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Abstract

The renormalization group (RG) method for differential equations is one of the perturbation methods

for obtaining approximate solutions. This article shows that the RG method is effectual for obtaining

an approximate center manifold and an approximate flow on it, when applied to equations having a

center manifold.

1 Introduction

The renormalization group (RG) method of Chen, Goldenfeld and Oono [2,3] is one of the perturba-

tion methods for obtaining solutions which are approximate to exact solutions for a long time interval.

Over the last decade, various methods and techniques for deriving RG equations and approximate

solutions have been studied by many authors [2,3,4,5,6,7,9,11,12,13,15]. Kunihiro [11,12] showed

that an approximate solution obtained by the RG method is an envelope of a family of curves which

are constructed by the naive expansion. Ziane [15] and DeVille et al. [6] defined the first order RG

equation by using an averaging operator and they proved that an exact solution of a given equation

and an approximate solution obtained by the RG method are sufficiently close to each other for a long

time interval. Chiba [4,5] defined the higher order RG equation on the idea of Kunihiro, Ziane, and

DeVille et al. to obtain higher order approximate solutions. He also proved that if the RG equation

has a normally hyperbolic invariant manifold N, the original equation also has an invariant manifold

which is diffeomorphic to N.

It has been shown that the RG method covers the traditional singular perturbation methods, such as

the multi-scaling method [2,3], the boundary layer theory [2,3], the averaging method [6], the normal

form theory [5,6]. In particular, Chen, Goldenfeld, Oono [3] and Ei, Fujii, Kunihiro [7] applied the

RG method to an equation whose linear part has eigenvalues on the left half plane and the imaginary

axis to construct an approximate center manifold, while many authors had studied the case that all

eigenvalues of the linear part lie on the imaginary axis.

This paper offers a rigorous proof of the fact that the RG method provides an approximate center
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manifold, and further the RG method is improved to raise accuracy of approximation by using the

higher order RG equation. An approximate flow on an approximate center manifold is derived as

well. Moreover, it is shown that if the RG equation has a normally hyperbolic invariant manifold, a

given equation also has an invariant manifold on the center manifold. This method for obtaining an

approximate center manifold and a flow on it is called the restricted RG method because a domain of

the RG equation is restricted to a center subspace of an unperturbed part of a given equation.

This paper is organized as follows: Sec.2 presents basic facts and definitions in dynamical systems.

In Sec.3, the restricted RG method is proposed and main theorems on the restricted RG method are

proved. Sec.4 presents a few examples.

2 Basic facts

Let f be a time independent Cr vector field on a Cr manifold M and ϕ : R × M → M its flow,

which satisfies ϕt ◦ ϕs = ϕt+s, ϕ0 = idM , where idM denotes the identity map of M. For fixed t ∈ R,

ϕt : M → M defines a diffeomorphism of M. We denote by ϕt(x0) ≡ x(t), t ∈ R, a solution of the ODE

ẋ = f (x) through x0 ∈ M at t = 0. We assume ϕt is defined for ∀t ∈ R.

For a time-dependent vector field, let x(t, τ, ξ) denote a solution of an ODE ẋ(t) = f (t, x) through ξ at

t = τ, which defines a flow ϕ : R×R×M → M by ϕt,τ(ξ) = x(t, τ, ξ). For fixed t, τ ∈ R, ϕt,τ : M → M

is a diffeomorphism of M satisfying

ϕt,t′ ◦ ϕt′,τ = ϕt,τ, ϕt,t = idM . (2.1)

Conversely, a family of diffeomorphisms ϕt,τ of M, which is C1 with respect to t and τ, satisfying

the above equality for ∀t, τ ∈ R defines a time dependent vector field on M through

f (t, x) =
d
dτ

∣∣∣∣
τ=t
ϕτ,t(x). (2.2)

Theorem 2.1. (Fenichel, [8])

Let M be a Cr manifold (r ≥ 1), and Xr(M) the set of Cr vector fields on M with C1 topology. Let

f be a Cr vector field on M and suppose that N ⊂ M is a compact connected normally hyperbolic

f -invariant manifold. Then, there is a neighborhoodU ⊂ Xr(M) of f s.t. for ∀g ∈ U, there exists an

unique normally hyperbolic g-invariant Cr manifold Ng ⊂ M near N. In particular if g ∈ U is within

an O(ε) neighborhood of f , Ng lies within an O(ε) neighborhood of N as well.

See [8],[10],[14] for the proof of Thm.2.1 and the definition of normal hyperbolicity.

Definition 2.2. Let ϕt be the flow of a vector field on a manifold M. A manifold N ⊂ M is called a

locally invariant manifold if there exists a number T = T (x) > 0 for each x ∈ N such that {ϕt(x) | −T <

t < T } ⊂ N.
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Theorem 2.3. (Center Manifolds Theorem) Consider the system{
ẋ = Ax + f (x, y), x ∈ Rn,
ẏ = By + g(x, y), y ∈ Rm,

(2.3)

where A and B are constant matrices such that all eigenvalues of A lie on the imaginary axis and all

eigenvalues of B lie on the left half plane. Suppose that f and g are C2 vector fields which vanish

together with their derivatives at the origin. Then, there exists an n-dimensional locally invariant

manifold which is tangent to the x-plane at the origin. It is called a local center manifold.

See Carr [1] for the proof of Thm.2.3.

3 Restricted Renormalization Group Method

In this section, we propose the restricted RG method for obtaining a center manifold and a flow on

it approximately.

Let F be an n × n matrix all of whose eigenvalues lie on the imaginary axis or the left half plane.

We assume that at least one eigenvalue is on the imaginary axis because if all eigenvalues lie on the

left half plane, the origin remains to be a stable fixed point of the equation under small perturbation

and topological properties of the flow near the origin is trivial. Further, we suppose that the Jordan

block corresponding to the eigenvalues on the imaginary axis is semisimple. Let g(t, x, ε) be a time-

dependent vector field on Rn which is C∞ class with respect to t, x and ε ∈ R. Let g(t, x, ε) admit a

formal power series expansion in ε, g(t, x, ε) = g1(t, x) + εg2(t, x) + ε2g3(t, x) + · · · . We suppose that

gi(t, x)’s are periodic in t and polynomial in x, whose degrees are equal to or larger than 1, although

the results in this section still hold even if gi(t, x)’s are almost periodic in t ∈ R as long as the set of

Fourier exponents of gi(t, x)’s has no accumulation points (see Chiba [4]).

Consider an ODE

ẋ = Fx + εg(t, x, ε)

= Fx + εg1(t, x) + ε2g2(t, x) + · · · , x ∈ Rn, (3.1)

where ε ∈ R is a small parameter. Replacing x in (3.1) by x = x0 +εx1 +ε
2x2 + · · · , we rewrite (3.1) as

ẋ0 + εẋ1 + ε
2 ẋ2 + · · · = F(x0 + εx1 + ε

2x2 + · · · ) +
∞∑

i=1

εigi(t, x0 + εx1 + ε
2x2 + · · · ). (3.2)

Expanding the right hand side of the above equation with respect to ε and equating the coefficients of
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each εi of the both sides, we obtain ODEs for x0, x1, x2, · · · as

ẋ0 = Fx0, (3.3)

ẋ1 = Fx1 +G1(t, x0), (3.4)
...

ẋi = Fxi +Gi(t, x0, x1, · · · , xi−1), (3.5)
...

where the inhomogeneous term Gi is a smooth function of t, x0, x1, · · · , xi−1. For instance, G1,G2 and

G3 are given by

G1(t, x0) = g1(t, x0), (3.6)

G2(t, x0, x1) =
∂g1

∂x
(t, x0)x1 + g2(t, x0), (3.7)

G3(t, x0, x1, x2) =
1
2
∂2g1

∂x2
(t, x0)x2

1 +
∂g1

∂x
(t, x0)x2 +

∂g2

∂x
(t, x0)x1 + g3(t, x0), (3.8)

respectively. We denote by X(t) = eFt the fundamental matrix of the unperturbed equation ẋ0 = Fx0.

Let N0 be the center subspace, which is a hyperplane in Rn spanned by the eigenvectors of F associated

with eigenvalues on the imaginary axis. Note that if A ∈ N0, then X(t)A ∈ N0 for all t ∈ R.

Define functions Ri : N0 → Rn and h(i)
t : N0 → Rn with i = 1, 2, · · · by

R1(A) := lim
t→−∞

1
t

∫ t

X(s)−1g1(s, X(s)A)ds, (3.9)

h(1)
t (A) := X(t)

∫ t(
X(s)−1g1(s, X(s)A) − R1(A)

)
ds, (3.10)

and

Ri(A) := lim
t→−∞

1
t

∫ t(
X(s)−1Gi(s, X(s)A, h(1)

s (A), · · · , h(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )ARi−k(A)

)
ds, (3.11)

h(i)
t (A) := X(t)

∫ t(
X(s)−1Gi(s, X(s)A, h(1)

s (A), · · · , h(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )ARi−k(A) − Ri(A)

)
ds, (3.12)

for i = 2, 3, · · · , where (Dh(k)
t )A denotes the derivative of h(k)

t (A) with respect to A ∈ Rn. Note that

h(k)
t (A) is differentiable as a function on Rn. Integral constants of the indefinite integrals of the above

equations are taken to be zero. What this means is as follows: Since gi(t, x) is a polynomial in x and

since it can be expanded into the Fourier series with respect to t, it is easy to see that each integrand

in Eqs.(3.9) to (3.12) can be written as a linear combination of functions of forms eξs, ξ ∈ C. In
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particular, the integrand in Eq.(3.10) does not have a constant term because if the Fourier series of

X(s)−1g1(s, X(s)A) has a constant term with respect to t, it has to be equal to the term R1(A). Therefore

we can take the integral constant of the indefinite integral
∫ t

(X(s)−1g1(s, X(s)A) − R1(A))ds to be zero

so that the indefinite integral is written as a linear combination of functions of forms eξt, ξ � 0. Func-

tions h(i)
t (A), i = 2, 3, · · · are defined in a similar way so that X(t)−1h(i)

t (A) are linear combinations of

functions of forms eξt, ξ � 0. Note that Ri(A)’s are independent of integral constants in Eqs(3.9),(3.11).

Lemma 3.1. Functions R1(A),R2(A), · · · are well defined and

(i) each Ri(A) satisfies Ri(A) ∈ N0,

(ii) each h(i)
t (A) is bounded uniformly in t ∈ R.

Proof. We can assume that F is of the form

F =



λ1
. . . 0

λl

0 S


,

where eigenvalues λ1, · · · , λl lie on the imaginary axis and eigenvalues λl+1, · · · , λn of S lie on

the left half plane with Re(λl+1) ≥ · · · ≥ Re(λn). Let πc and πs be the projections from Rn

onto the center subspace N0 = {(x1, · · · , xl, 0, · · · 0) | xi ∈ R} and its complementary subspace

N⊥0 := {(0, · · · 0, xl+1, · · · , xn) | xi ∈ R}, respectively. Since g1(t, x) and X(t)A with A ∈ N0 are bounded

in t ∈ R, there exists a positive constant C such that ||g1(t, X(t)A)|| ≤ C for each A ∈ N0. Since the

integrand X(s)−1g1(s, X(s)A) in Eq.(3.9) is bounded in s ≤ 0, it is easy to verify that the limit in

Eq.(3.9) converges and R1(A) is well-defined.

To prove the lemma (i) for i = 1, note that there exist positive constants D, δ such that ||πsX(t)−1|| ≤
De−Re(λl+1)t−δt for t ≤ 0 and −Re(λl+1) − δ > 0. Then, πsR1(A) proves to satisfy

||πsR1(A)|| ≤ lim
t→−∞

1
−t

∫ t

||πsX(s)−1g1(s, X(s)A)||ds

≤ lim
t→−∞

1
−t

∫ t

CDe−Re(λl+1)s−δsds = 0.

This means that R1(A) ∈ N0. Next, to prove (ii) of the lemma, we evaluate ||πsh
(1)
t (A)|| to get

||πsh
(1)
t (A)|| ≤

∫ t

||πsX(t − s)g1(s, X(s)A) − πsX(t)R1(A)||ds ≤
∫ t

CDeRe(λl+1)(t−s)+δ(t−s)ds. (3.13)

Since the integral constant is equal to zero, we obtain ||πsh
(1)
t (A)|| ≤ −CD/(Re(λl+1) + δ). On the other

hand, πch(1)
t (A) satisfies

πch(1)
t (A) = πcX(t)

∫ t(
πcX(s)−1g1(s, X(s)A) − R1(A)

)
ds. (3.14)
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Then, the boundedness of the πch(1)
t (A) results from Prop.A.4 of Chiba[4], in which the boundedness of

h(i)
t (A), i = 1, 2, · · · is proved for the case that all eigenvalues of F lie on the imaginary axis. Therefore

h(1)
t (A) = πsh

(1)
t (A) + πch(1)

t (A) is bounded uniformly in t ∈ R.

Lemma 3.1 for Ri(A), h(i)
t (A), i = 2, 3, · · · is also proved by induction in the same manner as above.

�

By Lemma 3.1 (i), each Ri(A) defines a vector field on N0.

Definition 3.2. Along with R1(A), · · · ,Rm(A) given by Eqs.(3.9),(3.11), we define the m-th order

restricted RG equation for Eq.(3.1) to be

Ȧ = εR1(A) + ε2R2(A) + · · · + εmRm(A), A ∈ N0. (3.15)

Using h(1)
t (A), · · · , h(m)

t (A) given by Eqs.(3.10),(3.12), we define the m-th order RG transformation

αt : N0 → Rn by
αt(A) = X(t)A + εh(1)

t (A) + · · · + εmh(m)
t (A). (3.16)

Remark 3.3. A few remarks are in order. While Ri(A) ∈ N0 ⊂ Rn is an n-dimensional vector, as many

as dimN0 component equations in Eq.(3.15) are independent of one other. Thus we regard Eq.(3.15)

as a dimN0-dimensional differential equation. Since X(t) is nonsingular and h(1)
t (A), · · · , h(m)

t (A) are

bounded uniformly in t ∈ R, for sufficiently small |ε|, there exists an open set U = U(ε) ⊂ N0

including the origin such that U is compact and the restriction of αt to U is diffeomorphism from U

into Rn. It is easy to verify that αt(0) = 0, thus αt(U) includes the origin.

Now we are in a position to state fundamental results of our restricted RG method.

Theorem 3.4. (Approximation of Orbits)

Let A = A(t) be a solution to the m-th order restricted RG equation (3.15). Define the curve x̃(t) by

x̃(t) = αt(A(t)) = X(t)A(t) + εh(1)
t (A(t)) + · · · + εmh(m)

t (A(t)). (3.17)

Then, there exist positive constants ε0,C,T and a compact subset V = V(ε) ⊂ α0(N0) including

the origin such that for ∀|ε| < ε0, every solution x(t) of Eq.(3.1) and x̃(t) defined by Eq.(3.17) with

x(0) = x̃(0) ∈ V satisfy the inequality

||x(t) − x̃(t)|| < Cεm, (3.18)

for 0 ≤ t ≤ T/ε.

Theorem 3.5. (Approximation of Vector Fields)

Let ϕRG
t be the flow of the m-th order restricted RG equation for Eq.(3.1) and αt the m-th order RG

transformation. Then, there exists a positive constant ε0 such that the following holds for ∀|ε| < ε0:

(i) A map
Φt,t0 := αt ◦ ϕRG

t−t0 ◦ α−1
t0 : αt0 (U)→ Rn (3.19)
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defines a local flow on αt0 (U) for each t0 ∈ R, where U = U(ε) ⊂ N0 is an open set on which αt0 is a

diffeomorphism (see Rem.3.3). The Φt,t0 induces a time-dependent vector field Fε through

Fε(t, x) :=
d

da

∣∣∣∣
a=t
Φa,t(x), x ∈ αt(U), (3.20)

whose integral curves are the approximate solutions x̃(t) defined by Eq.(3.17).

(ii) There exists a time-dependent vector field F̃ε(t, x) such that

Fε(t, x) = Fx + εg1(t, x) + · · · + εmgm(t, x) + εm+1F̃ε(t, x), x ∈ αt(U) (3.21)

where F̃ε(t, x) is C∞ class with respect to t, x and ε. In particular, F̃ε(t, x) and its derivatives are

bounded uniformly in t ∈ R.

Theorem 3.4 and Theorem 3.5 are proved in the same manner as in Thm.A.8 and Thm.A.6 of

Chiba[4], respectively, in which the theorems are proved for the case that all eigenvalues of F lie

on the imaginary axis.

The following two theorems are concerned with an autonomous equation

ẋ = Fx + εg1(x) + ε2g2(x) + · · · , x ∈ Rn, (3.22)

where ε ∈ R is a small parameter. Like Eq.(3.1), F is an n × n matrix all of whose eigenvalues lie on

the left half plane or the imaginary axis, and the Jordan block corresponding to the eigenvalues on the

imaginary axis is semisimple. Further gi(x)’s are polynomial vector fields on Rn whose degrees are

equal to or larger than 1.

Theorem 3.6. (Inheritance of the Symmetries)

(i) Suppose that a Lie group G acts on the center subspace N0 spanned by eigenvectors of F asso-

ciated with eigenvalues on the imaginary axis. If vector fields Fx and g1(x), g2(x), · · · , are invariant

under the action of G, then the m-th order restricted RG equation for Eq.(3.22) is also invariant under

the action of G.

(ii) The m-th order restricted RG equation commutes with the linear vector field Fx with respect to

Lie bracket product. Equivalently, each Ri(A), i = 1, 2, · · · satisfies

X(t)Ri(A) = Ri(X(t)A), A ∈ N0. (3.23)

Theorem 3.7. (Existence of Invariant Manifolds)

Let εkRk(A) be a first non-zero term in the RG equation (3.15). If the vector field εkRk(A) on N0 has

a compact normally hyperbolic invariant manifold M0 ⊂ N0, then the original equation (3.22) also has

a normally hyperbolic invariant manifold Mε, which is diffeomorphic to M0, for sufficiently small |ε|.
In particular, the stability of Mε and of M0 coincide.
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Theorem 3.6 and Theorem 3.7 are proved in the same manner as in Thm.A.9 and Thm.A.7 of

Chiba[4], respectively, in which the theorems are proved for the case that all eigenvalues of F lie

on the imaginary axis.

If degrees of polynomials gi(x)’s in Eq.(3.22) are equal to or larger than 2, Eq.(3.22) has a dimN0-

dimensional local center manifold tangent to N0 at the origin. If gi(x)’s have linear parts, Eq.(3.22) no

longer has a dimN0-dimensional center manifold because the linear part of right hand side of Eq.(3.22)

no longer has dimN0 eigenvalues on the imaginary axis in general. However, even in this case, there

exists a locally invariant manifold which is diffeomorphic to a dimN0-dimensional closed ball. This

fact is explained as follows: Recall that N0 is a normally hyperbolic invariant hyperplane of the vector

field Fx. Fix an n-dimensional closed ball K including the origin. We can perturb the vector field Fx in

a small neighborhood of the boundary of K so that N0 ∩K is a normally hyperbolic invariant manifold

of the resultant perturbed vector field, say Fx+h(x). If ε > 0 is sufficiently small, by Thm.2.1, a vector

field Fx+ h(x)+ εg1(x)+ · · · has a normally hyperbolic invariant manifold Nε which is diffeomorphic

to N0 ∩ K. Since h(x) has its support in a small neighborhood of the boundary of K, Eq.(3.22) has Nε

as a locally invariant manifold. In what follows, a locally invariant manifold in the above sense is also

called a center manifold.

K
t

N0

N0

N

(    )

Fig. 1: A center subspace N0, a center manifold Nε, and an approximate center manifold αt(N0).

Now our purpose is to construct a center manifold of Eq.(3.22) approximately. Before showing the

main theorem, we need a lemma.

Lemma 3.8. The set αt(N0) := {αt(A) | A ∈ N0} is independent of t ∈ R, where αt is the m-th order

RG transformation for Eq.(3.22).

Proof. At first, we prove that h(i)
t+t′(A) = h(i)

t (X(t′)A) hold for i = 1, 2, · · · and ∀t′ ∈ R. Since
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Ri(X(t)A) = X(t)Ri(A) holds by Thm.3.6 (ii), h(1)
t (X(t′)A) is calculated as

h(1)
t (X(t′)A) = X(t)

∫ t(
X(s)−1G1(X(s)X(t′)A) − R1(X(t′)A)

)
ds

= X(t)X(t′)
∫ t(

X(t′)−1X(s)−1G1(X(s)X(t′)A) − R1(A)
)

ds

= X(t + t′)
∫ t(

X(s + t′)−1G1(X(s + t′)A) − R1(A)
)

ds.

By putting s + t′ = s′, the above equation results in

h(1)
t (X(t′)A) = X(t + t′)

∫ t+t′(
X(s′)−1G1(X(s′)A) − R1(A)

)
ds′ = h(1)

t+t′(A). (3.24)

The equalities h(i)
t+t′(A) = h(i)

t (X(t′)A) for i = 2, 3, · · · are proved in a similar manner by induction. Since

X(t) is a diffeomorphism on N0, we obtain h(i)
t+t′ (N0) = h(i)

t (N0) and this proves αt+t′ (N0) = αt(N0). �

Theorem 3.9. (Approximation of Center Manifolds)

Let αt be the m-th order RG transformation for Eq.(3.22) and W ⊂ U be a compact subset including

the origin, where U ⊂ N0 is an open set on which αt is a diffeomorphism (see Rem.3.3). Then, the set

αt(W) lies within an O(εm+1) neighborhood of a center manifold Nε of Eq.(3.22).

Proof. By Thm.3.5, the approximate vector field Fε defined on αt(U) is C1 close to the restriction

of the original vector field Fx + εg1(x) + · · · to αt(U) within an O(εm+1). Let K be an n-dimensional

closed ball including W and αt(W). We can extend Fε to a vector field F′ε defined on K such that

F′ε|K∩αt(U) = Fε|K∩αt(U) and F′ε is C1 close to the original vector field Fx + εg1(x) + · · · on K within

an O(εm+1). Since αt(W) is a locally invariant manifold of F′ε, our theorem immediately follows from

Thm.2.1. �

The present method for obtaining an approximate center manifold and an approximate flow on the

manifold defined by Eq.(3.19) is called the restricted RG method because the domain of the RG equa-

tion and the RG transformation are restricted to N0.

4 Examples

In this section, we show two simple examples of the restricted RG method.

Example 3.10. Consider the system on R3,

d
dt


x
y
z

 =


0 1 0
−1 0 0
0 0 −1




x
y
z

 + ε


yz2

−x3

y2 + xz

 . (4.1)
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A general solution of the unperturbed part is given by
x0

y0

z0

 =


A cos t + B sin t
−A sin t + B cos t

Ce−t

 =


peit + pe−it

ipeit − ipe−it

Ce−t

 , (4.2)

where (A, B,C) ∈ R3 is an initial value and p is defined by p = A/2+ B/(2i). Introducing the complex

variable p makes it simple to work with the RG equation. The center subspace for the unperturbed

equation is expressed as N0 = {(A, B, 0) | A, B ∈ R}. The first order restricted RG equation and the first

order RG transformation for Eq.(4.1) are given by

d
dt

(
p

p

)
=

3iε
2

(
p|p|2
−p|p|2

)
, p ∈ C, (4.3)

αt(A, B) =


cos t sin t 0
− sin t cos t 0

0 0 e−t




A
B
0



+ε



p3

8
e3it − 3

4
|p|2 peit +

p3

8
e−3it − 3

4
|p|2 pe−it

i

(
3p3

8
e3it +

3
4
|p|2 peit − 3p3

8
e−3it − 3

4
|p|2 pe−it

)
−p2

1 + 2i
e2it + 2|p|2 + −p2

1 − 2i
e−2it


, (4.4)

respectively. Therefore, an approximate center manifold of Eq.(4.1) is expressed as

α0(N0) = {(A, B, εϕ(A, B)}, (4.5)

ϕ(A, B) :=
−p2

1 + 2i
+ 2|p|2 + −p2

1 − 2i
=

2
5

A2 +
3
5

B2 +
2
5

AB. (4.6)

Equivalently, the approximate center manifold is expressed as the graph of the function z = ε
2
5

x2 +

ε
3
5

y2 + ε
2
5

xy in (x, y, z) space. This result coincides with an approximate center manifold obtained by

a method in [1]. The restricted RG equation (4.3) is solved as

p(t) =
1
2

a exp i

(
3ε
8

a2t + θ

)
,

where a, θ are arbitrary constants. With this p(t), an approximate solution defined by Eq.(3.17) on the

center manifold of (4.1) is given by

x̃(t) = a cos

(
3ε
8

a2t + t + θ

)
+
εa3

32
cos

(
9ε
8

a2t + 3t + 3θ

)
− 3εa3

16
cos

(
3ε
8

a2t + t + θ

)
,

ỹ(t) = −a sin

(
3ε
8

a2t + t + θ

)
− 3εa3

32
sin

(
9ε
8

a2t + 3t + 3θ

)
− 3εa3

16
sin

(
3ε
8

a2t + t + θ

)
,

z̃(t) =
εa2

2
− εa

2

10
cos

(
3ε
4

a2t + 2t + 2θ

)
− εa

2

5
sin

(
3ε
4

a2t + 2t + 2θ

)
.

10



0

0.01

0.02

0.03

0.04

0.05

-1 -0.5 0 0.5 1

-0.8
-0.4

0
0.4

0.8
-1

0

1

0

1

2

3

x

y

z z

x

Fig. 2: An exact solution (solid line) to Eq.(4.1) and the approximate solution on the center mani-

fold (dashed line).

Numerical observation for ε = 0.01 is presented in Fig.2. The solid line denotes an exact solution

to Eq.(4.1) with initial value (x, y, z) = (1, 0, 3), which is out of the center manifold, and dashed line

denotes the above-stated approximate solution with a = 1, θ = 0 on the approximate center manifold.

Example 3.11. We can show that the Hopf bifurcation occurs in the Lorenz equations by applying

Thm 3.7. Consider the Lorenz equations
ẋ = −10x + 10y,
ẏ = ρx − y − xz,

ż = −8
3

z + xy,
(4.7)

where ρ ∈ R is a parameter. This system has three fixed points:

(0, 0, 0), (a(ρ), a(ρ), ρ − 1), (−a(ρ),−a(ρ), ρ − 1), (4.8)

where a(ρ) =
√

8
3 (ρ − 1). To show the presence of a bifurcation from the fixed point (a(ρ), a(ρ), ρ−1),

we change the coordinate by x �→ x+ a(ρ), y �→ y+ a(ρ), z �→ z+ (ρ− 1). Then the system is rewritten

as 
ẋ = −10x + 10y,
ẏ = x − y − a(ρ)z − xz,

ż = a(ρ)x + a(ρ)y − 8
3

z + xy.
(4.9)

When ρ = ρ0 := 470/19, the derivative of the right hand side of the above system at the origin has the

eigenvalues

α = −41
3
, ±β = ±4

√
110
19

i. (4.10)

This means that the origin is not hyperbolic fixed point, so that the Hopf bifurcation may occur. Since

we are interested in the behavior of the system near the origin and near the value of the parameter

a := a(ρ0) =
√

8/3(ρ0 − 1), we change the coordinates by

x = εX, y = εY, z = εZ, (4.11)
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and put
a(ρ) = a − ε2, a =

√
8/3(ρ0 − 1) =

√
3608/57. (4.12)

Substituting (4.11),(4.12) into the system (4.9), we obtain

d
dt


X
Y
Z

 =

−10 10 0

1 −1 −a
a a −8/3




X
Y
Z

 + ε


0
−XZ
XY

 − ε2


0
−Z

X + Y

 . (4.13)

Further, we change the coordinate so that the matrix in the right hand side of the above is brought

into the diagonal matrix diag (β,−β, α). Then, the center subspace of the unperturbed equation of the

resultant system is expressed as N0 = {(X,Y, 0) | X,Y ∈ R} and the second order restricted RG equation

for the system is given by


Ȧ/ε2 = −38

√
51414A

47779
+

91438888520A2B
18481807848339

− i
2086

√
615A

47779
− i

714354199417
√

190
11 A2B

55445423545017
,

Ḃ/ε2 = −38
√

51414B
47779

+
91438888520AB2

18481807848339
+ i

2086
√

615B
47779

+ i
714354199417

√
190
11 AB2

55445423545017
.

(4.14)

Note that the first order restricted RG equation R1 vanishes. On putting A = reiθ and B = A, Eq.(4.14)

is brought into
ṙ = −ε2 p1r + ε2 p2r3,

θ̇ = −ε2q1 − ε2q2θ
2,

p1 =
38
√

51414
47779

, p2 =
91438888520

18481807848339
, q1 =

2086
√

615
47779

, q2 =
714354199417

√
190
11

55445423545017
.

(4.15)

The equation of r has two fixed points r = 0 and r = r0 :=
√

p1/p2, and it is easy to show that the

fixed point r0 is unstable. This proves that the RG equation (4.14) has an unstable normally hyperbolic

invariant circle. By Thm.3.7, the equation (4.9) also has an unstable periodic orbit if a(ρ) is slightly

smaller than a =
√

3608/57.
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