduction to derive equations on a which govern the dynamics of Eq.(3.30) on the invariant
torus. The phase reduction was first introduced by Malkin [33,34] and rediscovered by many
authors. In this subsection, we show that the RG method can recover the phase reduction
method.

The next theorem is due to Malkin [33,34]. See also Hahn [23], Blekhman [4], and Hop-
pensteadt and 1zhikevich [25].

Theorem 3.15 (Malkin [33,34]). Consider the system (3.30) with the assumptions (G1)
and (G2). Let @ = (ay,- -, ax) be phase variables and U(t; @) the periodic solutions of the
unperturbed system parameterized by «. Suppose that the adjoint equation

do _ (af . o\
% -~ (Gxeuta) @ @31
has exactly k independent T-periodic solutions Qq(t; @), - - - , Qk(t; @), where AT denotes the

transpose matrix of amatrix A. Let Q = Q(t; @) be the k x n matrix whose columns are these

solutions such that 2U
Q' —(t; @) = id. (3.32)
o

Then, EQ.(3.30) has a solution of the form
X(t) = U(t, a(t)) + O(e), (3.33)

where a(t) isasolution of the system
de & (7 -
G =7 | Asa)a(sU(sa)ds (3.34)
0
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Now we show that the system (3.34) of the phase variables isjust the first order RG equa-
tion. Note that the system (3.30) satisfies the assumptions (D1) and (D2) with Ng = T* and
the RG method is applicable. Therestricted first order RG equation for Eq.(3.30) is given by

. (Yo -

y=elim [(%20) aGaons ye (339
Let us change the coordinates by using the k-parameter family of periodic solutionsasy =
U(0; @). Then, EQ.(3.35) isrewritten as

t -1
Ge@ai=elim [(%u0a) s6usads (330)

Since U(t; @) = ¢ (U(0; @)), the equality

oU &,Dt

7o L) = (U(O )) (0 @) (337)

holds. Then, Egs.(3.32), (3.36) and (3.37) are put together to obtain
1
a=¢ lim f(&(o a)) (8¢S(U(O a))) 01(s U(s, @))ds
0

t 1
—zim [ (%(s;co) 61(s U(s a))ds

t—>—c0

=5 fim | Qs )6x(s Us a)ds (338)

Since the integrand in the above equation is T-periodic, Eq.(3.38) is reduced to Eq.(3.34).

4 Relation to other singular perturbation methods

In the previous section, we have seen that the restricted RG method unifies the center man-
ifold reduction, the geometric singular perturbation method and the phase reduction. In this
section, we show that the RG method described in Section 2 unifies the traditional singular
perturbation methods, such as the averaging method, the multiple time scale method and the
normal forms theory. We will also give explicit formulas for regular perturbation solutions
and show how the RG equation is derived from the regular perturbation method through the
envelope theory.
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4.1 Averaging method

The averaging method is one of the most traditional and famous singular perturbation meth-
ods based on an idea of averaging a given equation, which is periodic in time t, with respect
to t to obtain an autonomous equation (see Sanders, Verhulst and Murdock [47]). In most
literature, only first and second order averaging equations are given and they coincide with
first and second order RG equations, respectively. Our m-th order RG equation gives a gen-
eralization of such lower order averaging equations. In Chiba and Paz [13], the third and fifth
order RG equations are used to unfold a phase diagram of the Kuramoto model of coupled
oscillators.

Many authors formulated the averaging method for time-periodic differential equations.
However, the RG equation (the averaging equation) can be defined as long as limits in
Egs.(2.11, 13) exist and R,(y) are well-defined even if a system (2.1) does not satisfy the
assumption (A). If Ry, - - - , Ry are well-defined for a system (2.1), which need not satisfy the
assumption (A), we say (2.1) satisfies the KBM condition up to order m (KBM stands for
Krylov, Bogoliubov and Mitropolsky, see Bogoliubov and Mitropolsky [6]). We showed that
a system (2.1) with the assumption (A) satisfies the KBM condition up to all order (Lemma
2.1). If the assumption (A) is violated, the error estimate (2.27) for approximate solutions
may get worse, such as|x(t) — a{™(y(t))|| < C vz, even if the KBM condition is satisfied and
thus the RG equation is defined. See Sanders et al. [47] and DeVille et al. [32] for such
examples.

Even if (2.1) satisfies the KBM condition, we need additional assumptions to prove
Thm.2.9. It is because to apply Fenichel’s theorem, which was used in the proof of Thm.2.9,
we have to show that the error function S(t,y, €) in Eq.(2.23) is C with respect to t, x and
bounded int € R. See Chiba[10] for more detail.

4.2 Multiple time scale method

The multiple time scale method [3,38,44] was perhaps introduced in the early 20th century
and now it is one of the most used perturbation techniques along with the averaging method.
In this subsection, we give a brief review of the method and show that it yields the same
results as the RG method.

Consider the system (2.1) satisfying the assumption (A). Let us introduce the new time
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scalesty as
th=eM, m=0,1,2,---, (4.2

and consider t and to, t1,to, - - - to be independent of each other. Then, the “total” derivative

d/dt isrewritten as

d 4 8 ,0
a_9 .,9 .9 42
at oo on TC ot (4.2)

L et us expand the dependent variable x as

X=X+ &X1+ KXo+ -+, (4.3)

where x; = X;(to, t1, to, - - - ). Substituting Egs.(4.2) and (4.3) into (2.1), we obtain

d d 2 0 2 k 2
—_ — — 4. + 4o —§ t +EXT+ +...). (44
t0+s t1+8 t2+ )(Xo+8X1 X ) k:189k(0,xo EX1+ETX )- (4.4)

Expanding the both sides of the above in & and equating the coefficients of each X, we obtain
ODEso0N Xg, X1, X2, - ;

o

T~ Gulto. ) - o

aa_i(j = Ga(to, %o, X1) — Z—)t(ll - (g—txz, (4.5)
O = Gm(to, X0, * - - ,le)—i %

dto £,

where the functions Gy, k = 1,2, - -- are defined through EQ.(2.6). Let X =y = y(t1,t, -+ )
be a solution of the zeroth order equation. Then, a general solution of the first order equation
of (4.5) isgiven as

to
X1 = B1 +f (Gl(S,y) -

where By = Bj(Y;t1,to,--+) is independent of to and where R; and u%) are defined by
Egs.(2.11) and (2.12), respectively. Now we define dy/ot; so that x; above is bounded in

to:

ay
t

a_) ds= By + uD@) + Rito - Yto, (4.6)
1

to oty

0
Rl(y)to - a—t)ito =0. (4.7)

41



This condition is called the non-secularity condition and it yields

0
G = RO x=a0) = B+ uw) (48)
Next thing to do is calculating x,. The equation on x; iswritten as
OX
o~ Galto.y. B+ U0 - 5 (B4 U0 -
g (9 (1) 0B
= &(to Y)(B1 + UP(Y)) + Galto. y) - Ruy) - 22 5 R0 )— & (4 9

ageneral solution of which is given by

to (991 (9 @ B, 081
-B )’ b1 _ b1 _ 9
X2 2+f (8y S 6t Ra(y) )
(1)

@ o
=B+ ug’(y) + (Y) B1

0B, 0B ay

+6_yl(y) Bito + Ra(Y)to — —to — — Ry (Y)to — a—tzto,

i 5 (4.10)

where B, = By(y; t1, 1o, - - ) isindependent of ty. If we impose the non-secularity condition
S0 that X, isbounded in tp, we obtain

2~ Ro) - o - [BuRiIO) (@10
au (1)
X2 = Xo(y) = By + uP(y) + (y) B1, (4.12)

where the commutator [-, -] is defined in Eq.(2.61).
By proceeding in a similar manner, we can show that the non-resonance condition at each
stage yields equations on y of the form

a—tl—R.(y)+Q.(R1, Re1,Br - Bio)(y) - 2 '1—[8. 1, Ri(Y), (4.13)

fori =2,3,---, where Q; isafunction of Ry,--- ,R_1 and By, --- , Bi_o. Combining these

eguations on y, we obtain

dy ay dy 23y
dt_c’)t0+ at1+ at2+

= sRuy) + 62 [Raly) a% [BLRIW)|+ - (4.14)

The functions By, By, - - - are still left undetermined. We propose two different ways to deter-
mine them.
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(i) If wedefine Bj’s as solutions of the linear inhomogeneous differential equations

0B;

5 = -[BURI0) +Ra) + QuaRe--- R.Br- B)0).  (415)

then Eq.(4.14) is reduced to the equation

Y ri). (4.16)

Lety = y(t) be asolution of this equation. Then, we can prove that a curve defined by
o™ (y(1) = Y1) + exa (YD) + £5x(Y(D)) + - - - + £MXm(Y(1))

au
= y+e(Br+uP(y) + | B+ uP(y) + a—;(y)Bl] T j IPRNCEY)

provides an approximate solution for Eq.(2.1) and satisfies the same inequality as (2.27) (see
Murdock[38]).

(i) Otherwise, we suppose that B;’s are independent of ty, to, - - - so that Eq.(4.14) isindepen-
dent of t;,t5, - - -. Then Eq.(4.14) takes the form

% = sRi(Y) + &2 (Ro(y) — [B1, Ri](Y)) + -+ , (4.18)

which coincides with the (simplified) RG equation (see Sec.2.4).

4.3 Normal forms

L et us consider the system (2.5) with assumptions (C1) and (C2). The technique of normal
formsisused to analyze local dynamics of such a system and had been well developed in the
last century (Murdock [39]). Let usrecall the definition of normal forms. For a given system
(2.5), there exist a time-independent local coordinate transformation x = h(z) defined near
the origin which brings Eq.(2.5) into the form

2=Fz+eth(@) + - + Mm@ + £€™1S(z €) (4.19)

with the propertiesthat §i(2), i = 1, - - - , msatisfy §i(e"2) = €F'§i(2) and that S isC* in zand
&. Then the truncated system

z2=Fz+e0i(d) + -+ "Gm(@ (4.20)

is called the normal form of Eq.(2.5) up to order m.
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Note that if the matrix F isnot diagonalizable, different definitions are adopted for normal
forms.

Now we consider the RG equation and the RG transformation for Eq.(2.5), respectively,
defined by EQgs.(2.50) and (2.51) with Egs.(2.46) to (2.49). The flow ¢(y) in Egs.(2.46) to
(2.49) is given as ¢(y) = €ty by using the fundamental matrix €t in our situation. Thm.2.5
shows that the RG transformation x = a§m>(y) brings Eq.(2.5) into the form of Eq.(2.23).
Because of Thm.2.15, further change of variables asy = e 'z transforms Eq.(2.23) into the

system
Z=Fz+ &R (2 + - +&"Rn(2 + e™1e'S(t, e 'z ¢) (4.21)

with the property that R(e™'2) = €"'Ri(2) fori = 1,--- ,m.
Now we need the next lemma.

Lemma4.1. For the autonomous system (2.5), the RG transformation satisfies the equality

oM (M) = oM (y) for all .1, y.

This lemma immediately follows from the equality h(¢v(y)) = h(y),i = 1,2,---

proved in the proof of Thm.2.15. Thus it turns out that the composition of two transfor-
mations x = a{™(y) andy = e F'zisindependent of t:

x=a(e"2 = I"(2. (4.22)

This provesthat Eq.(4.21) is obtained from EQ.(2.5) by the time-independent transformation,
and thus the truncated system

Z=Fz+eR (2 + - +&"Rn(2 (4.23)

isanormal form of Eq.(2.5) up to order m.

Note that normal forms of a given system are not unique in general and the simplest form
among them is called a hyper-normal form ([2,39,40]). The RG method can also provide
hyper-normal forms by choosing undetermined integral constants in Eqs.(2.47) and (2.49)
appropriately as was discussed in Sec.2.4. See also Chiba[11].

4.4 Regular perturbation and envelopes

In this subsection, we give some properties of the regular perturbation method. The RG
equation is obtained from regular perturbation solutions through Kunihiro's idea based on
envelopes [28,29].



Consider the system (2.1) on R" with the assumption (A). Let us construct aformal solution

of it of theform
X=R=Xo+&EX1+ENo+-+-. (4.24)

Substituting Eq.(4.24) into Eq.(2.1) and equating the coefficients of each £, we obtain a
system of ODEs:
X0 =0,
Xl = Gl(t’ XO),

: (4.25)
)-(k = Gk(t’ XO’ RS Xk—l)a

where the functions Gy are defined through Eq.(2.6). Solving these equations and substituting
solutions xx = X(t) into Eq.(4.24), we obtain aformal solution x = X(t). If Eq.(2.1) isanalytic
ineg € & c C, Eq.(4.24) convergesfor ¢ € & and gives an exact solution of Eq.(2.1). However,
in this section, we need not such an assumption and regard Eq.(4.24) asaformal power series
in . To construct aformal solution X(t) as aboveis called the regular perturbation method.

Let us define Ri(y) and uﬁi)(y), i =12 by Egs.(2.11) to (2.14). By using these func-
tions, regular perturbation solutions (4.24) are given as follows:

Proposition 4.2. Solutions of the system of ODES (4.25) are given as
= x(ty) = W) + PP+ P NE + -+ PP (4.26)

fork =1,2,---, wherey € R" isan arbitrary constant (a solution of X, = 0) and where p(’)
are defined by

POt y) = () = Ruy)

—1 5y
p(ty) = R(y) + Z—(y)R (). =23,
1 ?
p(t.y) = Z Dl Rt i=28 i1 (427)
, . p(. 1)
pOty) = pP) = =TGR, =23,
p{(t.y) =0, P>
In particular, p(')(t y) are amost periodic functions with respect to t for all i, j € N.
Proof. This proposition is proved in Chiba[10]. [
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Now we derive the RG equation (2.18) according to an idea of Kunihiro [28,29]. We can
show that regular perturbation solutions are also expressed as

X=Xt 1Y) =y+exa(t,1,y) + Xt 7,y) + - (4.28)
with
(6 7y) = uy) + Pyt -0 + pPE -2+ + peye -0 (429

by choosing initial times and initial values appropriately when solving the system (4.25) so
that a formal solution X(t, 7,y) passes through 'y + 3.2, skugk)(y) at=r1 wherer € Ris
an arbitrary constant. Further, we regard y = y(r) as a function of 7 to be determined, and
consider the family {X(t, 7, y(7)) }:er Of regular perturbation solutions parameterized by v € R.
It is known that regular perturbation solutions are close to exact solutions only for a short
time interval [t| ~ O(1). However, if we move the initial valuey + 2, s"uﬁ")(y) along an
exact solution by varying T asFig .7, it seems that the envelope of the family {X(t, 7, y(7))}:er
gives the exact solution of Eq.(2.1).

\‘\exact solution
; ; j ; fj regular perturbation solutions

Fig. 7 Exact solution of Eq.(2.1) and afamily of regular perturbation solutions X(t, 7, y(7)).

The envelope is calculated as follows: At first, we differentiate X(t, 7, y(r)) with respect to
7 =t and equate it to zero :
d X(t, 7, y(r)) = 0. (4.30)

dr le=t
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Substituting Eqs.(4.28) and (4.29) into the above yields

dy <o ,d
DI —IT:txk(t, 7,Y(r))

dy « au() SPNY
- o Zsk — )— - Ru(y) - Z VR |- (4.31)
dt k=1 = oy
This equality isformally satisfied if we definey = y(t) as a solution of the ODE
= =) &R (4.32)
k=1

Thisrecoversthe mth order RG equation if truncated at order €™. With thisy(t), the envelope
for the family {X(t, 7, y(7))}cr iS given by X(t, t, y(t)). Again Egs.(4.28) and (4.29) prove that

[ee]

R YO) = V) + D Xt L ()
k=1

[e]

=y + > &)

k=1
= a™(y(1) + O™, (4.33)

which gives the m-th order RG transformation if truncated at order £™.

In therest of this section, we prove that aformal solution (4.24) with Eq.(4.26) obtained by
theregular perturbation method includesinfinitely many convergent subseriesevenif Eq.(2.1)
(and thus Eq.(4.24)) isnot analyticin .

Proposition 4.3, For sufficiently small |st|, the series 32, £'t' p'*9(t, y) are convergent for
k=0,1,2,---.
To prove Prop.4.3, we need the next ssimple lemma.

Lemma4.4. Let hy(t) and hy(t) be amost periodic functions with Mod(h;) > Mod(h,) (the
module of almost periodic functionsis defined in Sec.2.1). If

lim(ha(t) - ha(1)) = 0, (4.34)
then hy(t) = hy(t) for al t € R,
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Proof of Lemma 4.4. Functions hj, i = 1,2 are expanded in Fourier series as hi(t) =
. eeModchy) G ()€, Then, Eq.(4.34) is rewritten as

lim Z (C1() — () €M = 0. (4.35)
2% emod(hy)
This provesthat c;(Ax) = co(Ax) for al A, € Mod(hy). ]
Proof of Prop.4.3. Let
X®) =yo+ » &'t'p(yo) + Z & [uP(yo) + Z £t p*(t, yo) (4.36)
1=1

be aformal solution of Eq.(2.1) constructed by the regular perturbation method and let y =
y(et, €) be asolution of the m-th order RG equation

dy
d(et)

for EQ.(2.1). By Thm.2.7, there exist positive constants C and T such that the inequality

= Ry(y) + eRo(y) + -+ - + &™ "Rn(Y) (4.37)

IX(t) — a™(y(et, &))| < Clel™, O0<t<T/e (4.38)

holdsif we choose initial values of x(t) and y(et, ) appropriately. Puttingt = T /e yields

AN WY(T.€) = y(T.e) + y Ul (U(T. #)
k=1
m-1

= Yo+ Z T' 0 (o) + Z £ uld_(yo) + Z T'p!™M(T/e,yo0) [+ OE™.  (4.39)
k=1

Note that functions u®(y) and p{'*™(t, y) are almost periodic functionsin t such that Mod(u®?)
and Mod( pl(”")) areincluded in Mod(g). In particular, they are bounded int € R. Thustaking
the limit e —» 0in Eq.(4.39) provides

Y(T.0) = Yo+ > T'pV(v0). (4.40)
=1

This provesthat the series 32, T! pl(')(yo) IS convergent.
Next thing to do isto prove Prop.4.3 for k = 1. Using EQ.(4.40) and dividing the both sides
of Eq.(4.39) by &, we obtain

- k 1 k m-1
2 g gex T O)+Z R, (T e) = ) ( U vo) + ZT o (T /2, o) [+O(™ ).
k=t P

(4.41)
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Taking the limit e — Qyields

0 . -
21,0 + lim|uf), (T 0) - u),60) - > T'p{ (T /eye)| =0 (442
1=1

Now Lemma4.4 proves that

S0l y0) = 2X(T,0) + u(T, 0) - UV o), (443
I=1
and the series 31>, T! pl('”) (t, yo) provesto be convergent.
The proof of Prop.4.3 for k > 2 isdonein asimilar way and omitted. ]
Though it seems that Prop.4.3 has no relationship to the RG method, it is instructive to
notice the equality (4.40). Since y(T, 0) in the left hand side is obtained from a solution of
the first order RG equation dy/d(st) = Ry(y), the series 3 °, T' pf')(yo) proves to be deter-
mined by only the first order RG equation. This is remarkable because if we want to obtain
Z;ﬁlT' pl(')(yo) by using the regular perturbation method, we have to solve infinitely many
ODEs (4,25). A similar argument shows that a solution of the m+th order RG equation in-
volves al terms of the form k"'t p!*(t,yo) for k = 0,--- ,m—-1and| = 1,2,--- in the
formal solution (4.24).

5 Infinite order RG equation

Infinite order RG equations and transformations are not convergent seriesin general. Inthis
section, we give a necessary and sufficient condition for the convergence. It will be proved
in Sec.5.3 that infinite order RG equations for linear systems are convergent and related to
Floquet theory.

5.1 Convergence condition

Let us consider the system
x=egg(t,x,&), XeM (5.0

on areal analytic manifold M with the following assumption :

(A’) Thevector field g isanalytic withrespecttot e R,xe Mande € |, wherel c Risan
open interval containing 0. Further gis T-periodicint.
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Because of the periodicity, we can regard (5.1) asasystemon St x M :

d(s 1
al3)= o) 52

where St isacircle with aC¥ structure.
Theorem 2.5 states that the infinite order RG transformation defined by

X=aly) =y +eu ) + g00) + o (53)

formally brings the system (5.1) into the infinite order RG equation
Y= eRu(y) + & Raly) + -+, (5.4)

where “formally” means that Eqgs.(5.3) and (5.4) are not convergent in general. If Eq.(5.3)
is convergent, so is EQ.(5.4). A necessary and sufficient condition for the convergence of
Eq.(5.3) isgiven asfollows:

Theorem 5.1. For the system (5.1) with the assumption (A’), there exist an open neighbor-
hood U = Uy of St x {y} x {0} in St x M x | for eachy € M and an analytic infinite order RG
transformation on U, if and only if the system (5.1) isinvariant under the T* (1-torus) action

of the form
T (t,X) - (t+k X+ eo(t, x €), keR, (5.5)

where o (t, X, €) isanalytic with respect to k, t, x, e and T-periodicin k and t.

Recall that RG equations and RG transformations are not unique and not all of them are
convergent even if the condition of Thm.5.1 is satisfied.

The proof of this theorem involves Lie group theory and will be given in Sec.5.2, though
the idea of the proof is shown below.

Since the infinite order RG equation is an autonomous system, it is invariant under the
trandation of t, (t,y) — (t + k,y). If aninfinite order RG equation and transformation are
convergent and well-defined, the system (5.1) isinvariant under the action defined by pulling
back the trandlation by the RG transformation :

(t, %) > (t+ K ek 0 a7 1(X)). (5.6)
Since ay is T-periodic (Lemma 2.1 (ii)), this defines the T* action on the space S* x M.
Conversdly, if the system (5.1) is invariant under the action (5.5), then a ssmple extension

of Bochner’s linearization theorem proves that there exists a C* coordinates transformation
X Yy such that the action (5.5) is written as (t,y) — (t + k,y). We can show that this
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transformation is just an RG transformation. See Section 5.2 for the detail.

In the rest of this subsection, we consider an autonomous system on C" of the form

X = FX+ eg(X €)
= FX+ eq(X) + €2ga(X) + -+, xe C", (5.7)

with the assumptions (C1),(C2) (see Sec.2.1) and (C3) below :

(C3) g(x, &) isanayticwithrespecttox e C"ande € | C R.

For this system, RG transformations are defined by Eq.(2.51) with EQs.(2.46) to (2.49).
The next corollary immediately follows from Thm.5.1.

Corollary 5.2. Suppose that all eigenvalues of F have pairwise rationa ratios. Then, there
exist an open neighborhood U = Uy of St x {y} x {0} in S x M x | for eachy € M and
an analytic infinite order RG transformation on U, if and only if the system (5.7) isinvariant
under the T* action of the form

T!: x> ekx + eok(t,x ), kKeR, (5.8

where o (t, X, €) is analytic with respect to k, t, X, e and periodic in k and t.

Proof. By changing the coordinatesas x = €F1X, Eq.(5.7) isrewritten as X = ee Flg(eFX, ).
Since €t is periodic because of the assumption of Corollary 5.2, we can apply Thm.5.1 to
this system. Note that we do not need the assumption (C2) to prove Corollary 5.2. ]

Recall that RG equationsfor Eq.(5.7) are equivalent to normal forms (Sec.4.3). If there are
irrational ratios among eigenvalues of F, Thm.5.1 isno longer applicable. For such asystem,
Zung [54] gives a necessary and sufficient condition for the convergence of normal forms of
infinite order, although he supposes that gi(x) in Eqg.(5.7) is a homogeneous vector field of
degreei fori = 2,3,---. A necessary and sufficient condition for the convergence of infinite
RG equations and transformations for Eq.(5.7) isgiven in asimilar way to Zung's theorem as
follows:

Remember that an RG equation for Eq.(5.7) has the property that Ri(€7¢y) = €"*Ri(y), k €
Rfori = 1,2,---, if integral constants in Egs.(2.47) and (2.49) are appropriately chosen
(Thm.2.15). If amatrix B satisfies the equalities FB = BF and Q(e®y) = e®Q(y), k € R
for all polynomial vector fields Q such that Q(e™¢y) = e*Q(y), k € R, then B is caled
subordinate to F. It is known that if F is adiagonal matrix, we can take B having the form
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B = diag(iby,-- - ,iby,), wherei = V-1 and bjeZforj=1,---,n(see Murdock [39], Zung
[54]). Let p be the maximum number of linearly independent such matrices By, - - - , B, and
call it the toric degree of F. Then, the matrix eBikt+Boko (k... kp) € RP induces the TP
action on C" and the RG eguation isinvariant under thisaction. By asimilar way to the proof
of Thm.5.1, we can prove the next theorem, whose proof is omitted here.

Theorem 5.3. Let p be the toric degree of F. For the system (5.7), there exist an open
neighborhood U = Uy of Stx{y} x{0}inS!x M x | for eschy € M and an analytic infinite
order RG transformation on U, if and only if (5.7) isinvariant under the TP action of the form

TP : x> Bkt *Bkoy oo ot X 8),  (ke--,kp) € RP, (5.9)

where oy, ... k,(t, X, €) is analytic with respect to ky, - - - , Kp, t, X, & and periodic in kg, - -+ , kp
andt.

5.2 Proof of Theorem 5.1

In this subsection, we give a proof of Thm.5.1. At first, we provide a few notations and
factsfrom Lie group theory.

Let K be a compact Lie group, dk a bi-invariant measure on K, V a complete locally
convex topological vector space, and  a representation of K in V. We define the average
av(rn) :V - Vof r by

av(n)(v) = fK n(K)(v)dk. (5.20)

Then, the next theorem holds (see Duistermaat and Kolk [15] for the proof).
Theorem 5.4. The average av(r) is alinear projection from V onto the space V) := {v €
V|n(K)v =v, Yk € K}; that is, equalities

(k) o av(m)(v) = av(m)(V) (5.11)

and
a(mVv) =v, veV® (5.12)

hold.

Let St be a circle with a C® structure, M a real analytic manifold, and | ¢ R an open
interval containing O, as Sec.5.1. The next theorem is a simple extension of Bochner’s lin-
earization theorem [5,15].
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Theorem 55. Let A: K — Diff*(S? x M x 1) beaC® action of K on S* x M x | such that
A(K) is expressed as

AK)(L % &) = @ K)(D), a(K)(t % &), ), ke K, (5.13)

whereay (k) : St — St and ay(k) : S x M x | — M are C® maps. Suppose that there exists

Xo € M such that
a(K)(t, X0, 0) = Xo. (5.14)

Then, there exist an open neighborhood U of St x {xo} x {0} in S x M x | and aC diffeo-
morphism & from U into S x Ty, M x R such that

@ o A(K) = (a1(k) x Dyax(K)(t, X0, 0) x id) o @, (5.15)

where Dy isthe derivative with respect to x. The ¢ is expressed as

o(t, x, &) = (t, as(t, %, &), &) (5.16)
with aC“ map ag and satisfies
a(t’ XO, O) = (t, O’ 0)’ Dxa(ta XO’ 0) = Id (517)
Further if we suppose
DYax(K)(t, X0, 0) =0 (n>2), (5.18)
then ¢ satisfies
DY(t, %0,0) =0 (n=>2). (5.19)

Proof. Let W be a K-invariant open neighborhood of St x {xq} x {0} and V a space of C
mapsVv : W — S x T, M x R such that

V(ST X {Xo} X {0}) = S’ x {xo} x {O}. (5.20)

Then V isacomplete locally convex topological vector space.
Takeay € V expressed as

ot x, &) = (t, B(t, X, &), €) (5.21)
satisfying
DyA(t, %0,0) = id, DB(t,%,0) =0 (n>2), (5.22)
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where g isaC® map. Define the representation = of K in'V to be

7(K)(V) = (ax(K) x Dxaa(K)(t, X0, 0) x id) o vo A(K)™2, (5.23)

and definep € V to be

7 = av(n)(p) = fK (a1(K) x Dyxan(K)(t, X0, 0) x id) 0 ¢ o A()Ldk. (5.24)

Then Thm.5.4impliesthat ¢ = 7(k)(¢) and thisproves Eq.(5.15). Egs.(5.16),(5.17) and (5.19)
immediately follow from the definition (5.24) of ¢ with Egs.(5.14),(5.18),(5.20),(5.21) and
(5.22). Since Dg(t, Xo, 0) = id, g isaC® diffeomorphism on aneighborhood of St x {Xo} x {0}
by virtue of the inverse mapping theorem. ]

Proof of Thm.5.1. Suppose that an infinite order RG transformation a:(y) is analytic in
U. Then, so is an infinite order RG equation. Since the RG equation is invariant under the
trandation of t, Eq.(5.1) isinvariant under the action defined by pulling back the trandlation
by the RG transformation:

(t,X) = (t+ K, apx 0 ap 1(X))

= (t+k x+ e () -uP(x) +0@E?), keR. (5.25)

Since o is T-periodic, this defines the T* action on St x M of the form of (5.5).
Conversely, suppose that Eq.(5.1) is invariant under the T* action (5.5). Let us rewrite

Eq.(5.1) as
q(s 1
I [ xJ = [sg(s, X, a)]. (5.26)

> 0
Then, the action (5.5) induces the action on S* x M x | of the form

AK) i (s x &) (s+k a(k(sxe)e), keR, (5.27)

where ax(K)(S, X, €) = X+ e0k(S, X, €). Since ax(K) satisfies Egs.(5.14) and (5.18) for any x €
M, Thm.5.5 applies to show that there exist an open neighborhood U = Uy, of S x {xo} x {0}
and a C* diffeomorphism ¢ satisfying Egs.(5.15) to (5.17) and (5.19) for each Xy € M.

By taking alocal coordinate near Xg, we put Xo = 0 and identify a neighborhood of xg with
aneighborhood of 0 in Ty,M. Then, Egs.(5.16), (5.17) and (5.19) prove that ¢ is expressed

as
o(t, X, &) = (t, X+ £ag(t, X, €), &), (5.28)

54



where &3 isaC® map. Thus ¢ defines the C* transformation v by
X =u(y) = y+eaz(t,y, &). (5.29)

Now Eq.(5.15) provesthat if wetransform Eq.(5.1) by x = (Y, €), then the resultant equation
isinvariant under the action

a1(K) x Dyax(K)(t, X0, 0) x id : (t, X, &) — (t + K, X, &). (5.30)

Sincethisisthe trandation of t, the resultant equation has to be an autonomous system of the
form
dy

& = RO-9), (5.31)

where R isanalyticiny and e.

Finally, we show that there exist an RG transformation and an RG equation which coincide
with Egs.(5.29) and (5.31), respectively. Let Egs.(5.3) and (5.4) be one of the RG transfor-
mations and the RG equations for Eq.(5.1), respectively. Since both of Egs.(5.31) and (5.4)
are obtained from EQ.(5.1) by C* transformations ; and at, respectively, there exists an C*®
transformation ¢ which brings Eq.(5.31) into Eq.(5.4):

at o @y, €) = Yaly, €). (5.32)
Because of Claim 2.16, there exists an RG transformation a; other than a; suchthat @; = a;o¢.
This proves that there exists an analytic RG transformation a; = . [
5.3 Infinite order RG equation for linear systems

In this subsection, we consider an n-dimensional linear system of the form

x = eA(t, €)X, ,
= eA1()X + 2Ap()X+---, xeC" (5.33)

where A(t, £) isan n x n matrix. If this system satisfies the assumption (A), the RG method
is applicable. Since the RG equation and the RG transformation are linear iny € C", itis
convenient to define matrices R and u{” to be

t
Ru=lim ¢ [ Au(9ds (534
u = f (9 - R ds (5.35)
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and

i—-1
R = I|m ft[ZA. k(UL + A(s) - Zu(k)R‘ ]ds, (5.36)

] tf 1-1
- [ [ZA. (UE + A9 - ZU‘”R - R.) (537)

fori =2,3,---, respectively. With these matrices, the m-th order RG equation and the m-th
order RG transformation for EQ.(5.33) are defined by

V=eRiy+e®Roy+--- + stmy yeC", (5.38)
oMy =y+ gu(l)y+ c+ &My, yecCn, (5.39)

respectively. Since the RG equation is a linear system with a constant coefficient, we can
easily determine the stability of the trivial solution x = 0 of Eq.(5.33) by using the RG
equation. See Chiba[11] for the detail.

In what follows, we suppose the following assumption :

(L) The matrix A(t, €) is T-periodic in t and analytic with respect to e € D, whereD c C is
an open neighborhood of the origin.

Let us consider the infinite order RG equationy = > °; Ry := R(e)y and the infinite
order RG transformation ety = y + Y, € u(k)y Then, the fundamental matrix X(t, &) of

Eq.(5.33) isgiven by
X(t, €) = o - RN, (5.40)

Aninitial value is given by X(0,¢) = ao = id + X2, £l and it can be taken arbitrarily
by choosing integral constants in Egs.(5.35) and (5.37) approprlately. We suppose that the
integral constants are chosen so that an initial value ag isanayticine € D. Then, X(t, ) is
analyticin € € D. Now the question arises whether oy and R(¢) are analytic in .

Theorem 5.6. Suppose that Eq.(5.33) satisfies the assumption (L) and «g is chosen to be
analytic in £ € D. Then, there exists a positive number rg such that R(g), €X@ and o, are
analytic onthedisk |¢] < r.

Proof. Sincea; is T-periodic (Lemma 2.1 (ii)), the equality

X(t+T,8) = a7 - OED
= - RO RET
= X(t, ) - ROT (5.41)
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holds. Puttingt = O yields
efET = X(0,8)™L- X(T, &). (5.42)

Since X(t, €) isnonsingular and analyticine € Dforall t € R, eXe)T jsaso analyticine € D.
Since det Xe)T £ 0, the theory of analytic matrix-functions concludes that R(¢)T is analytic
onsomedisk {€ € C||e| < ro} ¢ D (see Yakubovich and Starzhinskii [52], Erugin [17]). This
proves that R(s), €@ and o = X(t, £)e R are also analytic on the disk. m

A few remarks arein order. Thm.5.6 with Thm.5.1 shows that Eq.(5.33) with the assump-
tion (L) admits a Lie group action other than the scalar multiple : x — kx, k € C.

In general, analyticity of e*®T on D does not conclude analyticity of eX©)t on D for all
t € R. For example, consider thecase R(e) = log(1 + ¢), T = 1.

The convergence radius rg of R(e) isgiven asfollows: Fix g € D and apass| in D from
the origin to . Let A1(€), - - - , An(e) be eigenvalues of éX®T. Suppose that there are i # |
such that 1;(eo) = 1j(e0) and passes of 4;(e) and 1j(e) along | surround the origin (see Fig.8).
Then, log Ai(o) and log 1j(eo) are located in different sheets of the Riemann surface. The
smallest absolute value rp = |gg| @among such &q’s gives the convergence radius.

A A

Ai

&o log2;

> 1\/l>

j log 2,

Fig. 8 Passesof eigenvalues 4, 4; on C and passes of log 4, log 4; on the Riemann surface.

Floquet theorem states that for a given linear system with a periodic coefficient, there exist
aperiodic matrix Q(t) and aconstant matrix B such that the fundamental matrix X(t) iswritten
as X(t) = Q(t)e®. The RG method just gives the matrix B; B = R(s) = Y, e“Re. Since
Q(t) = ay is periodic, the stability of the trivial solution x = 0 is determined by eigenvalues
of B = R(¢), caled Flogquet exponents.

Let T = 2r for simplicity. The matrix A(t, €) is expanded in a Fourier series as A(t, &) =
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>+ ()€™, By changing the independent variables as z = €™, Eq.(5.33) is written as

dx . .
& —|sZ cn(€)Z1x. (5.43)

Thisisalinear system on a complex domain having the singularity at the origin. It is known
that the fundamental matrix of this system is expressed as

X(2) = S(2) - eV19?, (5.44)

where S(2) is asingle-valued matrix and M = M(g) is a constant matrix called monodromy
matrix. It is easy to verify that R(¢) = iM and the RG method provides the monodromy
matrix.
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