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Abstract

The renormalization group (RG) method for differential equationsis one of the perturbation
methods which allows one to obtain invariant manifolds of a given ordinary differential equation
together with approximate solutions to it. This article investigates higher order RG equations
which serve to refine an error estimate of approximate solutions obtained by the first order RG
equations. It is shown that the higher order RG equation maintains the similar theorems to those
provided by the first order RG equation, which are theorems on well-definedness of approximate
vector fields, and on inheritance of invariant manifolds from those for the RG eguation to those
for the original equation, for example. Since the higher order RG equation is defined by using
indefinite integrals and is not unique for the reason of the undetermined integral constants, the
simplest form of RG equation is available by choosing suitable integral constants. It is shown
that this simplified RG equation is sufficient to determine whether the trivial solution to time-
dependent linear equationsis hyperbolically stable or not, and thereby a synchronous sol ution of
acoupled oscillators is shown to be stable.

Keyword : singular perturbation, renormalization group method, normal forms

1 Introduction

The renormalization group (RG) method for differential equationsis one of the perturbation tech-
nigue proposed by Chen, Goldenfeld, and Oono [1,2], which provides approximate solutions of
the system of the form

X = Fx+egu(t,X) + £202(t, X) +---, xe R", (1.1)

where ¢ > 0is a smal parameter. The RG method unifies traditional singular perturbation
methods, such as the multi-scaling method [1,2], the boundary layer theory [1,2], the averaging
method [3,5], the normal form theory [3,5] and the center manifold theory [2,4,6]. Kunihiro
[10,11] showed that an approximate solution obtained by the RG method is an envelope of a
family of curves constructed by the naive expansion. Ziane[15], DeVille et al. [5] and Chiba[3]
gave an error estimate of approximate solutions obtained by the RG method. Chiba [3] proved
that afamily of approximate solutions constructed by the RG method defines a vector field which
is approximate to an original vector field (ODE) in C! topology. Further, he gave a definition
of the higher order RG equation, and proved that if the RG equation has a normally hyperbolic
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invariant manifolds N, the original equation also has an invariant manifold which isdiffeomorphic
to N.

In this paper, properties of higher order RG equations and of RG transformations are inves-
tigated in detail, although some of them, such as an error estimate of approximate solutions,
well-definedness of approximate vector fields, existence of invariant manifolds and inheritance
of symmetries, are proved in Chiba[3]. Itisto be noted that the higher order RG equation and the
RG transformation are not uniquely determined because of the indefiniteness of integral constants
in the integrals in the definitions of them. This non-unigueness has already seen in the normal
form theory [13], athough its origin is not integral constants. In general, for a given vector field,
many kinds of normal forms are possible, and there exist many coordinate transformations which
bring the original vector field into the respective normal forms. The simplest form among them
is called hypernormal form or simplified normal form [12,13].

Our purpose in the present paper is to define and derive the ssimplified RG equation in an
analogous way to the hypernormal form theory. It is known that the RG equation is easier to
solve than the original equation because the RG eguation has larger symmetries than the original
equation (Thm.3.6). The simpified RG equation proposed in this paper enable one to obtain more
simpler equation than the conventional RG equation for both nonliear and linear equations. In
particular, the simplified RG equation for time-dependent linear equations of the form

X = FX+ eG1()X + £2Go(t)X +---,, XxeR" |g <«< 1 (1.2)

are investigated in detail (see Sec.5 for the assumptions for matrices F and G;(t)). We show
that the simplified RG equation to the extent of finite order is sufficient to determine whether the
trivial solution x(t) = 0 to Eq.(1.2) is hyperbolically stable or not. This method is also useful to
investigate nonlinear equations because a variational equation for anonlinear equation isalinear
equation. In Sec.5, we prove that a synchronous solution to a coupled oscillators (5.52) is stable
by analyzing the simplified variational equation for the RG equation of the original eguation.
This paper is organized as follows: Sec.2 presents definitions and basic facts on dynamical
systems. Sec.3 givesabrief review of and main theorems on the RG method. In Secs.4 and 5, the
simplified RG equation is defined, and applied to time-dependent linear equations, respectively.

2 Notations

Let f be atime independent C* vector field on R" and ¢ : R x R" — R" itsflow. We denote by
¢t(X0) = X(t), t € R, asolution to the ODE x = f(x) through Xy € R", which satisfies ¢; o @5 =
¢trs, wo = idrn, Whereidgn denotestheidentity map of R". For fixedt € R, ¢; : R" — R" defines
adiffeomorphism of R". We assume that ¢ is defined for al t € R.

For a time-dependent vector field f(t, x), let x(t, 7, £) denote a solution to the ODE x(t) =
f(t,x) through ¢ at t = 7, which definesaflow ¢ : R x R x R" — R" by ¢ .(¢) = X(t,7,£). For
fixedt,7 € R, g1, : R" = R" isadiffeomorphism of R" satisfying

Gty O Prr = Prrss Prr = i0rn. (2.1)

Conversely, a family of diffeomorphism ¢, of R", which are C* with respect to t and 7,
satisfying the above equality for any t, r € R defines atime-dependent vector field on R" through

d
f60 = o] _¢nl®. (22
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Next theorem will be used to prove Thm.5.3. See [7],[8],[14] for the proof of Thm 2.1 and
the definition of normal hyperbolicity.
Theorem 2.1. (Fenichel, [7]) Let X(R") bethe set of C* vector fields on R" with C* topology.
Let f € X(R") and suppose that N c R" isacompact connected normally hyperbolic f-invariant
manifold. Then, there exists a neighborhood U c X(R") of f st. for Vg € U, there exists a
normally hyperbolic g-invariant manifold Ng ¢ R", which is diffeomorphic to N.

3 Review of the Renormalization Group Method

In this section, we give the definition of the higher order RG equation and show how to construct
approximate solutions on the RG method. Four fundamental theorems on the RG method will be
given, all of whose proofs and ideas are shown in Chiba[3].

Let F be adiagonalizable n x n matrix all of whose eigenvalues lie on the imaginary axis and
g(t, x, &) atime-dependent vector field on R" which is of C* class with respect to t, x and . Let
g(t, x, £) admit aformal power seriesexpansionine, g(t, X, €) = g1 (t, X)+&0a(t, X)+£2g3(t, X)+- - - .
We suppose that gi(t, X)’s are periodic int € R and polynomial in x, although the results in
this section till hold even if g;(t, X)'s are almost periodic functions as long as the set of fourier
exponents of g;(t, X)'s does not have accumulation points (see Chiba[3]).

Consider an ODE

><.
Il

Fx+ eg(t, X, )
= Fx+equt,X) + gt ) +---, xeR", (3.1)

where ¢ € R isasmall parameter. Replacing xin (3.1) by X = Xo + eXq + £2%o + - - -, We rewrite
(3.1 as

Xo+ Xy + %X + -+ = F(xo+sx1+szxz+---)+Zsigi(t,xo+sx1+szxz+---). (3.2)
=

Expanding theright hand side of the above equation with respect to £ and equating the coefficients
of each &' of the both sides, we obtain ODESs of Xg, X1, X2, - - - asS

X0 = FXo, (3.3
X1 = Fxg+Gy(t, Xo), (3.4
X = Fx+Gi(t, X0, Xg, -+, %i-1), (3.5
where the inhomogeneous term G; is a smooth function of t, Xg, X1,---, X—1. For instance,



G1, Gy, G3 and G4 are given by

Gi(t,x) = 0i(t, %o), (3.6)
Galtdo,xa) = (X0 + 2t ) 37)
Galtro ) = 3280+ B + Bt o+ gt o). (3D

Gat. Xo. X1. X ¥) = %%a, x@xi+%(t, XK + (1, X0)%s
%%(L X)X + %(t, Xo)Xp + %(t, Xo)X1 + Ga(t, Xo),  (3.9)

respectively. We can verify the equality (see LemmaA.2 of Chiba[3] for the proof)

0G; 0Gj_1 oGi_j . .
= _ == — >0, 3.10
0X; 0Xj-1 0Xo > ( )

and it may help in deriving G;.

We denote a solution of the unperturbed part Xo = Fxo by Xo(t) = X(t)A, where X(t) = €
is the fundamental matrix and A € R" isan initial value. With this xo(t), the equation of x; is
written as

X1 = Fxg + Ga(t, X()A), (3.11)

a solution to which we denote by

X1 = X(OX(@)th + X(t) f tX(s)‘lGl(s, X(s)A)ds, (3.12)

where h € R"isaninitial value at an initial time r € R. Define Ry(A) and h := hP(A) by

1 t
Ri(A) := tIi_)r(r)m0 i f X(9)"1G1(s, X(s)A)ds, (3.13)
MO8 = X0) [ (X(97Ga(s X(9A) - RulA) ds (314)

respectively. Since X(s)"1Gi(s X(9)A) is bounded uniformly in s € R, one can verify that
Ri(A) is well-defined. In this section, we fix integral constants of the indefinite integrals f !
in Egs.(3.13), (3.14) arbitrarily. Note that Ry(A) is independent of the integral constant, while
hgl)(A) depends on it. In the next section, we choose the integral constant in Eq.(3.14) to be such
an value that the RG equation is put in asimple form. With these Ry(A) and h := hﬁl) (A), theright
hand side of Eq.(3.12) is decomposed into two parts;

x1 1= xa(t, 7, A) = hD(A) + XORL(A)(t - 7). (3.15)
Here, one part hgl)(A) is bounded uniformly int € R, asis proved by using ailmost periodicity

of X(5)71G1(s, X(s)A) (see Chiba[3]), and the other X(t)Ry(A)(t — 7) is linearly increasing in t,
which is called the secular term. We note here that X(t) is bounded in t.



In a similar manner, we solve the equations of xo, X3, --- step by step. The solutions are
expressed as

i-1
X 1= %(t,7, A) = h)(A) + [X(tm(A) + ) PR KA |- +0(t-77),  (316)

k=1

where R(A) and h{)(A) withi = 2,3, - - are defined by

RO = Jimy | (X(971Gi(s X(9ARD(A). - LD a)
i-1
-X(97) (Dh)aR «(A)ds. (317)
k=1
K@) = X f t(X(s)-lei(s,x<s)A,hél)<A>,---,hg‘”(A))

i-1
-X(9™ ) (DhE)aR «(A) - R(A))ds (3.18)
k=1

respectively, and where (Dh§k))A is the derivative of h§k)(A) with respect to A € R". Integral
constants of the indefinite integrals in Egs.(3.17), (3.18) are fixed arbitrarily. We can prove that
hgk)(A) are bounded uniformly int € R. The proof of this fact and the explicit expression of the
term O((t — 7)?) in Eq.(3.16) are given in Appendix A of [3].
Now we define a renormalized constant A = A(r) so that the curve X + exq + £2Xo + - - -
defined as above isindependent of 7 :
d

Eth(XO + exa(t, 7, AT)) + £%Xa(t, T Ar)) + -+ ) = O,

Thisequation is called the RG condition and it yields an ODE of A(t) asfollows:

Definition 3.1. Along with Ry(A), - - - , Rn(A) defined in Egs.(3.13), (3.17), we define the m-th
order RG equation for Eq.(3.1) to be

%—? = A=eRy(A) + &?Ro(A) + - - - + €"Rn(A), AeR". (3.19)
Using h{Y(A), - -, h{™(A) defined in Egs.(3.14), (3.18), we define the m-th order RG transfor-
mation ot : R™" — R" to be

a(A) = XA+ ehP(A) + - - + M (A). (3.20)

Remark 3.2. Since X(t) isnonsingular and hﬁl)(A), e hﬁm)(A) are bounded uniformly int € R,
for sufficiently small |¢|, there exists an open set U = U(g) such that U is compact and the
restriction of a; to U is diffeomorphism from U into R".

In general, the infinite order RG equation A = )3 £“R¢(A) and the infinite order RG trans-
formation ay(A) = X(HA+ 224 s"hﬁ") (A) areformal power seriesin . In this paper, we consider
only the finite order RG equations.



Now we are in a position to construct approximate solutions of Eq.(3.1) by the RG method.
Let A = A(t, to, &) be asolution of the m-th order RG equation (3.19) whose initial timeisty and
whoseinitial valueis¢ € R". Define acurve X(t) = X(t, to, &) by

X() = (Al to, £)) = XA to, &) + hD (At to, &) + - - + "MW (A 10, €).  (3:21)

Then, the curve X(t) gives an approximate solution of Eq.(3.1).

Fundamental theorems on the RG method are listed below. All proofs are included in Chiba
[3].

Theorem 3.3. (Approximation of Vector Fields)

Let ¢FC be the flow of the mth order RG equation for Eq.(3.1) and a4 the mrth order RG
transformation. Then, there exists a positive constant g such that the following holds for V|g| <
£0-

(i) The map
Oy, = @t 0 <pf_?o o at_ol s a(U) - R" (3.22)

defines alocal flow on at,(U) for eachty € R, where U = U(e) is an open set on which a4, isa
diffeomorphism (see Rem.3.2). This @, induces a time-dependent vector field F, through

d
Fo(t.X) := |, Pat(¥). x € ar(U), (3.23)

and itsintegral curves are given by the approximate solutions X(t) defined by Eq.(3.21).
(i) There exists atime-dependent vector field F.(t, X) such that

Fo(t,X) = FX+ eg1(t, X) + - - - + €Mgm(t, X) + €™ 1F4(t, X), (3.24)

where F,(t, X) and its derivative are bounded uniformly int € R and bounded as & — 0. In
particular, the vector field F.(t, X) is close to the original vector field Fx + eg1(t, X) + - - - within
O(8m+1)_

Theorem 3.4. (Error Estimate)

There exist positive constants o, C, T, and a compact subset V = V(g) ¢ R" including the
origin such that for V|e| < gg, every solution x(t) of Eq.(3.1) and X(t) defined by Eq.(3.21) with
X(0) = X(0) € V satisfy the inequality

[IX(t) = X(t)]| < Ce™, for0<t<T/e. (3.25)
The following two theorems are concerned with an autonomous equation
X = FX+eg1(X) + £202(X) + -+, (3.26)

where ¢ € R isasmall parameter, F isadiagonalizable n x n matrix al of whose eigenvalueslie
on the imaginary axis, and g;(x) are C* vector fieldson R".

Theorem 3.5. (Existence of Invariant Manifolds)

Let KR¢(A) be afirst non zero term in the RG equation (3.19). If the vector field eKR(A) has
anormally hyperbolic invariant manifold N, then the original equation (3.1) also has a normally
hyperbolic invariant manifold N, which is diffeomorphic to N, for sufficiently small |g]. In
particular, the stability of N, coincides with that of N.
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Theorem 3.6. (Inheritance of the Symmetries)

(i) If vector fields Fx and g1(X), 92(X), - - - are invariant under the action of a Lie group G, then
the m-th order RG equation is aso invariant under the action of G.

(ii) The mth order RG equation commutes with the linear vector field Fx with respect to Lie
bracket product. Equivalently, each Ri(A), i = 1,2,-- -, sdtisfies

X(OR(A) = R(X()A), AecR". (3.27)

In the rest of this section, we apply these theorems to several equations.
Example 3.7. Consider the perturbed harmonic oscillator

X+Xx+exX°=0, xeR. (3.28)

It is convenient to identify R with C by introducing a complex variable zthrough x = 2+ Z, X =
i(z—2). Then, the above equation is rewritten as
7=iz+ L2425,
_ 2. (3.29)
z=-iz- S(z+ 23,

In this case, the matrix F and the vector-valued functions G1, G, defined by Egs.(3.6),(3.7), re-
spectively, are given by

(i 0 i (+2)? _ 3 (20+20)%(z1 +70)
"= (0 —i)’ G1() = 3 (—(20+7o)3)’ Coloo.21) = 7 (—(zo+20)2(;1 +-;1))' (3.30)

To obtain afirst order approximate solution, we calculate Ry (A) and hﬁl) (A) withAe Cas

1 (Yels 0 i 3i( A%A
Ri(A) = t“;g;f( 0 e;s)Gl(e' A)ds_f[_Aﬂz , (331)
gt 0\ (Y(els 0 - 3i( AA
hgl)(A) = (0 e—it)f(( 0 eis)Gl(elsA)_E[_AKZ})ds
i_LlA3esit _ ZAﬂze—it _ %K3e—3it
= 1 3 , (3.32)

X — 1_3 X
_ T A3Q3it P A2pAt T —3it
8A e 4A Ae' + 4A €

where we have chosen the integral constant to be zero. Therefore, the first order RG equation is
expressed as

A= 8%|A|2A, AeC. (3.33)
Itissolved by
1 .
At) == At,a,6) = Eaexpl(s—;azt +9), (3.34)



where a, 6 € R are arbitrary constants. A first order approximate solution in complex variableis
written as

) = eitA(t)+s(i—L1A(t)3e3”— %A(t)mze A(t) —3“)
= %aexpi(t+%a%+0)

gZa expi(- t—3—§a2t—0)—6—4a expi(- 3t—9—88a

Finally, afirst order approximate solution of Eq.(3.28) is given by
X(t) = Z1) + 1)
= acog(t+ 36 2t + 9) a cos(3t 2t +36) - 3—a cos(t + 38 a’t +6). (3.35)
8

(32a expi(3t + % t+30) -

Next, to find a second order apprOX|maIe solution, we calculate (3.17) and (3.18) to obtain, re-
spectively, Ry(A) and h{®(A),

—2
51.( A3A
RZ(A) = —1—6| ( _AZK:B ) N (336)
3 > ABEhit 15A4A 3it 69A2A it 21AK4e‘3” _ iﬂ5e_5“
2 _| 64 16 32 64 32
A= AB it 21A4A 3it 69A3A it 15Aﬂ4 3t 3 A5 o5t - (337)
27 T 7 EET AR
Therefore, the second order RG equation is expressed as
. 3i 51,
A= a§'|A|2A - 2 2ZIAA (3.38)
It is solved by
. 1 .3 , 51 ,,
Alt) = At,a,6) = Eaexpl(ésa t- et + 0). (3.39)

where a,0 € R are arbitrary constants. With this A(t), a second order approximate solution in
complex variablesiswritten as

zt) = eitA(t) + c*:(}A(t)3e3it — §A(t)m2e A(t) —3|t)
- (G_iA(t)seSit A(t)4A(t) a %A(t)zmse‘” + aA(t)We‘?’“ - 3—12W5e(§.t )

Thus a second order approximate solution of Eq.(3.28) is given by
X(t) Zt) + 1)

3 51
acos(t + éeazt - ﬁeza“t + 0)

+

as 9 153 3a2 3 51
(@ cos(3t + gea 2t — ﬁsza“t + 39) - cos(t + galt - 2—5632a4t + 6))

8
5 5
of a 15 , 255, 4, 39%a 9 , 153, 4
t+ —sa’t — ——s°a't + 50) - —— t+ —ca’t — ——g“a’t
& (1024 (5 + gealt - ooeeta 59) 094 cos(3 geat— Soeela +39)
69a° 3 , 51 ,,4
+E COS(t gb‘a t - ﬁb‘ a t+ 0)) (341)

8
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Numerical solution of Eq.(3.28) and two approximate solutions Eq.(3.35) and Eq.(3.41) are pre-
sented as Fig.1 for comparison. The solid curve denotes an exact solution of EQ.(3.28) for e = 0.1
with x(0) = 0.985, x(0) = 0. The dashed and the dotted curves are the first order approximate
solution (3.35) and the second order approximate solution (3.41) fore = 0.1,a = 1,6 = O, respec-
tively. Inthis case, the first order approximate solution X(t) satisfies X(0) ~ 0.9844, X(0) = 0 and
the second order approximate solution X(t) satisfies X(0) ~ 0.9854, X(0) = 0. When0 <t < 20,
three curves amost overlap with one another. However when 80 < t < 100, the second order
approximate solution is more close to the exact solution than the first order approximate solution.

0.8
0.6
0.4
0.2
X0
-0.2
-0.4
-0.6
-0.8

0 5 10 15 20 80 85 90 95 100

Fig. 1. The solid line denotes an exact solution of Eq.(3.28), the dashed lines denotes the first
order approximate solution, and the dotted line denotes the second order approximate solution.

Example 3.8. Consider the system on R?

Sy A3
{x_y X3 + eX, (3.42)

y=-X
Changing the coordinates by (x,y) = (eX, £Y) and substituting them into the above system, we
obtain

 — _ 2y3
{)_(—Y+8X eX2, (3.43)

Y=-X
We introduce a complex variablez e C by X = z+Z Y = i(z— 2). Then, the above system is
rewritten as

7=iz+ S@z+2) - 8—2(z+2)3
2 2, 77 (3.44)
2= -iz+ 2@+ - S (2+2°
2 2 '

For thissystem, F, g1, 02 in EQ.(3.1) are expressed, respectively, as

(i O o 1(z+z o 1{@z+2®
F= (o _i), 91(z2) = 5(“2), R2(z2 = —5((“2)3). (3.45)
The second order RG equation for this system is given by
A=iare?(-ta-3agal. Acc (3.46)
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Introduce the polar coordinates by A = re?. Then, the above RG equation is brought into

- 8—2r(1 — 3er?),
o 5_2 (3.47)
-3
It is easy to show that this RG equation has a stable periodic orbit r = /1/3¢ if £ > 0. However,
we can not apply Thm.3.5 to conclude that the original equation (3.43) also has a stable periodic
orbit because the RG equation (3.46) does not satisfy the condition of Thm.3.5. To handle this
problem, weintroduce anew variable gy so that go(t) = £ may be asolution to Eq.(3.44) extended
as
z=iz+ g(z+ - eo(z+2)°%).
Z=-iz+ g(z+2—go(z+ 2%, (3.48)
g =0.

Inthiscase, F, g1, 02 in EQ.(3.1) are put in the form

i 0 0
F=|0 -i 0
000

z+Z-¢e0(z+2)° 0
., 01(zZ &0) = E[Z+7—80(Z+7)3], 02z Z &0) = {0] (3.49)
0 0

Thefirst order RG equation for this system is given by

. _ f _ 2
A— 5(A = 3elAA), (350)
g =0.
Putting A = re provides i
. 8_ _ 2
=7 (1=3%0r%, (351)
6=0.

Again it is easy to verify that this RG equation has a stable periodic orbit r = +/1/3gq if g9 > 0.
Thm.3.5 is now applicable, showing that the original system (3.42) also has a stable periodic orbit
if e>0.

Example3.9. Consider the system on R?
X=y+y,
{ Y= —X+ %Y — Xy + Y2 (3.52)
Changing the coordinates by (x,y) = (X, Y) yields

{ X=Y+eY?

Y = =X+ &(Y? = XY) + 2. (353)

We introduce a complex variable zby X = z+Z Y = i(z— 2). Then, the above system is rewritten
as
. . & /. 82
z=iz+ = (l(z—i)2 -2Z + 222) + —(z-2),
2 2 2 (3.54)
- _ . . =2 - — =
2= -iz+ 3 (-i@z-27-27 +27) - (-2
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For this system, R (A) defined by Eq.(3.13) vanishes and the second order RG equation is given
by

A= %SZ(A — 3APA- %|A|2A). (3.55)
Putting A = re’? resultsin

b= }szr(l - 3r?),
2 (3.56)

It is easy to verify that this RG equation has a stable periodic orbit r = v1/3if & > 0. Since
Ri(A) = 0, Thm.3.5 implies that the origina system (3.52) also has a stable periodic orbit if
> 0.

Notethat all RG equationsin Examples 3.7 to 3.9 are invariant under the action of the rotation
group on R?, and RG equations split into equations of radius r and of angle . This fact results
from Thm.3.6.

4 Simplified RG equation

Recall that the definitions of the functions R;(A) and hf')(A) given in Egs.(3.13, 14, 17, 18) in-
clude the indefinite integrals and we have left the integral constants undetermined in the previous
section. In this section, we use the integral constants to simplify the RG equation.

For a given equation (3.1), we have defined the RG equation

A=sRi(A) + - + e"Rm(A), (4.1)
and the RG transformation
(A) = XA+ eh®P(A) + - - + €™M (A). (4.2)
Put A = X(t)~1x. Then, the RG equation (4.1) is rewritten as
X = FX+ eXOR1(X®)IX) + - - - + eM™X(t)Rm(X(t) "1x). (4.3)
Note that if the original equation (3.1) is autonomous, the above equation is reduced to an equa-

tion
X=FX+&eRy(X) + -+ + &"Rm(X), (4.9

because of Thm.3.6 (ii). We apply the RG method with slight modification to Eq.(4.3). For
Eq.(4.3), we define functions Ri(A) and h{(A), respectively, by

Ru(A)

t
im [ X9 Gx(s X(9A)ds @5

N

t
X(t) f (X(97G1(s. X(9A) ~ Ru(A)) ds + X()By(A). (4.6)

11



and

Ry = Im T [(xe e xoATI@, - @)
—X(s)-lkZi(Dﬁ(skbAﬁ_k(A))da (4.7)
@ = X f t(X(s)*Gi(s, X(9A PP (A), - AV (A)
—X(s)-li_zl(D’ﬁék))Aﬁ_k(M -R(A)ds+X®OB(A),  (48)
fori = 2,3,---, where Bi(A), i = 1,2, k :1 are arbitrary vector fields on R" which come from

integral constants of the indefinite integrals in Egs.(4.6), (4.8). The function G; is defined in a
similar manner to that in the previous section. For example, G; to G4 are glven by Eq.(3.6) to
Eq.(3.9) in which gi(t, X) is replaced by X(t)R (X(t)"1x). With these Ri(A) and ht (A), we define
anew RG equation and a new RG transformation for Eq.(4.3) by

A=eRy(A) + - + €™Ru(A), (4.9)
@A) = XA + ehD(A) + - - - + e"AM(A), (4.10)

respectively. It is easy to verify that Thm.3.3 to Thm.3.5 hold for these new RG equation and
new RG transformation, because the proof of them are independent of the integral constants in
Egs.(3.14), (3.18). In particular, like Eq.(3.24), the equality

d

dala=t
holds, where;é‘tQG isthe flow of Eq.(4.9). However, in general, Thm.3.6 failsto hold since B;j(A)'s
depend on A € R".
We now calculate the right hand sides of Eq.(4.5) to Eq.(4.8) to look into relations between
R(A). h{(A) and R (A). h)(A). Since Ga(t, x0) = X(R(X()x0), Ru(A) and h{V(A) are calcu-
lated as

@a 0 GRG0 a7 (%) = Fx+ eX(R1(XE)IX) + - - - + MX(ORm(X(1)"1x) + O(e™1) (4.11)

Ri(A) = lim = 1 f X(9) " IX(9R1(X(9)1X(5)A)ds = Ry (A), (4.12)
Y@ = X f (X9 X(IRUX(YX(IA) ~ Ru(A)) ds+ X(©)B1(A)
= X(t)By(A), (4.13)
respectively. Since
Galt 0. 30) = X(OF LX) e + XORXW ) (4.14)

Rx(A) iscalculated as

R(A) = fim> f X(9) (X(s) LX) 1h<1>(A)+X(s)Rz(A)—(Dh(”)ARl(A>)
= in [ e + R - ©BsR(A)ds @19
= Rx(A) - [B1, Ri](A), (4.16)
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where B4, Ri](A) isthe commutator of vector fields, which is defined by

oB IR
[BL. Ral(A) = ZZ(AR1(A) - T (ABL(A). (4.17)
Similar calculation shows that
= 0B 14°R
Re = Re~[B1Rel ~[B2.Ri]+ Zr[BuRil + 5= 5B, (4.18)
Ri = R4—[BRs]-[By, Rz]—[B3, Ril
183R1 3 O°Ry 16°Ry aBZ
—3Bi+ -5 BiB+ =B + Bi,R
e gp2 BB+ 5o [1, 1]
_9B1 (10°Ry 2, 0B,
o (3omet+ TiBuRI- (BRI -[B2RY). (419
where the argument A is omitted for notational simplicity.
Lemma4.1. Theequaitiesh’(A) = X(t)Bi(A) hold fori = 1,2, - -.
Proof. We prove the lemma by induction. Assumethatﬁ(k)(A) = X()Bk(A) fork=1,---,i—1.

At first, we show that the integrand in EQ.(4.7) is independent of s. By the assumption, the
second term of the integrand in Eq.(4.7) is clearly independent of s. Next, note that a function
Gi(s X, -+, Xi—1) isalinear combination of functions of the form

0! i o : .
— (XSRS ™ x0)) }i1x2 X , i+ o+ + i = . (4.20)
0%

Thus, Gi(s, X(S)A, X(S)B4, - - - , X(9)Bj_1) isalinear combination of functions of the form

X(S)W(A)B“BJZ B (4.21)

This proves that the first term of the integrand in Eq.(4.7) isindependent of s. Therefore R (A) is
equal to the integrand in Eq.(4.7) in which sisreplaced by t. Thisand Eq.(4.8) are put together
to prove that

hO(A) = X(©) f (R(A) - R(A)ds + X(1)Bi(A) = X(1)Bi(A). (4.22)

While we have written out Ry(A), - - - , Ra(A), we can calculate Ri(A), Rx(A), - - - , systematically
in the following manner. By virtue of Lem.4.1, the RG transformation (4.10) is written as

at(A) = XA + eX(t)B1(A) + - - - + £MX(t)Bn(A). (4.23)
Put x = @¢(A) and substitute it into Eq.(4.11). Then we obtain

d @a 0 PG (A) = Fay(A) + eX(O)RL(X(®) @ (A)) + - - - + €™X(ORn(X(t) Tt (A)) + O(e™L).

dala=t
(4.24)
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The left hand side of the aboveis calculated as

d; — do
Jalas®a® 2aa(A) —t(A) + (Da’t)Ad ‘a:tag?t(A)

() + XO 0+ o508 4 T (R -+ &R,

whereid is the identity matrix. Hence, Eq.(4.24) is brought into

Z ER(X (1) @ (A) +O(e™ ). (4.25)

sR1(A)+- - -+™Rm(A) = (Id + gﬁ +-
k=1

BBm
0A

To expand the right hand side of the above, we use the following equalities

0By moBm\ " ‘ 881 0Bm\¢
(|d+gaA+ i aA) = |d+Z( Doyt e 1) (4.26)

Re(X(t) "t (A)) Rk(A+sBl(A) ++ -+ MBm(A)

I
Re(A) + Z |1| ZA‘ (A)(eBL(A) + - + £MBm(A)) (4.27)
I=

Substitution of Eq.(4.26) and Eq.(4.27) into Eq.(4.25) yields R(A) as the coefficients of &' in the
right hand side of Eq.(4.25). Consequently, we obtain the following lemmas.

Lemma4.2. EachR(A), k=3,4,---,isof theform
ER‘I((A) = Rk(A) + Pk(Rl’ ) Rk—la Bl? Y Bk—Z)(A) - [Bk—l7 Rl] (A)’ (428)

where Pgisafunctionof Ry, -+, R_1,B1,- -+, Bx_o.

Lemma4.3. Suppose that every R¢(A), k= 1,2,-- -, satisfies R¢(X(t)A) = X(t)R(A). If every
Bk(A), k = 1,2,---, satisfies B(X(t)A) = X(t)Bk(A), then R«(A), k = 1,2,---, also satisfies
Rd(X(DA) = X[OR(A).

Now we suppose that we can determine By (A), - - - , Br_2(A) appropriately sothat Ry, - - - , Re_1
may take a simple form in some sense. Then, a suitable choice of By_1(A) may bring R¢(A) into
asimple form through Eq.(4.28).

Let PI(R") be the set of homogenous polynomial vector fields of degree j on R". In what
follows, to simplify R (A)’s systematically, we start with the case where g;(t, X) in Eq.(3.1) is
a homogenous polynomial vector fields of degree i + 1 with respect to x. In this casg, it is
easy to verify that each term of the RG equation (4.1) is also a homogeneous polynomial, R; €
P*LR") for any i. Note that if gi(t,x) € £'(R") for some positive integer | # 2 with respect
tox, Ri(A),i =2,3,---, are no longer homogenous polynomial vector fields, although extension
to such a case is easy to perform and treated later. If B; € P*1(R") fori = 1,--- ,k — 2, then
by using Eq.(4.25) with Egs.(4.26,27), we can show that R¢ + Px(Ry, -+ , Re-1, B1,- -+ , Bk_2) in
Eq.(4.28) isin PX*1(RM). Since the map adr, defined by adr,(B) = [Ry, B] is alinear map from
PKR") into PR, Eq.(4.28) suggests that we are allowed to choose By_1 € PX(R") so that
R«(A) may take avalue in acomplementary subspaceto Im adR, lpk(rny 1N PR,
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Theorem 4.4. Suppose that gi(t, X) given in (3.1) is a homogenous polynomial vector field of
degreei+1inx. Let Ci,1 beacomplementary subspace to Imadg,|pign) inP*1(R") : PHLHR") =
Imadg, |pirn ® Ci+1. Then, there exist vector fields B; € P*+YRM, i =1,2,--- such that the new
RG equation (4.9) has the properties that ﬁi €Ciyggfori =23,---. Let Z,E?G be the flow of the
new RG equation (4.9). Then the equality

d — —
i aitaaoX(a)_loaaomoafloX(t)oa/t_l(x) = FX+&01(t, X)+- - -+£Mgm(t, X)+O(e™?) (4.29)

holds, where a; and a; are defined by Eq.(4.2) and (4.23), respectively.

If the new RG equation (4.9) satisfies ﬁ’i € Gy fori = 2,---, m, we cal it the mth order
simplified RG equation.

If Eqg.(3.26) isautonomous, the RG equation (4.1) hasthe property that Rq(X(t)A) = X(H)R«(A).
Thus it is convenient to define Bx(A)'s so that the new RG equation (4.9) may have the same
properties Re(X(t)A) = X()R(A) fork = 1,2, - - -. Let P'(R"; F) be the subspace of #'(R") all of
whose elements f satisfy f(X(t)A) = X(t) f(A) (recall that X(t) := eF!). Since R, € P?(R"; F), the
restriction of adg, to #'(R"; F) isamap into P'*1(R"; F). We take an arbitrary complementary
subspace Ci.1.r to Imadg, |pi(rnfy into PR F), and fix it :

PR, F) = Imadr lpignr) ® CisLF- (4.30)

Theorem 4.5.  For a given autonomous equation (3.26), suppose that gi(x) is a homogenous
polynomial vector field of degree i + 1. Then, there exist vector fields B; € PHLRMF), i =
1,2,---, such that the new RG equation (4.9) has the propertiesthat R, € Ci;1r fori =2,3,---.

If the new RG equation (4.9) for an autonomous equation has the propertiesthat R, € Ci 1 ¢
fori =2,---,m,wecal it the mth order simplified RG equation.

A few remarks are in order. Note that the simplified RG equation depends on the choice of
a complementary subspace C;. The simplified RG equation is equivalent to the normal form
or hypernormal form (simplified normal form) of Eq.(4.1). See Murdock [13] for the nor-
mal form theory. If Ry = --- = Rj-1 = O0and R; # 0 in the RG equation (4.1), Thms.4.4
and 4.5 hold if adg, is replaced by adg,. Extension to the case that Ry € #!(R") for some
positive integer | and that Ry, Rs,--- are inhomogeneous polynomials is easy to perform. If
Re+Pk(Re, - -+ , Ree1, By, - -+ , Bi_2) in EQ.(4.28) isan element of P%(RMaP%(RMe- - -aP%(RN),
we can choose By_; so that Ry may takeavalueinCq, ®Cq, ®- - - ®Cy, (See Exs4.6, 4.7). Evenif
R; is a polynomial vector field, we can simplify R;(A) systematically by using the grading func-
tion (see Kokubu, Oka and Wang [9]) under appropriate assumptions, although we do not give
care to this method in this paper.

Example4.6. Consider the equation on R?

X=FX+egi(X) + &2 (X) +---, XeR? (4.31)

where F = (_Ol (l)) and where gi(x), i = 1,2,--- are homogenous polynomial vector fields

whose degree is larger than 1. Like Exs.3.7 to 3.9, we express its RG equation in the sense of
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Eq.(4.1), in terms of complex variable A € C, as

A . )
%(ﬂ) = &lRi(A) + e Rjy1(A) + -, Ry=---=Rj.1=0,R; 0. (4.32)
. N = L . .
Since each R satisfies R (€'A) = 0 eit R(A), i = V-1, R for| > j take the form
_ [ PAIA
R = (B ) =0 (459

wherei = V-1 and where 2k + 1 is the degree of Ri(A) and p| € C is a constant. We wish

to define a homogenous polynomial vector field B(A) so that [B, Rj](A) may be a homogenous
. jt

polynomial vector field of degree 2kj,1 + 1 satisfying [B, Rj](€'A) = (% egt)[B, Ril(A). It

then turns out that B(A) has to be of the form

qA|A|2(kj+1—kj)
B(A) = (qﬂ|A|2(ki+1‘ki) , qeC, (4.34)
and [B, Rj](A) isgiven by
oay [ CIAIA
[B,Rj](A) = (Ejﬂ|A|2ki+1 (4.35)

where
¢j 1= —2(2kj — kjs1)Re(@)Re(pj) — i (2(K; — kja)Im(@)Re(p;) - kjRe(@)Im(p;)).  (4.36)
Then, from Eq.(4.16) with R; replaced by R;, ﬁj+1 has the form

(Pj+1 — CAA

Ri1(A) = ((T)j |~ T AAR ) pj+1 € C. (4.37)
+

Our purpose isto determine aconstant g € C in B(A) so that ﬁj+1 may be simplified.

Case (i) If (2kj — kj+1)(kj — kj+1)Re(pj) # O, then we can choose g so that pj.1 —¢j = 0. Inthis
case, the simplified RG equation (4.9) satisfies Rj,1(A) = 0.

Case(ii) If (2kj—kj+1)Re(p;) # 0and k; = Kkj.1, then we can choose g so that Re(pj.1 —¢;j) = 0.
Inthis case, Rj,1(A) is of the form

_ L AAZK
Rj+1(A) =i pj+1(—ﬂ|A|2ki+l , Pi+1€R. (4.38)

Case(iii) If (kj—kj+1)Re(p;) # 0and 2k;j = kj.1, then we can choose g so that Im(pj.1—¢j) = 0.
Inthis case, Rj,1(A) is of the form

— _ (AAZ)
Rj+1(A) = pj+l(z\|A|2ki+1 , Pj+1€R. (4.39)
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Case(iv) If Re(pj) = 0andk; # 0, then we can choose g so that Im(pj,1 — ¢j) = O and §j+1(A)
isof the form (4.39).

Case(v) If Re(pj) = 0andkj = 0, orif kj = kjz1 = 0, thencj = 0and Rj;1(A) = Rj41(A).

Rj+2,Rjs3,--- are caculated in asimilar way. Now we restrict the example to a few special
Cases.
If Eq.(4.31) isalinear equation, the RG equation (4.32) is aso linear and the degree of each
Ri(A) isone (i.e. ki = 0). Then Case (V) in the above applies and this proves that the RG equation
for an autonomous linear equation can no longer be reduced in this manner. The simplified RG
eguation for a nonautonomous linear equation will be treated in the next section.

As anext restricted example, consider an equation on R?

X=Fx+Py(X)+P3(X)+---, xeR? (4.40)

where F = _01 (1) and where P;j(X) is a homogenous polynomia vector field of degree i.

Changing the coordinate by x = £X brings Eq.(4.40) into
X = FX +ePa(X) + &2P3(X) +---, XeR2 (4.41)
The RG equation for this equation takes the form

% (%) = &’Ro(A) + *Ru(A) + e%R(A) + - -+, Ry =0fori=12,---, (4.42)

where Ry (A) isamonomial vector field of the form

[ P2 AIA2
Roi(A) = (—pzmz\l AZ )

whose degreeis 2i + 1. In this case, on account of k; # K; (i # j) and ki > 0, Cases (i),(iii) and
(iv) are applicable. Supposethat Ry = Ry = -+ = Ryj_» = 0 and Ryj # 0. Then, the simplified
RG equation takes the following form:

(4.43)

(1) If Re(pzj+1) # 0, Case (i) and (iii) applies and the simplified RG equation is of the form
A= 1B AN + Y P AAY, AeC, (4.44)
where Re(52j+1) # 0and Im('54j+1) =0.

(1) If Re(p2j+1) = 0 and Im(pzj+1) # 0, Case (iv) applies and the simplified RG equation is of
the form . _ ‘ ‘ _ ‘ _
A = 2 AN + 2172 s AN + 21 s AN 4 (4.45)

where Re(P2j+1) = 0, Im(p2j+1) # Oand Im(p;) = Ofori =2j+3,2j +5,---.

Put A = re’. Then Eqgs.(4.44) and (4.45) are brought into

r= 82ja/2j+1r2j+1 + a4ja/4j+1l’4j+1,

h— 2ip . 2] (4.46)
9 =& ﬂzj-'—lr H

P = 8zj+zazj+3r2j+3 +82j+4a/2j+5r2j+5 -

D 2ip. 2] (4.47)
0 =& ﬁ2J+lr ’
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respectively, where a; = Re(), 8i = Im([).

Note that Eq.(4.47) can be further simplified by applying the hypernormal form theory (see
Murdock [13]). Indeed, the simplified RG equation is not unique, because we can express Ro(A)
given by (4.16) as

Ra(A) = Ry(A) — [B1, Ri](A) - [B], Ri](A),

where B] € Ker adg,. Though B} (A) does not affect Ry(A), it may change Rs(A), Ra(A), - - -

Example 4.7. Consider the equation

X=y+ex— 2,
y=-X%

where ¢ > 0 isasmall parameter. The second order RG equation for this equation is given by
Eq.(3.46) in the complex variable or by Eq.(3.47) in the polar coordinate. Since Eq.(3.47) has a
stable periodic orbit r = v/1/3¢ and an unstable fixed point r = 0, the original equation (4.48)
also has a stable periodic orbit and an unstable fixed point x = 0, asis shown in Example 3.8. We
now calculate the simplified RG equation. Case (i) applies and the term —3|A[2A/2 in Eq.(3.46)
vanishes. However, the term —iA/8 does not vanish on account of Case (v). Therefore the second
order simplified RG equation is expressed as

(4.48)

P2
. E lE
A=ZA- A AcC, (4.49)
or
[ = —er,
2 (4.50)
0= —582,

in the polar coordinate. This equation has an unstable fixed point r = 0, but does not have a
periodic orbit. To find out the reason why the periodic orbit mentioned above disappear, we derive
the RG transformation to explore a region on which the RG transformation is a diffeomorphism
(see Remark 3.2).

The second order RG transformation associated with the RG equation (3.46) is given by

. (451)

gt 0 )(A) ig(ﬂe—it) 82(—Ke—“+2iA3e3“—6iK|A|2e—“—iﬂse—m
A

at(A) = ¥ + — L+ = ) i ; . ]
(A (0 A 4\-A') " 8| _pdt+iA3et + GIAARE! — 2iA et

Near the periodic orbit r = /1/3¢ of Eq.(3.46), the first, second and third terms of the right hand
side of the above are of order O(+/1/¢), O(~/€), and O(+/e), respectively. Therefore, if & > 0
is sufficiently small, a(A) is well approximated by its first term, and this proves that a(A) is a
diffeomorphism for each t € R, if |A] ~ O(V1/&).

On the other hand, the RG transformation associated with the smplified RG equation (4.49),
which brings the simplified RG equation (4.49) into the original equation (4.48), is given by (see
Eq.(4.29))

+0(£?), (4.52)

o et/{a]" 2| iadt - 6AARe

atoX(t)_lob?t(A)Z(eit 0)(2) 8(iﬂe‘”—6A|A|2éf
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eit

where X(t) = ( 0

egt ) and where o and o are given by Eq.(4.51) and by

¢ )3l

@(A) = ( 0 edt - \& A|2e—“)+o(‘°'2)’ (4.53)

respectively. In this case, if |Al ~ O(+V1/e), the first and second terms of the right hand side of
Eq.(4.52) are of same order O(V1/¢). Asaresult, o o X(t) o az(A) is not a diffeomorphism near
aregion |Al ~ O(+v/1/€) no matter how small £ > Qis.

Now the reason we have looked for is clear. The simplified RG equation (4.49) can not imply
the existence of the periodic orbit, since the periodic orbit lies out of the region on which the RG
transformation associated with the simplified RG equation (4.49) is a diffeomorphism.

In general, the more the RG equation is simplified, the more the RG transformation, which
brings the RG equation into the original equation, becomes complex and a region on which the
RG transformation is a diffeomorphism may become small.

5 Simplified RG equation for time-dependent linear equations

In this section, the simplified RG equation is applied to time-dependent linear equations. In par-
ticular, it is shown that hyperbolic stability of atrivia solution of a time-dependent linear equa
tion is determined by the simplified RG equation along with metanormal form theory proposed
by Murdock [13].

Consider alinear equation on R"

X = Fx + &Ga(t)x + &2Go(t)x +---, xeR", (5.1)

where £ > Oisasmall parameter, F isadiagonalizable n x n matrix all of whose eigenvalueslie
on the imaginary axis, and where G4(t), Go(t), - - - are n x n matrices which are of C! class and
periodicint € R. For this equation, functions R;(A) and hg')(A) defined by Egs.(3.13, 14, 17, 18)
are linear with respect to A. In view of this, we define matrices R, and hﬁ') by

Ry = lim :t—L ftX(s)‘lGl(s)X(s)ds, (5.2)

ht = X() f (X9 1Gu(9X(9 - Ry)ds. (53)

and

t i-1 i—-1
R=limy [ {mrz G + X(9G(IX(9 - XY h§k>a_k]ds, 54

k=1
i—-1 i-1
h = x( f t[X(s)*Z GO + X(97Gi(9X(9 - X(97) | MR« - R] ds(5.5)
k=1 k=1

fori =2,3,---, where X(t) = e and theintegral constants of the indefiniteintegralsin the above
equations are fixed arbitrary asin Sec.3. With these matrices, the m-th order RG equation and the
mth order RG transformation for Eq.(5.1) are given by

V=eRV+ RV + - +™Ryv, veR", (5.6)
(V) = X)WV + shDv+ - + gTh{My, (5.7)
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respectively.
Next, we specialize the ssimplified RG equation for Eq.(5.6). Because of linearity, EQ.(4.5) to
Eq.(4.8) arereduced to

Ry =Ry, (5.8)

_ i-1 i-1 _

R=R+) RuB- > BRx =23, (5.9)
k=1 k=1

A = Xx@®)B;, i=12---, (5.10)

where Bi’s are arbitrary constant matrices. For example, matrices Ry, Rz and R4 are put in the
form

R: = Rx—[By,Ril, (5.12)
Rs = Rs—[By,Ro] —[Bp, Rl + Bi[By. R, (5.12)
Ri = Rs4—[B1,Rs] —[B2 Re] - [Bs, Ry

—~Bi[B1, Ri] + B[ By, Ri] + B[ By, Ro] + B[ B, Ry, (5.13)

respectively, where the bracket denotes the usual one for matrices. Let M(n, C) bethe set of nxn
complex matrices and define an operator adg, : M(n, C) — M(n, C) by

ade(B) = [Rl, B] = RiB-BRy. (5.14)

Itiseasy to verify that
M(n, C) = Imadg, @ Ker adg;, (5.15)

where R} denotes the conjugate transpose matrix of Ry. Since R,i=23,--- arerewritten as

i-2 i-2
R =R+ ) RuBc— ) BR+ade,(Bi1), (5.16)
k=1 k=1
we can choose matrices By, - - - , Bm-1 Such that
R eKeradg, fori=23---.m (5.17)
Then, the equation _ _ _
V=eRvV+ RV + -+ "RV (5.18)

is called the m-th order simplified RG equation for Eq.(5.1). If we define a matrix a; by
ar(V) = XV + eX(t)Byv + - - - + £™X(t) By, (5.19)

then the equality
% _(@aX(@)a) 0 B5S 0 (aeX(®1a) 1) = Fx+ eGa(OX + -+ + £Crn(D)X + £ 1S e, )
B (5.20)

holds, where GF6 = eleRit-+s"Rn)t s the flow of Eq.(5.18), and where S is a matrix-valued
function which isbounded int € R and bounded as¢ — 0.
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Our purposein this section is to study the stability of the trivial solution x(t) = O of Eq.(5.1).
Changing coordinates by x = a;X(t) 1@y brings Eq.(5.1) into the equation

V=sRiy+ -+ MRy + €™1S(g, )y, (5.21)

where S is a matrix-valued function which is bounded int € R and bounded as ¢ — 0. Since
aX(t) Yy is almost periodicint € R and bounded int € R, the stability of the trivial solution
X(t) = 0 of Eq.(5.1) coincides with that of y(t) = 0 of Eq.(5.21) (the fact that «; isamost periodic
is shown in Chiba[3]).

Now a question arises : Can we use the truncated equation (5.18) to decide as to whether the
trivial solution y(t) = 0to Eq.(5.21) isstable or not? In generdl, thisisimpossible. Anillustrative
exampleis shown in Murdock [13]. Consider the equation on R?

. (0 1 10 (0 O

y_(o 0)y+g(0 l)y+g (4 O)y. (5.22)
. . . (0 1 10 ,(0 O A !
Snceagerwalu&ofthematrlx(o 0)+8(O l)+e (4 O)areBaand—e,y_Olsa%\d

die point. However, if we truncate the second order term 32(2 8 , eigenvalues of the matrix

8 (1) +& (1) (1)) are ¢ (double root), so that y = O is an unstable fixed point if € > 0. This ex-
ample showsthat if we truncate the higher order term of ¢, the stability of y = 0 of Eq.(5.21) may
change. To handle this problem, we need two propositions about stability of the trivial solutions
of linear equations. By using metanormal form theory, we can put Eq.(5.21) in the form to which
the propositions are applicable.

Proposition 5.1. Let A1,--- , A, be eigenvalues of Ry. There exists a positive constant &g such
that the following holds for 0 < Ve < gp: there exist positive constants D1, Do, tg, a positive
valued function ¢(g) with ¢(¢) — 0 ase — 0, and asolution y(t) = y®(t) of Eq.(5.21) such that
the inequality

DzeeRe(Ak)t—s¢(s)t < Hy(k)(t)” < DlesRe(/lk)t+s¢(s)t (523)

holdsfort >tgandk=1,--- ,n.
Proposition 5.2 Supposethat Ry, - -+ , Ry are diagonal matrices. Let A1(g), -+ , An(€) be eigen-
valuesof Ry + - - - + €™Ry,. Then, there exists a positive constant &g such that the following holds

for 0 < Ve < &p: there exist positive constants D1, Dy, D3, D4, to and a solution y(t) = y®(t) of
Eq.(5.21) such that the inequality

DzeRe(/lk(S»t—SmlDﬂ < ||y(k)(t)” < DleRe(/lk(E))t+8mlD3t (524)

holdsfort >tgandk=1,--- ,n.

Prop.5.1isshownin Sec.7 of [3]. Prop.5.2 isproved in asimilar way asthat for Prop.5.1, and
we omit it here.

In particular, if Ry = Ry ishyperbolic, namely, none of eigenvalues of R; lieson theimaginary
axis, then the stability of thetrivial solutiony = 0 of Eq.(5.21) coincides with that of the truncated
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equationV = eRyv. Inaddition, if all Ry, - - - , R arediagonal andif sRy+- - -+£™Ry ishyperbolic,
then the stability of the trivial solution y = 0 of Eq.(5.21) coincides with that of the truncated
equation V = (¢Ry + - - - + e™"Ry)V. If the simplified RG equation does not satisfies the assumption
of Prop.5.1 or Prop.5.2, we use the metanormal form theory to try to transform the ssimplified
equation into adesired form.

Now we show the procedure for deciding as to the stability of the trivial solution of Eq.(5.1),
along with equations on R?, although the procedure in general cases are available in the same
way (see Rem.5.4).

Step (1) For a given equation (5.1), we calculate the RG equation up to some finite order m.
After changing coordinates so that R; may take the Jordan form, we calculate the simplified RG
eguation up to order m.

Step (I1) Prop.5.1 showsthat if Ry = Ry is hyperbolic, the stability of the trivial solution x = 0
of Eq.(5.1) coincides with that of the first order RG equation v = eRyv. If Ry is not hyperboalic,

go to Step (I11).

Step (111) Step (111) isdivided into three cases according to the type of Ry.

Case (i) Suppose that Ry isadiagonal matrix all of whose eigenvalues are distinct. Since

Ker adr: = the set of diagonal matrices, (5.25)
the m-th order simplified RG equation is of the form
D @ (m)
. Pl 0 A 0 A 0
V:g( (1) /1(21))V+32( (1) /1(22)]v+...+gm( (1) /l(zm))v, (5.26)

Now Prop.5.2 applies to show that if eigenvalues g/l(ll) oot sm/l(lm) and 8/1(21) oot am/l(zm) do
not lie on theimaginary axis, the stahility of thetrivia solution of Eq.(5.1) coincides with that of
Eq.(5.26). If some of the eigenvalues are on the imaginary axis, we need higher order simplified
RG equation.

Case (ii) Suppose that R; isadiagona matrix all of whose eigenvalues are equal. In this case,
we have
Keradr: = M(2,C), (5.27)

so that R; are not diagonal matrices, and we can not apply Prop.5.2. However, since all eigenval-
ues of Ry are on the imaginary axis, we can apply the RG method to the simplified RG equation
(5.18). We calculate the simplified RG equation for Eq.(5.18) and put its first term in the Jordan
form. With this new simplified RG eguation, we go back to Step (I1).

Case (iii) Supposethat Ry isof theform Ry = (g /11) In this case, since

Ker ad, = {(g g) EXE c}, (5.28)

the simplified RG equation (5.18) takes the form
\'/::-:(/l 1)v+sz(p2 O)v+s3(p3 o)v+--~+sm(pm O)
0 4 B P2 a3 P3 Om  Pm
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fa=0=---=0n=0, since(z)l j) and (g 8)commutewith each other, changing the
|

variablevintouby v = ¢ (exp(g i)t) u brings the above equation into an equation

U:sz(%z 32)u+83(%3 S3)u+--~+em(%m F?m)u' (5.30)
Since A is on the imaginary axis, the stability of v = 0 coincides with that of u = 0. Now that
Prop.5.2 is applicable to Eq.(5.30). It follows that if the eigenvalue e?p, + - - - + £Mpm, does not
lie on the imaginary axis, the stability of the trivial solution of Eq.(5.1) coincides with that of
Eq.(5.30). If it ison the imaginary axis, we need more higher order simplified RG equation.
Ifgp=---=0gj_1=0andq; # 0, ] <m, Eq.(5.29) iswritten as

\'/:s(/l 1)v+,~32(p2 0)v+---+.9j‘1(pj‘l 0 )v+sj(pj O)v+-~-+gm(pm O)V.
0 4 0 p 0 pj aj pj Om  Pm

| (5.31)
Changing coordinates by v = (x,y) = (X, e0-D/2Y) yields

d(X)_ (2 O\(X). ofP2 0O)(X m(Pm 0 }(X
alv)=e(o )25 p)E)r (T S
+8(j+1)/2(c?j é)($)+g(j+3)/2(qjo+l 8)($)+...+8(2m—j+1)/2(q?n 8)(?)(5.32)

Further, putting n = £/2 and changing the time scale by t = s/7? result in
d X _ /1 0 X 2 p2 0 X 2m-2 pm 0 X
d_s(Y)‘(o a)(v)” (o pJ\YTTFT o )\ Y

= I+l ey 2ol
g o T o o)(¥) g o)(F) %9

Since A ison theimaginary axis, we can apply the RG method to this equation. We calculate the
simplified RG equation for this equation, and put the first term in the Jordan form. The resultant
equation is called the metanormal formfor Eq.(5.29). With this equation, we go back to Step (I1).

If x = Oisahyperbolic fixed point of Eq.(5.1), the above procedure is sufficient for deciding
its stability. However, if EQ.(5.1) is not analytic but C* with respect to &, the strengh of the
stability may get exponentially small (i.e. constants @ and 3 below are of order O(e~/#)). In this
case, we can not determine the stability by using the perturbation method within finite steps. To
avoid such adifficulty, we assume analiticity in the next theorem.

Theorem 5.3. Supposethat Eq.(5.1) isanalyticin small € and there exist an open set U including
the origin and positive constants Cy, C,, , 8 such that every solution x(t) of Eq.(5.1), whoseinitial
valueisin U, satisfies either

IXOIl < CalIX(O)lle™™, if t >0, (5.34)

or
()] < Calx(Q)||€®, if t <O. (5.35)
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Then, there existsan integer M such that the stability of the solution x(t) = 0 of Eq.(5.1) coincides
with that of the solution v(t) = 0 of the m-th order simplified RG equation (5.18) if m > M. In
particular, we can decide as to the stability of x = 0 within finite steps by using the above
procedure.

Proof. If mis sufficiently large, the simplified RG equation (5.18) is sufficiently close to
Eq.(5.21) which is equivalent to Eq.(5.1). Then, our theorem is an immediate consequence from
the persistency of hyperbolic invariant manifolds (see Thm.2.1). [ |

Remark 5.4. It iseasy to extend the above procedure to n-dimensional case. For example, if

1410
Ry € M(3,C) isof aform Rlz[o A 1], Ker adg: is given by
0 0 2
p 0O
KeradR»iz{ ap O |p,q,reC}. (5.36)
r-q p

Furthermore, if Ry is of the n x n Jordan block which is not diagonal, then Ker adg: is given by
the set of lower triangular matrices such that the entries on the diagonal and those on each lower
line parallel to the diagonal are equal in each line. If Ry has many Jordan block, we can apply the
above procedure to each Jordan block.

Example5.5. Consider the Mathieu equation
X=-ax—-2¢cost X, XeR, (5.37)

where a and ¢ > 0 are parameters. If a = 1/4, then x = 0 is an unstable fixed point, which
is verified by using the first order RG equation and Prop.5.1, see Chiba [3]. To examine the
parameter dependency of the instability more precisely, we put

a=%+sb1+szb2+---, (5.38)
and introduce a new variable by x = y/2. Then Eq.(5.37) isrewritten as
X = :—Ly
27 (5.39)

y = —5X- 4g cost X — 2eby X — 26%byX — - - - .
Introducing acomplex variablethrough x=z+zy =i(z-2), ze C, we express (5.39) as
5= iz ic(d + e (z+2) +iehi(z+2) +ie’ba(z+D) + -+ -,
.2 o (5.40)
Z= —Eiz— ic(@ + e (z+2) —iehi(z+2) —i’ba(z+2) +--- .

The second order RG equation for this equation is given by

- 0 1-by 2 0 1/2 - 2by + b2 — by
V_8(1+b1 0 )V+8(—1/2—2b2—b§+b2 0 v (54D
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1+b1 0

showsthat x = 0 of Eq.(5.37) is unstable because of the positive eigenvalue 1 = /1 — b%. Onthe
other hand, if |b1| > 1, two eigenvalues are on the imaginary axis and we go to Step (I11).

Since eigenvalues of the matrix Ry = ( 0 1= bl) ael=+,/1- bf, if |by| < 1, Step (1)

In what follows, we fix by = 1. By putting v = ((1) é) u, Eq.(5.41) isrewritten as

. (0 2 2 0 b, —7/2
u_s(o O)u+s (—b2—1/2 0 )u. (5.42)
Because of Eq.(5.28), the simplified RG equation for this equation is given by
. (0 2 > 0 0
u_a(o 0)u+s (—b2—1/2 O)u. (5.43)
Changing coordinates by u = (uy, up) = (W1, £/°w»), we obtain
d W1 _ .32 0 2 W1
a (Wz) -f —bz - 1/2 0 Wo ) (544)
Thisisof the metanormal form for Eq.(5.41) with by = 1 (Step (111)-Case (iii)). Since eigenvalues

of the matrix ( b 0 12 é) isA = +vV=-2(b, +1/2), if b, < -1/2, x = 0 of Eq.(5.37) is
—by -
unstable because of a positive eigenvalue. If by, > —1/2, two eigenvalues are on the imaginary
axis, and we need more higher order term.
In what follows, wefix by = 1, b, = —1/2. Then, the third order RG equation for Eq.(5.40) is

given by
. (00 >( 0 O 3 0 -1/4-Dbs
v_g(2 0)v+s (_4 O)v+s (39/4+b3 0 )v. (5.45)
. 01 .
Puttmgv:(1 O)uprowd%
. [0 2 >(0 -4 3 0 39/4 + bs
u_s(o O)u+s (O 0)u+s (—1/4—b3 0 )u. (5.46)

Because of Eq.(5.28), the simplified RG equation of this equation is given by

. (0 2 3 0 0
u_s(o 0)u+a (—1/4—b3 O)u. (5.47)

To put this equation in the metanormal form, we introduce w; by u = (uy, Up) = (W, ews). Then,
the above equation is brought into

d W1 0 2 Wy
i) = 0JL02) 5

Since eigenvalues of the matrix( b 0 1/4 (2)) aregiven by 1 = =+/-2(bz+ 1/4), x = 0 of
—b3 -

Eq.(5.37) isunstable if b3 < —1/4. However, if bz > —1/4, we need more higher order term to
investigate the stability.
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Now we have obtained one of the boundary curve of the Arnold tongue in the (¢, a) plane,

_1 1, 13 4
a= 7 +& 58~ ¢ + O("). (5.49)
In an area on one side of this curve, x = 0 of EQ.(5.37) is unstable, and in an area on the other

side x = 0 of EQ.(5.37) isnot unstable.

Our strategy may be effective also for nonlinear equations because variational equations are
linear equations.

Example. 5.6. Consider the system

3
b =wi+e ) bijsin(; - 6), 6 €[0,2n), i =123 (5.50)
i=1

where wj, ¢ and bjj are parameters. If bjj = 1for 1 < i, j < 3, this system is well known as the
Kuramoto model of coupled oscillators [Kuramoto, 16]. The Kuramoto model is one of the most
studied model of synchronization in a population of oscillators although a few open problems
remain [Strogatz, 17]. In what follows, we suppose that

w1 = w3, w2 =0, by = —bo3, bz = byo. (5.51)

Inthiscase, itiseasy to verify that there exists asynchronous solution 6»(t) = const., 61(t) = 63(t).
Our purpose is to investigate the stability of the solution. In addition to the assumptions above,
we suppose that bs; = —bi3 + €6, where 6 isaconstant. Then, Eq.(5.50) is rewritten as

Qz = 8(b21 Siﬂ(@l - 92) - b21 Sil’l(93 - 92)), (5.52)

61 = w1 + &(b12 SN0z — 61) + iz Sin(63 — 61)),
03 = w1 + &(—byz Sin(@y — 63) + bip SiN(G2 — 63)) + 25 sin(6y — 63).

Put cosOx = z + Z, SinBk = i(z — Z), Z € C to express the above equation in the Cartesian
coordinate. The RG equation for the resultant equation is as follows:

Z = eRi(D+Re(d) + O, 2= (21,21, 2,22, 23, 73)", (5.53)
_ T ~ Lt
Ri(2 = 2b13(212123 ~Z%, %73 - Zz,0,0, U7 - 0773, 77 - 212323) ,

4 . _ _ _ _ _
Rx(2) w—1(|212222b12(—2321b21 — 2173021 + 22921012 + 22171 b1)

~1222125012(~ 2321021 — 21730001 + 221721015 + 221711071,

~ 21222091 (~ 232312 + 23231 — 237101 — 212301 + 21Z1b12 + 21 Z10p1)

22525001 (~2323b12 + 237301 — 37101 — 21Z3b1 + Z1Z1D12 + Z1Z1b1)

(212373 — Z321) w16/ 2 + 1 22ZpZ3b12(Z1 Z3b21 + 212301 + 225Z3b1p — 22373b1)
_ _ _ L _ _ _ _ t

+(232571 — 2128) w102 + 12:29Z3012(21 7301 + 212301 + 2237312 — 22573b1)) .
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Putting z, = €%, k = 1, 2, 3, we express the RG equation in the polar coordinate as

. 8s2
$1 = —4ebizSin(p1 — ¢3) + w—l(biz + b12bp1 — byobopg cos(py - ¢3)) +0(e3),

: P22, 51
o = =B S 5 (91~ 3) + O(e°),
: . 8¢? 1.
$3 = —48b135|n(¢1—¢3)+w—1(b§2 — b12b21 + byobyg C05(¢1—¢3)+§w15 Sln(¢1—¢3))+0(83)-
(5.54)
The variational equation along the orbit ¢, = const., ¢1 = ¢3 for the above equation is given by
d V1 -1 0 1 V1 00 O V1
gi| V2 |=4bs| 0 0 Offva |+ 46510 0 0 || va |+O(d). (5.55)
V3 -1 01 V3 1 0 -1 V3

If thetrivial solution (vy, V2, v3) = (0, 0, 0) of (5.55) ishyperbolically stable, theinvariant set {¢» =
const., g1 = ¢3} for the RG equation (5.54) is stable invariant manifold and we can conclude
that the solution 8, = const., 81 = 03 to the original equation (5.52) is stable. However, the
-1 01
0 O 0] are dl zero and we can not apply Props.5.1 and 5.2. To
-1 01
handle this problem, we simplify the term Rx(2) by using our method of simplified RG equation.
Let B1(2) be an undetermined vector field and Rx(2) = Rx(2) — [B1, Ri](2) be a simplified
second order term of the RG equation, asis shown in Eq.(4.16). To simplify Rx(2), it seems that
B1(2) hasto be apolynomial of degree 3 because R;(2) and Rx(2) are polynomial of degree 3 and
5, respectively. However, it is sufficient to simplify the variational equation (5.55), and we may
define B1(2) to be alinear vector field of the form

eigenvalues of the matrix

Bi1(2) = (0, 0, 0, 0, cz3, CZ3)", (5.56)

where ¢ € R is an undetermined constant. With this B1(2), we bring the new RG equation
z = eR1(2) + £2(Ra(2) - [B1, R1](2)) + O(£?) into the equation in the polar coordinate by putting
z = €%, and we calculate the variational equation along the orbit ¢, = const., ¢1 = ¢3. The
resultant equation is given by

d V1 -1 0 1 V1 - 0 «a V1
a[vz]:4gb13[o 0 o][v2]+482[ 0 0 o][v2 +0(%), (5.57)
V3 -1 0 1)\vs B 0 —-B)\vs
101
where & = biscand 8 = 6 — bysc. Putting (Vl,Vz,Vg)t:{O 0 O](ul,uz,ugt,weexpre&this
100
eguation as
d up 0 0 -1 up OO0 ﬁ up
a[u2]=4gb13[0 0 0](U2]+4€2{0 0 O ][UZ + O(d). (5.58)
us 0 0 0 )\us 0 0 —a-p8)\u3
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Now we choose ¢ = §/bs3 so that 8 = 0. Further, we put uz = eUs to obtain

dU]_ 00—b13 U1
3| v =4¢°(0 0 O U

Us 0 0 -6 J\U;z

+O(£d). (5.59)

The eigenvalues of the matrix in the right hand side of the above are given by 0,0, —6. In the
original coordinate (v, V2, v3), the eigenvectors associated with the zero eigenvalues are given
by (0,1,0)! and (1,0, 1)}, which are sitting along the invariant set {¢» = const., ¢1 = ¢3} of the
RG equation. On the other hand, the eigenvector associated with the eigenvalue —¢ is transverse
to the invariant set. Therefore, we conclude that the invariant set {#> = const., §; = 63} of the
origina equation Eq.(5.52) is stable if || is sufficiently small and if 6 > 0.

Fig.2 presents the numerical solution to Eq.(5.52) for parameters w1 = 1, byo = b1z = by =
1, 6§ =10, e = 0.1 and with an initial values 61(0) = 0, 62(0) = 0, 63(0) = 1.

0 100 200 300 400 500

Fig. 2: A numerical result for EQ.(5.52) withw1 =1, bip = bz =-bip =1, 6§ =10, e = 0.1. It
is shown that |61 — 03] tendsto zero ast — .
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