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Abstract

The renormalization group (RG) method for differential equations is one of the perturbation
methods which allows one to obtain invariant manifolds of a given ordinary differential equation
together with approximate solutions to it. This article investigates higher order RG equations
which serve to refine an error estimate of approximate solutions obtained by the first order RG
equations. It is shown that the higher order RG equation maintains the similar theorems to those
provided by the first order RG equation, which are theorems on well-definedness of approximate
vector fields, and on inheritance of invariant manifolds from those for the RG equation to those
for the original equation, for example. Since the higher order RG equation is defined by using
indefinite integrals and is not unique for the reason of the undetermined integral constants, the
simplest form of RG equation is available by choosing suitable integral constants. It is shown
that this simplified RG equation is sufficient to determine whether the trivial solution to time-
dependent linear equations is hyperbolically stable or not, and thereby a synchronous solution of
a coupled oscillators is shown to be stable.

Keyword : singular perturbation, renormalization group method, normal forms

1 Introduction

The renormalization group (RG) method for differential equations is one of the perturbation tech-
nique proposed by Chen, Goldenfeld, and Oono [1,2], which provides approximate solutions of
the system of the form

ẋ = Fx + εg1(t, x) + ε2g2(t, x) + · · · , x ∈ Rn, (1.1)

where ε > 0 is a small parameter. The RG method unifies traditional singular perturbation
methods, such as the multi-scaling method [1,2], the boundary layer theory [1,2], the averaging
method [3,5], the normal form theory [3,5] and the center manifold theory [2,4,6]. Kunihiro
[10,11] showed that an approximate solution obtained by the RG method is an envelope of a
family of curves constructed by the naive expansion. Ziane [15], DeVille et al. [5] and Chiba [3]
gave an error estimate of approximate solutions obtained by the RG method. Chiba [3] proved
that a family of approximate solutions constructed by the RG method defines a vector field which
is approximate to an original vector field (ODE) in C1 topology. Further, he gave a definition
of the higher order RG equation, and proved that if the RG equation has a normally hyperbolic
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invariant manifolds N, the original equation also has an invariant manifold which is diffeomorphic
to N.

In this paper, properties of higher order RG equations and of RG transformations are inves-
tigated in detail, although some of them, such as an error estimate of approximate solutions,
well-definedness of approximate vector fields, existence of invariant manifolds and inheritance
of symmetries, are proved in Chiba [3]. It is to be noted that the higher order RG equation and the
RG transformation are not uniquely determined because of the indefiniteness of integral constants
in the integrals in the definitions of them. This non-uniqueness has already seen in the normal
form theory [13], although its origin is not integral constants. In general, for a given vector field,
many kinds of normal forms are possible, and there exist many coordinate transformations which
bring the original vector field into the respective normal forms. The simplest form among them
is called hypernormal form or simplified normal form [12,13].

Our purpose in the present paper is to define and derive the simplified RG equation in an
analogous way to the hypernormal form theory. It is known that the RG equation is easier to
solve than the original equation because the RG equation has larger symmetries than the original
equation (Thm.3.6). The simpified RG equation proposed in this paper enable one to obtain more
simpler equation than the conventional RG equation for both nonliear and linear equations. In
particular, the simplified RG equation for time-dependent linear equations of the form

ẋ = Fx + εG1(t)x + ε2G2(t)x + · · · , , x ∈ Rn, |ε| << 1 (1.2)

are investigated in detail (see Sec.5 for the assumptions for matrices F and Gi(t)). We show
that the simplified RG equation to the extent of finite order is sufficient to determine whether the
trivial solution x(t) ≡ 0 to Eq.(1.2) is hyperbolically stable or not. This method is also useful to
investigate nonlinear equations because a variational equation for a nonlinear equation is a linear
equation. In Sec.5, we prove that a synchronous solution to a coupled oscillators (5.52) is stable
by analyzing the simplified variational equation for the RG equation of the original equation.

This paper is organized as follows: Sec.2 presents definitions and basic facts on dynamical
systems. Sec.3 gives a brief review of and main theorems on the RG method. In Secs.4 and 5, the
simplified RG equation is defined, and applied to time-dependent linear equations, respectively.

2 Notations

Let f be a time independent C∞ vector field on Rn and ϕ : R × Rn → Rn its flow. We denote by
ϕt(x0) ≡ x(t), t ∈ R, a solution to the ODE ẋ = f (x) through x0 ∈ Rn, which satisfies ϕt ◦ ϕs =

ϕt+s, ϕ0 = idRn , where idRn denotes the identity map of Rn. For fixed t ∈ R, ϕt : Rn → Rn defines
a diffeomorphism of Rn. We assume that ϕt is defined for all t ∈ R.

For a time-dependent vector field f (t, x), let x(t, τ, ξ) denote a solution to the ODE ẋ(t) =
f (t, x) through ξ at t = τ, which defines a flow ϕ : R × R × Rn → Rn by ϕt,τ(ξ) = x(t, τ, ξ). For
fixed t, τ ∈ R, ϕt,τ : Rn → Rn is a diffeomorphism of Rn satisfying

ϕt,t′ ◦ ϕt′,τ = ϕt,τ, , ϕt,t = idRn . (2.1)

Conversely, a family of diffeomorphism ϕt,τ of Rn, which are C1 with respect to t and τ,
satisfying the above equality for any t, τ ∈ R defines a time-dependent vector field on Rn through

f (t, x) =
d
dτ

∣∣∣∣
τ=t
ϕτ,t(x). (2.2)
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Next theorem will be used to prove Thm.5.3. See [7],[8],[14] for the proof of Thm 2.1 and
the definition of normal hyperbolicity.
Theorem 2.1. (Fenichel, [7]) Let X(Rn) be the set of C∞ vector fields on Rn with C1 topology.
Let f ∈ X(Rn) and suppose that N ⊂ Rn is a compact connected normally hyperbolic f -invariant
manifold. Then, there exists a neighborhood U ⊂ X(Rn) of f s.t. for ∀g ∈ U, there exists a
normally hyperbolic g-invariant manifold Ng ⊂ Rn, which is diffeomorphic to N.

3 Review of the Renormalization Group Method

In this section, we give the definition of the higher order RG equation and show how to construct
approximate solutions on the RG method. Four fundamental theorems on the RG method will be
given, all of whose proofs and ideas are shown in Chiba [3].

Let F be a diagonalizable n× n matrix all of whose eigenvalues lie on the imaginary axis and
g(t, x, ε) a time-dependent vector field on Rn which is of C∞ class with respect to t, x and ε. Let
g(t, x, ε) admit a formal power series expansion in ε, g(t, x, ε) = g1(t, x)+εg2(t, x)+ε2g3(t, x)+· · · .
We suppose that gi(t, x)’s are periodic in t ∈ R and polynomial in x, although the results in
this section still hold even if gi(t, x)’s are almost periodic functions as long as the set of fourier
exponents of gi(t, x)’s does not have accumulation points (see Chiba [3]).

Consider an ODE

ẋ = Fx + εg(t, x, ε)

= Fx + εg1(t, x) + ε2g2(t, x) + · · · , x ∈ Rn, (3.1)

where ε ∈ R is a small parameter. Replacing x in (3.1) by x = x0 + εx1 + ε
2x2 + · · · , we rewrite

(3.1) as

ẋ0 + εẋ1 + ε
2 ẋ2 + · · · = F(x0 + εx1 + ε

2x2 + · · · ) +
∞∑

i=1

εigi(t, x0 + εx1 + ε
2x2 + · · · ). (3.2)

Expanding the right hand side of the above equation with respect to ε and equating the coefficients
of each εi of the both sides, we obtain ODEs of x0, x1, x2, · · · as

ẋ0 = Fx0, (3.3)

ẋ1 = Fx1 +G1(t, x0), (3.4)
...

ẋi = Fxi +Gi(t, x0, x1, · · · , xi−1), (3.5)
...

where the inhomogeneous term Gi is a smooth function of t, x0, x1, · · · , xi−1. For instance,
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G1,G2,G3 and G4 are given by

G1(t, x0) = g1(t, x0), (3.6)

G2(t, x0, x1) =
∂g1

∂x
(t, x0)x1 + g2(t, x0), (3.7)

G3(t, x0, x1, x2) =
1
2
∂2g1

∂x2
(t, x0)x2

1 +
∂g1

∂x
(t, x0)x2 +

∂g2

∂x
(t, x0)x1 + g3(t, x0), (3.8)

G4(t, x0, x1, x2, x3) =
1
6
∂3g1

∂x3
(t, x0)x3

1 +
∂2g1

∂x2
(t, x0)x1x2 +

∂g1

∂x
(t, x0)x3

+
1
2
∂2g2

∂x2
(t, x0)x2

1 +
∂g2

∂x
(t, x0)x2 +

∂g3

∂x
(t, x0)x1 + g4(t, x0), (3.9)

respectively. We can verify the equality (see Lemma A.2 of Chiba [3] for the proof)

∂Gi

∂x j
=
∂Gi−1

∂x j−1
= · · · = ∂Gi− j

∂x0
, i > j ≥ 0, (3.10)

and it may help in deriving Gi.
We denote a solution of the unperturbed part ẋ0 = Fx0 by x0(t) = X(t)A, where X(t) = eFt

is the fundamental matrix and A ∈ Rn is an initial value. With this x0(t), the equation of x1 is
written as

ẋ1 = Fx1 +G1(t, X(t)A), (3.11)

a solution to which we denote by

x1 = X(t)X(τ)−1h + X(t)
∫ t

τ
X(s)−1G1(s, X(s)A)ds, (3.12)

where h ∈ Rn is an initial value at an initial time τ ∈ R. Define R1(A) and h := h(1)
τ (A) by

R1(A) := lim
t→∞

1
t

∫ t

X(s)−1G1(s, X(s)A)ds, (3.13)

h(1)
τ (A) := X(τ)

∫ τ(
X(s)−1G1(s, X(s)A) − R1(A)

)
ds, (3.14)

respectively. Since X(s)−1G1(s, X(s)A) is bounded uniformly in s ∈ R, one can verify that
R1(A) is well-defined. In this section, we fix integral constants of the indefinite integrals

∫ t

in Eqs.(3.13), (3.14) arbitrarily. Note that R1(A) is independent of the integral constant, while
h(1)

t (A) depends on it. In the next section, we choose the integral constant in Eq.(3.14) to be such
an value that the RG equation is put in a simple form. With these R1(A) and h := h(1)

τ (A), the right
hand side of Eq.(3.12) is decomposed into two parts;

x1 := x1(t, τ, A) = h(1)
t (A) + X(t)R1(A)(t − τ). (3.15)

Here, one part h(1)
t (A) is bounded uniformly in t ∈ R, as is proved by using almost periodicity

of X(s)−1G1(s, X(s)A) (see Chiba [3]), and the other X(t)R1(A)(t − τ) is linearly increasing in t,
which is called the secular term. We note here that X(t) is bounded in t.
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In a similar manner, we solve the equations of x2, x3, · · · step by step. The solutions are
expressed as

xi := xi(t, τ, A) = h(i)
t (A) +

⎛⎜⎜⎜⎜⎜⎜⎝X(t)Ri(A) +
i−1∑
k=1

(Dh(k)
t )ARi−k(A)

⎞⎟⎟⎟⎟⎟⎟⎠ (t − τ) + O((t − τ)2), (3.16)

where Ri(A) and h(i)
t (A) with i = 2, 3, · · · are defined by

Ri(A) := lim
t→∞

1
t

∫ t(
X(s)−1Gi(s, X(s)A, h(1)

s (A), · · · , h(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )ARi−k(A)

)
ds, (3.17)

h(i)
t (A) := X(t)

∫ t(
X(s)−1Gi(s, X(s)A, h(1)

s (A), · · · , h(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )ARi−k(A) − Ri(A)

)
ds, (3.18)

respectively, and where (Dh(k)
t )A is the derivative of h(k)

t (A) with respect to A ∈ Rn. Integral
constants of the indefinite integrals in Eqs.(3.17), (3.18) are fixed arbitrarily. We can prove that
h(k)

t (A) are bounded uniformly in t ∈ R. The proof of this fact and the explicit expression of the
term O((t − τ)2) in Eq.(3.16) are given in Appendix A of [3].

Now we define a renormalized constant A = A(τ) so that the curve x0 + εx1 + ε
2x2 + · · ·

defined as above is independent of τ :

d
dτ

∣∣∣∣
τ=t

(
x0 + εx1(t, τ, A(τ)) + ε2x2(t, τ, A(τ)) + · · ·

)
= 0.

This equation is called the RG condition and it yields an ODE of A(t) as follows :

Definition 3.1. Along with R1(A), · · · ,Rm(A) defined in Eqs.(3.13), (3.17), we define the m-th
order RG equation for Eq.(3.1) to be

dA
dt
= Ȧ = εR1(A) + ε2R2(A) + · · · + εmRm(A), A ∈ Rn. (3.19)

Using h(1)
t (A), · · · , h(m)

t (A) defined in Eqs.(3.14), (3.18), we define the m-th order RG transfor-
mation αt : Rn → Rn to be

αt(A) = X(t)A + εh(1)
t (A) + · · · + εmh(m)

t (A). (3.20)

Remark 3.2. Since X(t) is nonsingular and h(1)
t (A), · · · , h(m)

t (A) are bounded uniformly in t ∈ R,
for sufficiently small |ε|, there exists an open set U = U(ε) such that U is compact and the
restriction of αt to U is diffeomorphism from U into Rn.

In general, the infinite order RG equation Ȧ =
∑∞

k=1 ε
kRk(A) and the infinite order RG trans-

formation αt(A) = X(t)A+
∑∞

k=1 ε
kh(k)

t (A) are formal power series in ε. In this paper, we consider
only the finite order RG equations.
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Now we are in a position to construct approximate solutions of Eq.(3.1) by the RG method.
Let A = A(t, t0, ξ) be a solution of the m-th order RG equation (3.19) whose initial time is t0 and
whose initial value is ξ ∈ Rn. Define a curve x̃(t) = x̃(t, t0, ξ) by

x̃(t) = αt(A(t, t0, ξ)) = X(t)A(t, t0, ξ) + εh
(1)
t (A(t, t0, ξ)) + · · · + εmh(m)

t (A(t, t0, ξ)). (3.21)

Then, the curve x̃(t) gives an approximate solution of Eq.(3.1).
Fundamental theorems on the RG method are listed below. All proofs are included in Chiba

[3].

Theorem 3.3. (Approximation of Vector Fields)
Let ϕRG

t be the flow of the m-th order RG equation for Eq.(3.1) and αt the m-th order RG
transformation. Then, there exists a positive constant ε0 such that the following holds for ∀|ε| <
ε0:
(i) The map

Φt,t0 := αt ◦ ϕRG
t−t0 ◦ α−1

t0 : αt0 (U)→ Rn (3.22)

defines a local flow on αt0(U) for each t0 ∈ R, where U = U(ε) is an open set on which αt0 is a
diffeomorphism (see Rem.3.2). This Φt,t0 induces a time-dependent vector field Fε through

Fε(t, x) :=
d
da

∣∣∣∣
a=t
Φa,t(x), x ∈ αt(U), (3.23)

and its integral curves are given by the approximate solutions x̃(t) defined by Eq.(3.21).
(ii) There exists a time-dependent vector field F̃ε(t, x) such that

Fε(t, x) = Fx + εg1(t, x) + · · · + εmgm(t, x) + εm+1F̃ε(t, x), (3.24)

where F̃ε(t, x) and its derivative are bounded uniformly in t ∈ R and bounded as ε → 0. In
particular, the vector field Fε(t, x) is close to the original vector field Fx + εg1(t, x) + · · · within
O(εm+1).

Theorem 3.4. (Error Estimate)
There exist positive constants ε0,C,T , and a compact subset V = V(ε) ⊂ Rn including the

origin such that for ∀|ε| < ε0, every solution x(t) of Eq.(3.1) and x̃(t) defined by Eq.(3.21) with
x(0) = x̃(0) ∈ V satisfy the inequality

||x(t) − x̃(t)|| < Cεm, for 0 ≤ t ≤ T/ε. (3.25)

The following two theorems are concerned with an autonomous equation

ẋ = Fx + εg1(x) + ε2g2(x) + · · · , (3.26)

where ε ∈ R is a small parameter, F is a diagonalizable n × n matrix all of whose eigenvalues lie
on the imaginary axis, and gi(x) are C∞ vector fields on Rn.

Theorem 3.5. (Existence of Invariant Manifolds)
Let εkRk(A) be a first non zero term in the RG equation (3.19). If the vector field εkRk(A) has

a normally hyperbolic invariant manifold N, then the original equation (3.1) also has a normally
hyperbolic invariant manifold Nε, which is diffeomorphic to N, for sufficiently small |ε|. In
particular, the stability of Nε coincides with that of N.
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Theorem 3.6. (Inheritance of the Symmetries)
(i) If vector fields Fx and g1(x), g2(x), · · · are invariant under the action of a Lie group G, then
the m-th order RG equation is also invariant under the action of G.
(ii) The m-th order RG equation commutes with the linear vector field Fx with respect to Lie
bracket product. Equivalently, each Ri(A), i = 1, 2, · · · , satisfies

X(t)Ri(A) = Ri(X(t)A), A ∈ Rn. (3.27)

In the rest of this section, we apply these theorems to several equations.
Example 3.7. Consider the perturbed harmonic oscillator

ẍ + x + εx3 = 0, x ∈ R. (3.28)

It is convenient to identify R2 with C by introducing a complex variable z through x = z + z, ẋ =
i(z − z). Then, the above equation is rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż = iz +
iε
2

(z + z)3,

ż = −iz − iε
2

(z + z)3.
(3.29)

In this case, the matrix F and the vector-valued functions G1,G2 defined by Eqs.(3.6),(3.7), re-
spectively, are given by

F =

(
i 0
0 −i

)
, G1(z0) =

i
2

(
(z0 + z0)3

−(z0 + z0)3

)
, G2(z0, z1) =

3i
2

(
(z0 + z0)2(z1 + z1)
−(z0 + z0)2(z1 + z1)

)
. (3.30)

To obtain a first order approximate solution, we calculate R1(A) and h(1)
t (A) with A ∈ C as

R1(A) = lim
t→∞

1
t

∫ t( e−is 0
0 eis

)
G1(eisA)ds =

3i
2

⎛⎜⎜⎜⎜⎜⎝ A2A

−AA
2

⎞⎟⎟⎟⎟⎟⎠ , (3.31)

h(1)
t (A) =

(
eit 0
0 e−it

) ∫ t
⎛⎜⎜⎜⎜⎜⎝
(
e−is 0
0 eis

)
G1(eisA) − 3i

2

⎛⎜⎜⎜⎜⎜⎝ A2A

−AA
2

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ ds

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
4

A3e3it − 3
4

AA
2
e−it − 1

8
A

3
e−3it

−1
8

A3e3it − 3
4

A2Aeit +
1
4

A
3
e−3it

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3.32)

where we have chosen the integral constant to be zero. Therefore, the first order RG equation is
expressed as

Ȧ = ε
3i
2
|A|2A, A ∈ C. (3.33)

It is solved by

A(t) := A(t, a, θ) =
1
2

a exp i
(3ε

8
a2t + θ

)
, (3.34)
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where a, θ ∈ R are arbitrary constants. A first order approximate solution in complex variable is
written as

z̃(t) = eitA(t) + ε

(
1
4

A(t)3e3it − 3
4

A(t)A(t)
2
e−it − 1

8
A(t)

3
e−3it

)

=
1
2

a exp i
(
t +

3ε
8

a2t + θ
)

+ε

(
ε

32
a3 exp i

(
3t +

9ε
8

a2t + 3θ
)
− 3ε

32
a3 exp i

(
−t − 3ε

8
a2t − θ

)
− ε

64
a3 exp i

(
−3t − 9ε

8
a2t − 3θ

))
.

Finally, a first order approximate solution of Eq.(3.28) is given by

x̃(t) = z̃(t) + z̃(t)

= a cos
(
t +

3ε
8

a2t + θ
)
+
ε

32
a3 cos

(
3t +

9ε
8

a2t + 3θ
)
− 3ε

16
a3 cos

(
t +

3ε
8

a2t + θ
)
. (3.35)

Next, to find a second order approximate solution, we calculate (3.17) and (3.18) to obtain, re-
spectively, R2(A) and h(2)

t (A),

R2(A) = −51
16

i

⎛⎜⎜⎜⎜⎜⎝ A3A
2

−A2A
3

⎞⎟⎟⎟⎟⎟⎠ , (3.36)

h(2)
t (A) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3
64

A5e5it − 15
16

A4Ae3it +
69
32

A2A
3
e−it +

21
64

AA
4
e−3it − 1

32
A

5
e−5it

− 1
32

A5e5it +
21
64

A4Ae3it +
69
32

A3A
2
e−it − 15

16
AA

4
e−3it +

3
64

A
5
e−5it

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.37)

Therefore, the second order RG equation is expressed as

Ȧ = ε
3i
2
|A|2A − ε2 51

16
i|A|4A. (3.38)

It is solved by

A(t) := A(t, a, θ) =
1
2

a exp i
(3
8
εa2t − 51

256
ε2a4t + θ

)
, (3.39)

where a, θ ∈ R are arbitrary constants. With this A(t), a second order approximate solution in
complex variables is written as

z̃(t) = eitA(t) + ε

(
1
4

A(t)3e3it − 3
4

A(t)A(t)
2
e−it − 1

8
A(t)

3
e−3it

)

+ ε2
(

3
64

A(t)5e5it − 15
16

A(t)4A(t)e3it +
69
32

A(t)2A(t)
3
e−it +

21
64

A(t)A(t)
4
e−3it − 1

32
A(t)

5
e−5it

)
.(3.40)

Thus a second order approximate solution of Eq.(3.28) is given by

x̃(t) = z̃(t) + z̃(t)

= a cos
(
t +

3
8
εa2t − 51

256
ε2a4t + θ

)
+ ε

(
a3

32
cos

(
3t +

9
8
εa2t − 153

256
ε2a4t + 3θ

)
− 3a2

16
cos

(
t +

3
8
εa2t − 51

256
ε2a4t + θ

))

+ ε2
(

a5

1024
cos

(
5t +

15
8
εa2t − 255

256
ε2a4t + 5θ

)
− 39a5

1024
cos

(
3t +

9
8
εa2t − 153

256
ε2a4t + 3θ

)
+

69a5

512
cos

(
t +

3
8
εa2t − 51

256
ε2a4t + θ

))
. (3.41)
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Numerical solution of Eq.(3.28) and two approximate solutions Eq.(3.35) and Eq.(3.41) are pre-
sented as Fig.1 for comparison. The solid curve denotes an exact solution of Eq.(3.28) for ε = 0.1
with x(0) = 0.985, ẋ(0) = 0. The dashed and the dotted curves are the first order approximate
solution (3.35) and the second order approximate solution (3.41) for ε = 0.1, a = 1, θ = 0, respec-
tively. In this case, the first order approximate solution x̃(t) satisfies x̃(0) ∼ 0.9844, ˙̃x(0) = 0 and
the second order approximate solution x̃(t) satisfies x̃(0) ∼ 0.9854, ˙̃x(0) = 0. When 0 ≤ t ≤ 20,
three curves almost overlap with one another. However when 80 ≤ t ≤ 100, the second order
approximate solution is more close to the exact solution than the first order approximate solution.
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Fig. 1: The solid line denotes an exact solution of Eq.(3.28), the dashed lines denotes the first
order approximate solution, and the dotted line denotes the second order approximate solution.

Example 3.8. Consider the system on R2{
ẋ = y − x3 + εx,
ẏ = −x.

(3.42)

Changing the coordinates by (x, y) = (εX, εY) and substituting them into the above system, we
obtain {

Ẋ = Y + εX − ε2X3,

Ẏ = −X.
(3.43)

We introduce a complex variable z ∈ C by X = z + z, Y = i(z − z). Then, the above system is
rewritten as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ż = iz +
ε

2
(z + z) − ε

2

2
(z + z)3,

ż = −iz +
ε

2
(z + z) − ε

2

2
(z + z)3.

(3.44)

For this system, F, g1, g2 in Eq.(3.1) are expressed, respectively, as

F =

(
i 0
0 −i

)
, g1(z, z) =

1
2

(
z + z
z + z

)
, g2(z, z) = −1

2

(
(z + z)3

(z + z)3

)
. (3.45)

The second order RG equation for this system is given by

Ȧ =
ε

2
A + ε2

(
− i

8
A − 3

2
|A|2A

)
, A ∈ C. (3.46)
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Introduce the polar coordinates by A = reiθ. Then, the above RG equation is brought into⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ṙ =
εr
2

(1 − 3εr2),

θ̇ = −ε
2

8
.

(3.47)

It is easy to show that this RG equation has a stable periodic orbit r =
√

1/3ε if ε > 0. However,
we can not apply Thm.3.5 to conclude that the original equation (3.43) also has a stable periodic
orbit because the RG equation (3.46) does not satisfy the condition of Thm.3.5. To handle this
problem, we introduce a new variable ε0 so that ε0(t) ≡ εmay be a solution to Eq.(3.44) extended
as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ż = iz +
ε

2

(
z + z − ε0(z + z)3

)
,

ż = −iz +
ε

2

(
z + z − ε0(z + z)3

)
,

ε̇0 = 0.

(3.48)

In this case, F, g1, g2 in Eq.(3.1) are put in the form

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
i 0 0
0 −i 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , g1(z, z, ε0) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
z + z − ε0(z + z)3

z + z − ε0(z + z)3

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , g2(z, z, ε0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3.49)

The first order RG equation for this system is given by⎧⎪⎪⎨⎪⎪⎩ Ȧ =
ε

2
(A − 3ε0|A|2A),

ε̇0 = 0.
(3.50)

Putting A = reiθ provides ⎧⎪⎪⎨⎪⎪⎩ ṙ =
εr
2

(1 − 3ε0r2),

θ̇ = 0.
(3.51)

Again it is easy to verify that this RG equation has a stable periodic orbit r =
√

1/3ε0 if ε0 > 0.
Thm.3.5 is now applicable, showing that the original system (3.42) also has a stable periodic orbit
if ε > 0.

Example 3.9. Consider the system on R2

{
ẋ = y + y2,

ẏ = −x + ε2y − xy + y2.
(3.52)

Changing the coordinates by (x, y) = (εX, εY) yields{
Ẋ = Y + εY2,

Ẏ = −X + ε(Y2 − XY) + ε2Y.
(3.53)

We introduce a complex variable z by X = z+ z, Y = i(z− z). Then, the above system is rewritten
as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ż = iz +
ε

2

(
i(z − z)2 − 2z2 + 2zz

)
+
ε2

2
(z − z),

ż = −iz +
ε

2

(
−i(z − z)2 − 2z2 + 2zz

)
− ε

2

2
(z − z).

(3.54)
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For this system, R1(A) defined by Eq.(3.13) vanishes and the second order RG equation is given
by

Ȧ =
1
2
ε2(A − 3|A|2A − 16i

3
|A|2A). (3.55)

Putting A = reiθ results in ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ṙ =

1
2
ε2r(1 − 3r2),

θ̇ = −8
3
ε2r2.

(3.56)

It is easy to verify that this RG equation has a stable periodic orbit r =
√

1/3 if ε > 0. Since
R1(A) = 0, Thm.3.5 implies that the original system (3.52) also has a stable periodic orbit if
ε > 0.

Note that all RG equations in Examples 3.7 to 3.9 are invariant under the action of the rotation
group on R2, and RG equations split into equations of radius r and of angle θ. This fact results
from Thm.3.6.

4 Simplified RG equation

Recall that the definitions of the functions Ri(A) and h(i)
t (A) given in Eqs.(3.13, 14, 17, 18) in-

clude the indefinite integrals and we have left the integral constants undetermined in the previous
section. In this section, we use the integral constants to simplify the RG equation.

For a given equation (3.1), we have defined the RG equation

Ȧ = εR1(A) + · · · + εmRm(A), (4.1)

and the RG transformation

αt(A) = X(t)A + εh(1)
t (A) + · · · + εmh(m)

t (A). (4.2)

Put A = X(t)−1x. Then, the RG equation (4.1) is rewritten as

ẋ = Fx + εX(t)R1(X(t)−1x) + · · · + εmX(t)Rm(X(t)−1x). (4.3)

Note that if the original equation (3.1) is autonomous, the above equation is reduced to an equa-
tion

ẋ = Fx + εR1(x) + · · · + εmRm(x), (4.4)

because of Thm.3.6 (ii). We apply the RG method with slight modification to Eq.(4.3). For
Eq.(4.3), we define functions R̃i(A) and h̃(i)

t (A), respectively, by

R̃1(A) := lim
t→∞

1
t

∫ t

X(s)−1G1(s, X(s)A)ds, (4.5)

h̃(1)
t (A) := X(t)

∫ t(
X(s)−1G1(s, X(s)A) − R̃1(A)

)
ds + X(t)B1(A), (4.6)
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and

R̃i(A) := lim
t→∞

1
t

∫ t(
X(s)−1Gi(s, X(s)A, h̃(1)

s (A), · · · , h̃(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh̃(k)
s )AR̃i−k(A)

)
ds, (4.7)

h̃(i)
t (A) := X(t)

∫ t(
X(s)−1Gi(s, X(s)A, h̃(1)

s (A), · · · , h̃(i−1)
s (A))

−X(s)−1
i−1∑
k=1

(Dh̃(k)
s )AR̃i−k(A) − R̃i(A)

)
ds + X(t)Bi(A), (4.8)

for i = 2, 3, · · · , where Bi(A), i = 1, 2, · · · , are arbitrary vector fields on Rn which come from
integral constants of the indefinite integrals in Eqs.(4.6), (4.8). The function Gi is defined in a
similar manner to that in the previous section. For example, G1 to G4 are given by Eq.(3.6) to
Eq.(3.9) in which gi(t, x) is replaced by X(t)Ri(X(t)−1x). With these R̃i(A) and h̃(i)

t (A), we define
a new RG equation and a new RG transformation for Eq.(4.3) by

Ȧ = εR̃1(A) + · · · + εmR̃m(A), (4.9)

α̃t(A) = X(t)A + ε̃h(1)
t (A) + · · · + εmh̃(m)

t (A), (4.10)

respectively. It is easy to verify that Thm.3.3 to Thm.3.5 hold for these new RG equation and
new RG transformation, because the proof of them are independent of the integral constants in
Eqs.(3.14), (3.18). In particular, like Eq.(3.24), the equality

d
da

∣∣∣∣
a=t
α̃a ◦ ϕ̃RG

a−t ◦ α̃−1
t (x) = Fx + εX(t)R1(X(t)−1x) + · · · + εmX(t)Rm(X(t)−1x) + O(εm+1) (4.11)

holds, where ϕ̃RG
t is the flow of Eq.(4.9). However, in general, Thm.3.6 fails to hold since Bi(A)’s

depend on A ∈ Rn.
We now calculate the right hand sides of Eq.(4.5) to Eq.(4.8) to look into relations between

Ri(A), h(i)
t (A) and R̃i(A), h̃(i)

t (A). Since G1(t, x0) = X(t)R1(X(t)−1x0), R̃1(A) and h̃(1)
t (A) are calcu-

lated as

R̃1(A) = lim
t→∞

1
t

∫ t

X(s)−1X(s)R1(X(s)−1X(s)A)ds = R1(A), (4.12)

h̃(1)
t (A) = X(t)

∫ t(
X(s)−1X(s)R1(X(s)−1X(s)A) − R̃1(A)

)
ds + X(t)B1(A)

= X(t)B1(A), (4.13)

respectively. Since

G2(t, x0, x1) = X(t)
∂R1

∂x0
(X(t)−1x0)x1 + X(t)R2(X(t)−1x0), (4.14)

R̃2(A) is calculated as

R̃2(A) = lim
t→∞

1
t

∫ t

X(s)−1
(
X(s)
∂R1

∂A
(A)X(t)−1h̃(1)

s (A) + X(s)R2(A) − (Dh̃(1)
s )AR̃1(A)

)
ds

= lim
t→∞

1
t

∫ t(∂R1

∂A
(A)B1(A) + R2(A) − (DB1)AR1(A)

)
ds (4.15)

= R2(A) − [B1,R1](A), (4.16)
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where [B1,R1](A) is the commutator of vector fields, which is defined by

[B1,R1](A) :=
∂B1

∂A
(A)R1(A) − ∂R1

∂A
(A)B1(A). (4.17)

Similar calculation shows that

R̃3 = R3 − [B1,R2] − [B2,R1] +
∂B1

∂A
[B1,R1] +

1
2
∂2R1

∂A2
B2

1, (4.18)

R̃4 = R4 − [B1,R3] − [B2,R2] − [B3,R1]

+
1
6
∂3R1

∂A3
B3

1 +
∂2R1

∂A2
B1B2 +

1
2
∂2R2

∂A2
B2

1 +
∂B2

∂A
[B1,R1]

−∂B1

∂A

(
1
2
∂2R1

∂A2
B2

1 +
∂B1

∂A
[B1,R1] − [B1,R2] − [B2,R1]

)
, (4.19)

where the argument A is omitted for notational simplicity.
Lemma 4.1. The equalities h̃(i)

t (A) = X(t)Bi(A) hold for i = 1, 2, · · · .

Proof. We prove the lemma by induction. Assume that h̃(k)
t (A) = X(t)Bk(A) for k = 1, · · · , i − 1.

At first, we show that the integrand in Eq.(4.7) is independent of s. By the assumption, the
second term of the integrand in Eq.(4.7) is clearly independent of s. Next, note that a function
Gi(s, x0, · · · , xi−1) is a linear combination of functions of the form

∂ j

∂x j
0

(
X(s)Rl(X(s)−1x0)

)
x j1

1 x j2
2 · · · x ji−1

i−1 , j1 + j2 + · · · + ji−1 = j. (4.20)

Thus, Gi(s, X(s)A, X(s)B1, · · · , X(s)Bi−1) is a linear combination of functions of the form

X(s)
∂ jRl

∂Aj
(A)Bj1

1 Bj2
2 · · · Bji−1

i−1 . (4.21)

This proves that the first term of the integrand in Eq.(4.7) is independent of s. Therefore R̃i(A) is
equal to the integrand in Eq.(4.7) in which s is replaced by t. This and Eq.(4.8) are put together
to prove that

h̃(i)
t (A) = X(t)

∫ t

(R̃i(A) − R̃i(A))ds + X(t)Bi(A) = X(t)Bi(A). (4.22)

�

While we have written out R̃1(A), · · · , R̃4(A), we can calculate R̃1(A), R̃2(A), · · · , systematically
in the following manner. By virtue of Lem.4.1, the RG transformation (4.10) is written as

α̃t(A) = X(t)A + εX(t)B1(A) + · · · + εmX(t)Bm(A). (4.23)

Put x = α̃t(A) and substitute it into Eq.(4.11). Then we obtain

d
da

∣∣∣∣
a=t
α̃a ◦ ϕ̃RG

a−t(A) = Fα̃t(A) + εX(t)R1(X(t)−1α̃t(A)) + · · · + εmX(t)Rm(X(t)−1α̃t(A)) + O(εm+1).

(4.24)
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The left hand side of the above is calculated as

d
da

∣∣∣∣
a=t
α̃a ◦ ϕ̃RG

a−t(A) =
dα̃t

dt
(A) + (Dα̃t)A

d
da

∣∣∣∣
a=t
ϕ̃RG

a−t(A)

= Fα̃t(A) + X(t)

(
id + ε

∂B1

∂A
+ · · · + εm ∂Bm

∂A

) (
εR̃1(A) + · · · + εmR̃m(A)

)
,

where id is the identity matrix. Hence, Eq.(4.24) is brought into

εR̃1(A)+· · ·+εmR̃m(A) =

(
id + ε

∂B1

∂A
+ · · · + εm ∂Bm

∂A

)−1 m∑
k=1

εkRk(X(t)−1α̃t(A))+O(εm+1). (4.25)

To expand the right hand side of the above, we use the following equalities

(
id + ε

∂B1

∂A
+ · · · + εm ∂Bm

∂A

)−1

= id +
∞∑

k=1

(−1)k
(
ε
∂B1

∂A
+ · · · + εm ∂Bm

∂A

)k

, (4.26)

Rk(X(t)−1α̃t(A)) = Rk(A + εB1(A) + · · · + εmBm(A))

= Rk(A) +
∞∑

l=1

1
l!
∂lRk

∂Al
(A)(εB1(A) + · · · + εmBm(A))l.(4.27)

Substitution of Eq.(4.26) and Eq.(4.27) into Eq.(4.25) yields R̃i(A) as the coefficients of εi in the
right hand side of Eq.(4.25). Consequently, we obtain the following lemmas.

Lemma 4.2. Each R̃k(A), k = 3, 4, · · · , is of the form

R̃k(A) = Rk(A) + Pk(R1, · · · ,Rk−1, B1, · · · , Bk−2)(A) − [Bk−1,R1](A), (4.28)

where Pk is a function of R1, · · · ,Rk−1, B1, · · · , Bk−2.

Lemma 4.3. Suppose that every Rk(A), k = 1, 2, · · · , satisfies Rk(X(t)A) = X(t)Rk(A). If every
Bk(A), k = 1, 2, · · · , satisfies Bk(X(t)A) = X(t)Bk(A), then R̃k(A), k = 1, 2, · · · , also satisfies
R̃k(X(t)A) = X(t)R̃k(A).

Now we suppose that we can determine B1(A), · · · , Bk−2(A) appropriately so that R̃2, · · · , R̃k−1

may take a simple form in some sense. Then, a suitable choice of Bk−1(A) may bring R̃k(A) into
a simple form through Eq.(4.28).

Let P j(Rn) be the set of homogenous polynomial vector fields of degree j on Rn. In what
follows, to simplify R̃i(A)’s systematically, we start with the case where gi(t, x) in Eq.(3.1) is
a homogenous polynomial vector fields of degree i + 1 with respect to x. In this case, it is
easy to verify that each term of the RG equation (4.1) is also a homogeneous polynomial, Ri ∈
Pi+1(Rn) for any i. Note that if g1(t, x) ∈ Pl(Rn) for some positive integer l � 2 with respect
to x, Ri(A), i = 2, 3, · · · , are no longer homogenous polynomial vector fields, although extension
to such a case is easy to perform and treated later. If Bi ∈ Pi+1(Rn) for i = 1, · · · , k − 2, then
by using Eq.(4.25) with Eqs.(4.26,27), we can show that Rk + Pk(R1, · · · ,Rk−1, B1, · · · , Bk−2) in
Eq.(4.28) is in Pk+1(Rn). Since the map adR1 defined by adR1(B) = [R1, B] is a linear map from
Pk(Rn) into Pk+1(Rn), Eq.(4.28) suggests that we are allowed to choose Bk−1 ∈ Pk(Rn) so that
R̃k(A) may take a value in a complementary subspace to Im adR1 |Pk(Rn) in Pk+1(Rn).
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Theorem 4.4. Suppose that gi(t, x) given in (3.1) is a homogenous polynomial vector field of
degree i+1 in x. Let Ci+1 be a complementary subspace to Im adR1 |Pi(Rn) inPi+1(Rn) : Pi+1(Rn) =
Im adR1 |Pi(Rn) ⊕ Ci+1. Then, there exist vector fields Bi ∈ Pi+1(Rn), i = 1, 2, · · · such that the new
RG equation (4.9) has the properties that R̃i ∈ Ci+1 for i = 2, 3, · · · . Let ϕ̃RG

t be the flow of the
new RG equation (4.9). Then the equality

d
da

∣∣∣∣
a=t
αa◦X(a)−1◦α̃a◦ϕ̃RG

a−t◦α̃−1
t ◦X(t)◦α−1

t (x) = Fx+εg1(t, x)+· · ·+εmgm(t, x)+O(εm+1) (4.29)

holds, where αt and α̃t are defined by Eq.(4.2) and (4.23), respectively.

If the new RG equation (4.9) satisfies R̃i ∈ Ci+1 for i = 2, · · · ,m, we call it the m-th order
simplified RG equation.

If Eq.(3.26) is autonomous, the RG equation (4.1) has the property that Rk(X(t)A) = X(t)Rk(A).
Thus it is convenient to define Bk(A)’s so that the new RG equation (4.9) may have the same
properties R̃k(X(t)A) = X(t)R̃k(A) for k = 1, 2, · · · . Let Pi(Rn; F) be the subspace of Pi(Rn) all of
whose elements f satisfy f (X(t)A) = X(t) f (A) (recall that X(t) := eFt). Since R1 ∈ P2(Rn; F), the
restriction of adR1 to Pi(Rn; F) is a map into Pi+1(Rn; F). We take an arbitrary complementary
subspace Ci+1,F to Im adR1 |Pi(Rn;F) into Pi+1(Rn; F), and fix it :

Pi+1(Rn; F) = Im adR1 |Pi(Rn;F) ⊕ Ci+1,F . (4.30)

Theorem 4.5. For a given autonomous equation (3.26), suppose that gi(x) is a homogenous
polynomial vector field of degree i + 1. Then, there exist vector fields Bi ∈ Pi+1(Rn; F), i =
1, 2, · · · , such that the new RG equation (4.9) has the properties that R̃i ∈ Ci+1,F for i = 2, 3, · · · .

If the new RG equation (4.9) for an autonomous equation has the properties that R̃i ∈ Ci+1,F

for i = 2, · · · ,m, we call it the m-th order simplified RG equation.

A few remarks are in order. Note that the simplified RG equation depends on the choice of
a complementary subspace Ci. The simplified RG equation is equivalent to the normal form
or hypernormal form (simplified normal form) of Eq.(4.1). See Murdock [13] for the nor-
mal form theory. If R1 = · · · = Rj−1 = 0 and Rj � 0 in the RG equation (4.1), Thms.4.4
and 4.5 hold if adR1 is replaced by adRj . Extension to the case that R1 ∈ Pl(Rn) for some
positive integer l and that R2,R3, · · · are inhomogeneous polynomials is easy to perform. If
Rk+Pk(R1, · · · ,Rk−1, B1, · · · , Bk−2) in Eq.(4.28) is an element ofPd1 (Rn)⊕Pd2 (Rn)⊕· · ·⊕Pdk (Rn),
we can choose Bk−1 so that R̃k may take a value in Cd1 ⊕Cd2 ⊕ · · · ⊕Cdk (see Exs.4.6, 4.7). Even if
R1 is a polynomial vector field, we can simplify R̃i(A) systematically by using the grading func-
tion (see Kokubu, Oka and Wang [9]) under appropriate assumptions, although we do not give
care to this method in this paper.

Example 4.6. Consider the equation on R2

ẋ = Fx + εg1(x) + ε2g2(x) + · · · , x ∈ R2, (4.31)

where F =

(
0 1
−1 0

)
and where gi(x), i = 1, 2, · · · are homogenous polynomial vector fields

whose degree is larger than 1. Like Exs.3.7 to 3.9, we express its RG equation in the sense of
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Eq.(4.1), in terms of complex variable A ∈ C, as

d
dt

⎛⎜⎜⎜⎜⎜⎝ A

A

⎞⎟⎟⎟⎟⎟⎠ = ε jR j(A) + ε j+1Rj+1(A) + · · · , R1 = · · · = Rj−1 = 0, Rj � 0. (4.32)

Since each Rl satisfies Rl(eitA) =

(
eit 0
0 e−it

)
Rl(A), i =

√−1, Rl for l ≥ j take the form

Rl(A) =

(
plA|A|2kl

plA|A|2kl

)
, kl ≥ 0, (4.33)

where i =
√−1 and where 2kl + 1 is the degree of Rl(A) and pl ∈ C is a constant. We wish

to define a homogenous polynomial vector field B(A) so that [B,Rj](A) may be a homogenous

polynomial vector field of degree 2k j+1 + 1 satisfying [B,Rj](eitA) =

(
eit 0
0 e−it

)
[B,Rj](A). It

then turns out that B(A) has to be of the form

B(A) =

(
qA|A|2(k j+1−k j)

qA|A|2(k j+1−k j)

)
, q ∈ C, (4.34)

and [B,Rj](A) is given by

[B,Rj](A) =

(
c jA|A|2k j+1

c jA|A|2k j+1

)
(4.35)

where

c j := −2(2k j − k j+1)Re(q)Re(p j) − i
(
2(k j − k j+1)Im(q)Re(p j) − k jRe(q)Im(p j)

)
. (4.36)

Then, from Eq.(4.16) with R1 replaced by Rj, R̃ j+1 has the form

R̃ j+1(A) =

(
(p j+1 − c j)A|A|2k j+1

(p j+1 − c j)A|A|2k j+1

)
, p j+1 ∈ C. (4.37)

Our purpose is to determine a constant q ∈ C in B(A) so that R̃ j+1 may be simplified.

Case (i) If (2k j − k j+1)(k j − k j+1)Re(p j) � 0, then we can choose q so that p j+1 − c j = 0. In this
case, the simplified RG equation (4.9) satisfies R̃ j+1(A) = 0.

Case (ii) If (2k j−k j+1)Re(p j) � 0 and k j = k j+1, then we can choose q so that Re(p j+1−c j) = 0.
In this case, R̃ j+1(A) is of the form

R̃ j+1(A) = i p̃ j+1

(
A|A|2k j+1

−A|A|2k j+1

)
, p̃ j+1 ∈ R. (4.38)

Case (iii) If (k j−k j+1)Re(p j) � 0 and 2k j = k j+1, then we can choose q so that Im(p j+1−c j) = 0.
In this case, R̃ j+1(A) is of the form

R̃ j+1(A) = p̃ j+1

(
A|A|2k j+1

A|A|2k j+1

)
, p̃ j+1 ∈ R. (4.39)
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Case (iv) If Re(p j) = 0 and k j � 0, then we can choose q so that Im(p j+1 − c j) = 0 and R̃ j+1(A)
is of the form (4.39).

Case (v) If Re(p j) = 0 and k j = 0, or if k j = k j+1 = 0, then c j = 0 and R̃ j+1(A) = Rj+1(A).

R̃ j+2, R̃ j+3, · · · are calculated in a similar way. Now we restrict the example to a few special
cases.

If Eq.(4.31) is a linear equation, the RG equation (4.32) is also linear and the degree of each
Rl(A) is one (i.e. kl = 0). Then Case (v) in the above applies and this proves that the RG equation
for an autonomous linear equation can no longer be reduced in this manner. The simplified RG
equation for a nonautonomous linear equation will be treated in the next section.

As a next restricted example, consider an equation on R2

ẋ = Fx + P2(x) + P3(x) + · · · , x ∈ R2, (4.40)

where F =

(
0 1
−1 0

)
and where Pi(x) is a homogenous polynomial vector field of degree i.

Changing the coordinate by x = εX brings Eq.(4.40) into

Ẋ = FX + εP2(X) + ε2P3(X) + · · · , X ∈ R2. (4.41)

The RG equation for this equation takes the form

d
dt

(
A
A

)
= ε2R2(A) + ε4R4(A) + ε6R6(A) + · · · , R2i−1 = 0 for i = 1, 2, · · · , (4.42)

where R2i(A) is a monomial vector field of the form

R2i(A) =

(
p2i+1A|A|2i

p2i+1A|A|2i

)
, (4.43)

whose degree is 2i + 1. In this case, on account of ki � k j (i � j) and ki > 0, Cases (i),(iii) and
(iv) are applicable. Suppose that R2 = R4 = · · · = R2 j−2 = 0 and R2 j � 0. Then, the simplified
RG equation takes the following form:

(I) If Re(p2 j+1) � 0, Case (i) and (iii) applies and the simplified RG equation is of the form

Ȧ = ε2 j p̃2 j+1A|A|2 j + ε4 j p̃4 j+1A|A|4 j, A ∈ C, (4.44)

where Re(p̃2 j+1) � 0 and Im( p̃4 j+1) = 0.

(II) If Re(p2 j+1) = 0 and Im(p2 j+1) � 0, Case (iv) applies and the simplified RG equation is of
the form

Ȧ = ε2 j p̃2 j+1A|A|2 j + ε2 j+2 p̃2 j+3A|A|2 j+2 + ε2 j+4 p̃2 j+5A|A|2 j+4 + · · · , (4.45)

where Re(p̃2 j+1) = 0, Im( p̃2 j+1) � 0 and Im( p̃i) = 0 for i = 2 j + 3, 2 j + 5, · · · .

Put A = reiθ. Then Eqs.(4.44) and (4.45) are brought into{
ṙ = ε2 jα2 j+1r2 j+1 + ε4 jα4 j+1r4 j+1,

θ̇ = ε2 jβ2 j+1r2 j,
(4.46){

ṙ = ε2 j+2α2 j+3r2 j+3 + ε2 j+4α2 j+5r2 j+5 + · · · ,
θ̇ = ε2 jβ2 j+1r2 j,

(4.47)
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respectively, where αi = Re(p̃i), βi = Im( p̃i).

Note that Eq.(4.47) can be further simplified by applying the hypernormal form theory (see
Murdock [13]). Indeed, the simplified RG equation is not unique, because we can express R̃2(A)
given by (4.16) as

R̃2(A) = R2(A) − [B1,R1](A) − [B′1,R1](A),

where B′1 ∈ Ker adR1 . Though B′1(A) does not affect R̃2(A), it may change R̃3(A), R̃4(A), · · · .

Example 4.7. Consider the equation{
ẋ = y + εx − ε2x3,

ẏ = −x,
(4.48)

where ε > 0 is a small parameter. The second order RG equation for this equation is given by
Eq.(3.46) in the complex variable or by Eq.(3.47) in the polar coordinate. Since Eq.(3.47) has a
stable periodic orbit r =

√
1/3ε and an unstable fixed point r = 0, the original equation (4.48)

also has a stable periodic orbit and an unstable fixed point x = 0, as is shown in Example 3.8. We
now calculate the simplified RG equation. Case (i) applies and the term −3|A|2A/2 in Eq.(3.46)
vanishes. However, the term −iA/8 does not vanish on account of Case (v). Therefore the second
order simplified RG equation is expressed as

Ȧ =
ε

2
A − iε2

8
A, A ∈ C, (4.49)

or ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ṙ =

1
2
εr,

θ̇ = −1
8
ε2,

(4.50)

in the polar coordinate. This equation has an unstable fixed point r = 0, but does not have a
periodic orbit. To find out the reason why the periodic orbit mentioned above disappear, we derive
the RG transformation to explore a region on which the RG transformation is a diffeomorphism
(see Remark 3.2).

The second order RG transformation associated with the RG equation (3.46) is given by

αt(A) =

(
eit 0
0 e−it

) (
A
A

)
+

iε
4

(
Ae−it

−Aeit

)
+
ε2

8

⎛⎜⎜⎜⎜⎜⎝−Ae−it + 2iA3e3it − 6iA|A|2e−it − iA
3
e−3it

−Aeit + iA3e3it + 6iA|A|2eit − 2iA
3
e−3it

⎞⎟⎟⎟⎟⎟⎠ . (4.51)

Near the periodic orbit r =
√

1/3ε of Eq.(3.46), the first, second and third terms of the right hand
side of the above are of order O(

√
1/ε), O(

√
ε), and O(

√
ε), respectively. Therefore, if ε > 0

is sufficiently small, αt(A) is well approximated by its first term, and this proves that αt(A) is a
diffeomorphism for each t ∈ R, if |A| ∼ O(

√
1/ε).

On the other hand, the RG transformation associated with the simplified RG equation (4.49),
which brings the simplified RG equation (4.49) into the original equation (4.48), is given by (see
Eq.(4.29))

αt ◦ X(t)−1 ◦ α̃t(A) =

(
eit 0
0 e−it

) (
A
A

)
+
ε

4

(
iAe−it − 6A|A|2eit

−iAeit − 6A|A|2e−it

)
+ O(ε2), (4.52)
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where X(t) =

(
eit 0
0 e−it

)
, and where αt and α̃t are given by Eq.(4.51) and by

α̃t(A) =

(
eit 0
0 e−it

) (
A
A

)
− 3ε

2

(
A|A|2eit

A|A|2e−it

)
+ O(ε2), (4.53)

respectively. In this case, if |A| ∼ O(
√

1/ε), the first and second terms of the right hand side of
Eq.(4.52) are of same order O(

√
1/ε). As a result, αt ◦ X(t) ◦ α̃t(A) is not a diffeomorphism near

a region |A| ∼ O(
√

1/ε) no matter how small ε > 0 is.
Now the reason we have looked for is clear. The simplified RG equation (4.49) can not imply

the existence of the periodic orbit, since the periodic orbit lies out of the region on which the RG
transformation associated with the simplified RG equation (4.49) is a diffeomorphism.

In general, the more the RG equation is simplified, the more the RG transformation, which
brings the RG equation into the original equation, becomes complex and a region on which the
RG transformation is a diffeomorphism may become small.

5 Simplified RG equation for time-dependent linear equations

In this section, the simplified RG equation is applied to time-dependent linear equations. In par-
ticular, it is shown that hyperbolic stability of a trivial solution of a time-dependent linear equa-
tion is determined by the simplified RG equation along with metanormal form theory proposed
by Murdock [13].

Consider a linear equation on Rn

ẋ = Fx + εG1(t)x + ε2G2(t)x + · · · , x ∈ Rn, (5.1)

where ε > 0 is a small parameter, F is a diagonalizable n × n matrix all of whose eigenvalues lie
on the imaginary axis, and where G1(t),G2(t), · · · are n × n matrices which are of C1 class and
periodic in t ∈ R. For this equation, functions Ri(A) and h(i)

t (A) defined by Eqs.(3.13, 14, 17, 18)
are linear with respect to A. In view of this, we define matrices Ri and h(i)

t by

R1 = lim
t→∞

1
t

∫ t

X(s)−1G1(s)X(s)ds, (5.2)

h(1)
t = X(t)

∫ t(
X(s)−1G1(s)X(s) − R1

)
ds, (5.3)

and

Ri = lim
t→∞

1
t

∫ t
⎛⎜⎜⎜⎜⎜⎜⎝X(s)−1

i−1∑
k=1

Gi−k(s)h
(k)
s + X(s)−1Gi(s)X(s) − X(s)−1

i−1∑
k=1

h(k)
s Ri−k

⎞⎟⎟⎟⎟⎟⎟⎠ ds, (5.4)

h(i)
t = X(t)

∫ t
⎛⎜⎜⎜⎜⎜⎜⎝X(s)−1

i−1∑
k=1

Gi−k(s)h
(k)
s + X(s)−1Gi(s)X(s) − X(s)−1

i−1∑
k=1

h(k)
s Ri−k − Ri

⎞⎟⎟⎟⎟⎟⎟⎠ ds,(5.5)

for i = 2, 3, · · · , where X(t) = eFt and the integral constants of the indefinite integrals in the above
equations are fixed arbitrary as in Sec.3. With these matrices, the m-th order RG equation and the
m-th order RG transformation for Eq.(5.1) are given by

v̇ = εR1v + ε2R2v + · · · + εmRmv, v ∈ Rn, (5.6)

αt(v) = X(t)v + εh(1)
t v + · · · + εmh(m)

t v, (5.7)
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respectively.
Next, we specialize the simplified RG equation for Eq.(5.6). Because of linearity, Eq.(4.5) to

Eq.(4.8) are reduced to

R̃1 = R1, (5.8)

R̃i = Ri +

i−1∑
k=1

Ri−kBk −
i−1∑
k=1

BkR̃i−k, i = 2, 3, · · · , (5.9)

h̃(i)
t = X(t)Bi, i = 1, 2, · · · , (5.10)

where Bi’s are arbitrary constant matrices. For example, matrices R̃2, R̃3 and R̃4 are put in the
form

R̃2 = R2 − [B1,R1], (5.11)

R̃3 = R3 − [B1,R2] − [B2,R1] + B1[B1,R1], (5.12)

R̃4 = R4 − [B1,R3] − [B2,R2] − [B3,R1]

−B2
1[B1,R1] + B2[B1,R1] + B1[B1,R2] + B1[B2,R1], (5.13)

respectively, where the bracket denotes the usual one for matrices. Let M(n,C) be the set of n× n
complex matrices and define an operator adR1 : M(n,C)→ M(n,C) by

adR1 (B) = [R1, B] := R1B − BR1. (5.14)

It is easy to verify that
M(n,C) = Im adR1 ⊕ Ker adR∗1 , (5.15)

where R∗1 denotes the conjugate transpose matrix of R1. Since R̃i, i = 2, 3, · · · are rewritten as

R̃i = Ri +

i−2∑
k=1

Ri−kBk −
i−2∑
k=1

BkR̃i−k + adR1 (Bi−1), (5.16)

we can choose matrices B1, · · · , Bm−1 such that

R̃i ∈ Ker adR∗1 , for i = 2, 3, · · · ,m. (5.17)

Then, the equation
v̇ = εR̃1v + ε2R̃2v + · · · + εmR̃mv (5.18)

is called the m-th order simplified RG equation for Eq.(5.1). If we define a matrix α̃t by

α̃t(v) = X(t)v + εX(t)B1v + · · · + εmX(t)Bmv, (5.19)

then the equality

d
da

∣∣∣∣
a=t

(αaX(a)−1α̃a) ◦ ϕ̃RG
a−t ◦ (αtX(t)−1α̃t)

−1(x) = Fx + εG1(t)x + · · · + εmGm(t)x + εm+1S (ε, t)x

(5.20)
holds, where ϕ̃RG

t = e(εR̃1+···+εmR̃m)t is the flow of Eq.(5.18), and where S is a matrix-valued
function which is bounded in t ∈ R and bounded as ε→ 0.
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Our purpose in this section is to study the stability of the trivial solution x(t) ≡ 0 of Eq.(5.1).
Changing coordinates by x = αtX(t)−1α̃ty brings Eq.(5.1) into the equation

ẏ = εR̃1y + · · · + εmR̃my + εm+1S̃ (ε, t)y, (5.21)

where S̃ is a matrix-valued function which is bounded in t ∈ R and bounded as ε → 0. Since
αtX(t)−1α̃t is almost periodic in t ∈ R and bounded in t ∈ R, the stability of the trivial solution
x(t) ≡ 0 of Eq.(5.1) coincides with that of y(t) ≡ 0 of Eq.(5.21) (the fact that αt is almost periodic
is shown in Chiba [3]).

Now a question arises : Can we use the truncated equation (5.18) to decide as to whether the
trivial solution y(t) ≡ 0 to Eq.(5.21) is stable or not? In general, this is impossible. An illustrative
example is shown in Murdock [13]. Consider the equation on R2

ẏ =

(
0 1
0 0

)
y + ε

(
1 0
0 1

)
y + ε2

(
0 0
4 0

)
y. (5.22)

Since eigenvalues of the matrix

(
0 1
0 0

)
+ ε

(
1 0
0 1

)
+ ε2

(
0 0
4 0

)
are 3ε and −ε, y = 0 is a sad-

dle point. However, if we truncate the second order term ε2
(
0 0
4 0

)
, eigenvalues of the matrix(

0 1
0 0

)
+ ε

(
1 0
0 1

)
are ε (double root), so that y = 0 is an unstable fixed point if ε > 0. This ex-

ample shows that if we truncate the higher order term of ε, the stability of y = 0 of Eq.(5.21) may
change. To handle this problem, we need two propositions about stability of the trivial solutions
of linear equations. By using metanormal form theory, we can put Eq.(5.21) in the form to which
the propositions are applicable.

Proposition 5.1. Let λ1, · · · , λn be eigenvalues of R̃1. There exists a positive constant ε0 such
that the following holds for 0 < ∀ε < ε0: there exist positive constants D1,D2, t0, a positive
valued function φ(ε) with φ(ε) → 0 as ε → 0, and a solution y(t) = y(k)(t) of Eq.(5.21) such that
the inequality

D2eεRe(λk)t−εφ(ε)t ≤ ||y(k)(t)|| ≤ D1eεRe(λk)t+εφ(ε)t (5.23)

holds for t ≥ t0 and k = 1, · · · , n.

Proposition 5.2. Suppose that R̃1, · · · , R̃m are diagonal matrices. Let λ1(ε), · · · , λn(ε) be eigen-
values of εR̃1 + · · ·+ εmR̃m. Then, there exists a positive constant ε0 such that the following holds
for 0 < ∀ε < ε0: there exist positive constants D1,D2,D3,D4, t0 and a solution y(t) = y(k)(t) of
Eq.(5.21) such that the inequality

D2eRe(λk(ε))t−εm+1D4t ≤ ||y(k)(t)|| ≤ D1eRe(λk(ε))t+εm+1D3t (5.24)

holds for t ≥ t0 and k = 1, · · · , n.

Prop.5.1 is shown in Sec.7 of [3]. Prop.5.2 is proved in a similar way as that for Prop.5.1, and
we omit it here.

In particular, if R̃1 = R1 is hyperbolic, namely, none of eigenvalues of R1 lies on the imaginary
axis, then the stability of the trivial solution y = 0 of Eq.(5.21) coincides with that of the truncated
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equation v̇ = εR1v. In addition, if all R̃1, · · · , R̃m are diagonal and if εR̃1+· · ·+εmR̃m is hyperbolic,
then the stability of the trivial solution y = 0 of Eq.(5.21) coincides with that of the truncated
equation v̇ = (εR̃1 + · · ·+ εmR̃m)v. If the simplified RG equation does not satisfies the assumption
of Prop.5.1 or Prop.5.2, we use the metanormal form theory to try to transform the simplified
equation into a desired form.

Now we show the procedure for deciding as to the stability of the trivial solution of Eq.(5.1),
along with equations on R2, although the procedure in general cases are available in the same
way (see Rem.5.4).

Step (I) For a given equation (5.1), we calculate the RG equation up to some finite order m.
After changing coordinates so that R1 may take the Jordan form, we calculate the simplified RG
equation up to order m.

Step (II) Prop.5.1 shows that if R̃1 = R1 is hyperbolic, the stability of the trivial solution x = 0
of Eq.(5.1) coincides with that of the first order RG equation v̇ = εR1v. If R1 is not hyperbolic,
go to Step (III).

Step (III) Step (III) is divided into three cases according to the type of R1.

Case (i) Suppose that R1 is a diagonal matrix all of whose eigenvalues are distinct. Since

Ker adR∗1 = the set of diagonal matrices, (5.25)

the m-th order simplified RG equation is of the form

v̇ = ε

⎛⎜⎜⎜⎜⎝ λ(1)
1 0
0 λ(1)

2

⎞⎟⎟⎟⎟⎠ v + ε2
⎛⎜⎜⎜⎜⎝ λ(2)

1 0
0 λ(2)

2

⎞⎟⎟⎟⎟⎠ v + · · · + εm
⎛⎜⎜⎜⎜⎝ λ(m)

1 0
0 λ(m)

2

⎞⎟⎟⎟⎟⎠ v. (5.26)

Now Prop.5.2 applies to show that if eigenvalues ελ(1)
1 + · · · + εmλ(m)

1 and ελ(1)
2 + · · · + εmλ(m)

2 do
not lie on the imaginary axis, the stability of the trivial solution of Eq.(5.1) coincides with that of
Eq.(5.26). If some of the eigenvalues are on the imaginary axis, we need higher order simplified
RG equation.

Case (ii) Suppose that R1 is a diagonal matrix all of whose eigenvalues are equal. In this case,
we have

Ker adR∗1 = M(2,C), (5.27)

so that R̃i are not diagonal matrices, and we can not apply Prop.5.2. However, since all eigenval-
ues of R1 are on the imaginary axis, we can apply the RG method to the simplified RG equation
(5.18). We calculate the simplified RG equation for Eq.(5.18) and put its first term in the Jordan
form. With this new simplified RG equation, we go back to Step (II).

Case (iii) Suppose that R1 is of the form R1 =

(
λ 1
0 λ

)
. In this case, since

Ker adR∗1 =

{(
p 0
q p

) ∣∣∣∣ p, q ∈ C
}
, (5.28)

the simplified RG equation (5.18) takes the form

v̇ = ε

(
λ 1
0 λ

)
v + ε2

(
p2 0
q2 p2

)
v + ε3

(
p3 0
q3 p3

)
v + · · · + εm

(
pm 0
qm pm

)
v. (5.29)
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If q2 = q3 = · · · = qm = 0, since

(
λ 1
0 λ

)
and

(
pi 0
0 pi

)
commute with each other, changing the

variable v into u by v = ε

(
exp

(
λ 1
0 λ

)
t

)
u brings the above equation into an equation

u̇ = ε2
(

p2 0
0 p2

)
u + ε3

(
p3 0
0 p3

)
u + · · · + εm

(
pm 0
0 pm

)
u. (5.30)

Since λ is on the imaginary axis, the stability of v = 0 coincides with that of u = 0. Now that
Prop.5.2 is applicable to Eq.(5.30). It follows that if the eigenvalue ε2 p2 + · · · + εm pm does not
lie on the imaginary axis, the stability of the trivial solution of Eq.(5.1) coincides with that of
Eq.(5.30). If it is on the imaginary axis, we need more higher order simplified RG equation.

If q2 = · · · = q j−1 = 0 and q j � 0, j ≤ m, Eq.(5.29) is written as

v̇ = ε

(
λ 1
0 λ

)
v+ε2

(
p2 0
0 p2

)
v+ · · ·+ε j−1

(
p j−1 0

0 p j−1

)
v+ε j

(
p j 0
q j p j

)
v+ · · ·+εm

(
pm 0
qm pm

)
v.

(5.31)
Changing coordinates by v = (x, y) = (X, ε( j−1)/2Y) yields

d
dt

(
X
Y

)
= ε

(
λ 0
0 λ

) (
X
Y

)
+ ε2

(
p2 0
0 p2

) (
X
Y

)
+ · · · + εm

(
pm 0
0 pm

) (
X
Y

)

+ε( j+1)/2
(

0 1
q j 0

) (
X
Y

)
+ ε( j+3)/2

(
0 0

q j+1 0

) (
X
Y

)
+ · · · + ε(2m− j+1)/2

(
0 0

qm 0

) (
X
Y

)
.(5.32)

Further, putting η = ε1/2 and changing the time scale by t = s/η2 result in

d
ds

(
X
Y

)
=

(
λ 0
0 λ

) (
X
Y

)
+ η2

(
p2 0
0 p2

) (
X
Y

)
+ · · · + η2m−2

(
pm 0
0 pm

) (
X
Y

)

+η j−1
(

0 1
q j 0

) (
X
Y

)
+ η j+1

(
0 0

q j+1 0

) (
X
Y

)
+ · · · + η2m− j−1

(
0 0

qm 0

) (
X
Y

)
. (5.33)

Since λ is on the imaginary axis, we can apply the RG method to this equation. We calculate the
simplified RG equation for this equation, and put the first term in the Jordan form. The resultant
equation is called the metanormal form for Eq.(5.29). With this equation, we go back to Step (II).

If x = 0 is a hyperbolic fixed point of Eq.(5.1), the above procedure is sufficient for deciding
its stability. However, if Eq.(5.1) is not analytic but C∞ with respect to ε, the strengh of the
stability may get exponentially small (i.e. constants α and β below are of order O(e−1/ε)). In this
case, we can not determine the stability by using the perturbation method within finite steps. To
avoid such a difficulty, we assume analiticity in the next theorem.

Theorem 5.3. Suppose that Eq.(5.1) is analytic in small ε and there exist an open set U including
the origin and positive constants C1,C2, α, β such that every solution x(t) of Eq.(5.1), whose initial
value is in U, satisfies either

||x(t)|| ≤ C1||x(0)||e−αt, if t ≥ 0, (5.34)

or
||x(t)|| ≤ C2||x(0)||eβt, if t ≤ 0. (5.35)
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Then, there exists an integer M such that the stability of the solution x(t) ≡ 0 of Eq.(5.1) coincides
with that of the solution v(t) ≡ 0 of the m-th order simplified RG equation (5.18) if m ≥ M. In
particular, we can decide as to the stability of x = 0 within finite steps by using the above
procedure.

Proof. If m is sufficiently large, the simplified RG equation (5.18) is sufficiently close to
Eq.(5.21) which is equivalent to Eq.(5.1). Then, our theorem is an immediate consequence from
the persistency of hyperbolic invariant manifolds (see Thm.2.1). �

Remark 5.4. It is easy to extend the above procedure to n-dimensional case. For example, if

R1 ∈ M(3,C) is of a form R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ 1 0
0 λ 1
0 0 λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, Ker adR∗1 is given by

Ker adR∗1 =

{⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
p 0 0
q p 0
r q p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣ p, q, r ∈ C

}
. (5.36)

Furthermore, if R1 is of the n × n Jordan block which is not diagonal, then Ker adR∗1 is given by
the set of lower triangular matrices such that the entries on the diagonal and those on each lower
line parallel to the diagonal are equal in each line. If R1 has many Jordan block, we can apply the
above procedure to each Jordan block.

Example 5.5. Consider the Mathieu equation

ẍ = −ax − 2ε cos t x, x ∈ R, (5.37)

where a and ε > 0 are parameters. If a = 1/4, then x = 0 is an unstable fixed point, which
is verified by using the first order RG equation and Prop.5.1, see Chiba [3]. To examine the
parameter dependency of the instability more precisely, we put

a =
1
4
+ εb1 + ε

2b2 + · · · , (5.38)

and introduce a new variable by ẋ = y/2. Then Eq.(5.37) is rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ =

1
2

y,

ẏ = −1
2

x − 4ε cos t x − 2εb1x − 2ε2b2x − · · · .
(5.39)

Introducing a complex variable through x = z + z, y = i(z − z), z ∈ C, we express (5.39) as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż =

1
2

iz + iε(eit + e−it)(z + z) + iεb1(z + z) + iε2b2(z + z) + · · · ,
ż = −1

2
iz − iε(eit + e−it)(z + z) − iεb1(z + z) − iε2b2(z + z) + · · · .

(5.40)

The second order RG equation for this equation is given by

v̇ = ε

(
0 1 − b1

1 + b1 0

)
v + ε2

(
0 1/2 − 2b1 + b2

1 − b2

−1/2 − 2b2 − b2
1 + b2 0

)
v. (5.41)
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Since eigenvalues of the matrix R1 =

(
0 1 − b1

1 + b1 0

)
are λ = ±

√
1 − b2

1, if |b1| < 1, Step (II)

shows that x = 0 of Eq.(5.37) is unstable because of the positive eigenvalue λ =
√

1 − b2
1. On the

other hand, if |b1| ≥ 1, two eigenvalues are on the imaginary axis and we go to Step (III).

In what follows, we fix b1 = 1. By putting v =

(
0 1
1 0

)
u, Eq.(5.41) is rewritten as

u̇ = ε

(
0 2
0 0

)
u + ε2

(
0 b2 − 7/2

−b2 − 1/2 0

)
u. (5.42)

Because of Eq.(5.28), the simplified RG equation for this equation is given by

u̇ = ε

(
0 2
0 0

)
u + ε2

(
0 0

−b2 − 1/2 0

)
u. (5.43)

Changing coordinates by u = (u1, u2) = (w1, ε
1/2w2), we obtain

d
dt

(
w1

w2

)
= ε3/2

(
0 2

−b2 − 1/2 0

) (
w1

w2

)
. (5.44)

This is of the metanormal form for Eq.(5.41) with b1 = 1 (Step (III)-Case (iii)). Since eigenvalues

of the matrix

(
0 2

−b2 − 1/2 0

)
is λ = ±√−2(b2 + 1/2), if b2 < −1/2, x = 0 of Eq.(5.37) is

unstable because of a positive eigenvalue. If b2 ≥ −1/2, two eigenvalues are on the imaginary
axis, and we need more higher order term.

In what follows, we fix b1 = 1, b2 = −1/2. Then, the third order RG equation for Eq.(5.40) is
given by

v̇ = ε

(
0 0
2 0

)
v + ε2

(
0 0
−4 0

)
v + ε3

(
0 −1/4 − b3

39/4 + b3 0

)
v. (5.45)

Putting v =

(
0 1
1 0

)
u provides

u̇ = ε

(
0 2
0 0

)
u + ε2

(
0 −4
0 0

)
u + ε3

(
0 39/4 + b3

−1/4 − b3 0

)
u. (5.46)

Because of Eq.(5.28), the simplified RG equation of this equation is given by

u̇ = ε

(
0 2
0 0

)
u + ε3

(
0 0

−1/4 − b3 0

)
u. (5.47)

To put this equation in the metanormal form, we introduce wi by u = (u1, u2) = (w1, εw2). Then,
the above equation is brought into

d
dt

(
w1

w2

)
= ε2

(
0 2

−b3 − 1/4 0

) (
w1

w2

)
. (5.48)

Since eigenvalues of the matrix

(
0 2

−b3 − 1/4 0

)
are given by λ = ±√−2(b3 + 1/4), x = 0 of

Eq.(5.37) is unstable if b3 < −1/4. However, if b3 ≥ −1/4, we need more higher order term to
investigate the stability.

25



Now we have obtained one of the boundary curve of the Arnold tongue in the (ε, a) plane,

a =
1
4
+ ε − 1

2
ε2 − 1

4
ε3 + O(ε4). (5.49)

In an area on one side of this curve, x = 0 of Eq.(5.37) is unstable, and in an area on the other
side x = 0 of Eq.(5.37) is not unstable.

Our strategy may be effective also for nonlinear equations because variational equations are
linear equations.

Example. 5.6. Consider the system

θ̇i = ωi + ε

3∑
i=1

bi j sin(θ j − θi), θi ∈ [0, 2π), i = 1, 2, 3, (5.50)

where ωi, ε and bi j are parameters. If bi j = 1 for 1 ≤ i, j ≤ 3, this system is well known as the
Kuramoto model of coupled oscillators [Kuramoto, 16]. The Kuramoto model is one of the most
studied model of synchronization in a population of oscillators although a few open problems
remain [Strogatz, 17]. In what follows, we suppose that

ω1 = ω3, ω2 = 0, b21 = −b23, b32 = b12. (5.51)

In this case, it is easy to verify that there exists a synchronous solution θ2(t) = const., θ1(t) = θ3(t).
Our purpose is to investigate the stability of the solution. In addition to the assumptions above,
we suppose that b31 = −b13 + εδ, where δ is a constant. Then, Eq.(5.50) is rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ̇1 = ω1 + ε(b12 sin(θ2 − θ1) + b13 sin(θ3 − θ1)),
θ̇2 = ε(b21 sin(θ1 − θ2) − b21 sin(θ3 − θ2)),
θ̇3 = ω1 + ε(−b13 sin(θ1 − θ3) + b12 sin(θ2 − θ3)) + ε2δ sin(θ1 − θ3).

(5.52)

Put cos θk = zk + zk, sin θk = i(zk − zk), zk ∈ C to express the above equation in the Cartesian
coordinate. The RG equation for the resultant equation is as follows:

żi = εR1(z) + ε2R2(z) + O(ε3), z = (z1, z1, z2, z2, z3, z3)t, (5.53)

R1(z) = 2b13

(
z1z1z3 − z2

1z3 , z1z1z3 − z2
1z3 , 0 , 0 , z1z2

3 − z1z3z3 , z1z2
3 − z1z3z3

)t
,

R2(z) =
4
ω1

(
iz1z2z2b12(−z3z1b21 − z1z3b21 + 2z1z1b12 + 2z1z1b21) ,

−iz2z1z2b12(−z3z1b21 − z1z3b21 + 2z1z1b12 + 2z1z1b21) ,

−2iz2
2z2b21(−z3z3b12 + z3z3b21 − z3z1b21 − z1z3b21 + z1z1b12 + z1z1b21) ,

2iz2z2
2b21(−z3z3b12 + z3z3b21 − z3z1b21 − z1z3b21 + z1z1b12 + z1z1b21) ,

(z1z3z3 − z2
3z1)ω1δ/2 + iz2z2z3b12(z1z3b21 + z1z3b21 + 2z3z3b12 − 2z3z3b21) ,

+(z3z3z1 − z1z2
3)ω1δ/2 + iz2z2z3b12(z1z3b21 + z1z3b21 + 2z3z3b12 − 2z3z3b21)

)t
.
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Putting zk = eiφk , k = 1, 2, 3, we express the RG equation in the polar coordinate as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̇1 = −4εb13 sin(φ1 − φ3) +
8ε2

ω1

(
b2

12 + b12b21 − b12b21 cos(φ1 − φ3)
)
+ O(ε3),

φ̇2 = −32ε2

ω1
b2

21 sin2 1
2

(φ1 − φ3) + O(ε3),

φ̇3 = −4εb13 sin(φ1−φ3)+
8ε2

ω1

(
b2

12 − b12b21 + b12b21 cos(φ1−φ3)+
1
2
ω1δ sin(φ1−φ3)

)
+O(ε3).

(5.54)
The variational equation along the orbit φ2 = const., φ1 = φ3 for the above equation is given by

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
v1

v2

v3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 4εb13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 1
0 0 0
−1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 4ε2δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 0
1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(ε3). (5.55)

If the trivial solution (v1, v2, v3) = (0, 0, 0) of (5.55) is hyperbolically stable, the invariant set {φ2 =

const., φ1 = φ3} for the RG equation (5.54) is stable invariant manifold and we can conclude
that the solution θ2 = const., θ1 = θ3 to the original equation (5.52) is stable. However, the

eigenvalues of the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 1
0 0 0
−1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ are all zero and we can not apply Props.5.1 and 5.2. To

handle this problem, we simplify the term R2(z) by using our method of simplified RG equation.
Let B1(z) be an undetermined vector field and R̃2(z) = R2(z) − [B1,R1](z) be a simplified

second order term of the RG equation, as is shown in Eq.(4.16). To simplify R̃2(z), it seems that
B1(z) has to be a polynomial of degree 3 because R1(z) and R2(z) are polynomial of degree 3 and
5, respectively. However, it is sufficient to simplify the variational equation (5.55), and we may
define B1(z) to be a linear vector field of the form

B1(z) = (0, 0, 0, 0, cz3 , cz3)t, (5.56)

where c ∈ R is an undetermined constant. With this B1(z), we bring the new RG equation
ż = εR1(z) + ε2(R2(z) − [B1,R1](z)) + O(ε3) into the equation in the polar coordinate by putting
zk = eiφk , and we calculate the variational equation along the orbit φ2 = const., φ1 = φ3. The
resultant equation is given by

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
v1

v2

v3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 4εb13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 1
0 0 0
−1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 4ε2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−α 0 α

0 0 0
β 0 −β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(ε3), (5.57)

where α = b13c and β = δ − b13c. Putting (v1, v2, v3)t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (u1, u2, u3)t, we express this

equation as

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 4εb13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 −1
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 4ε2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 β

0 0 0
0 0 −α − β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(ε3). (5.58)
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Now we choose c = δ/b13 so that β = 0. Further, we put u3 = εU3 to obtain

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
u1

u2

U3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 4ε2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 −b13

0 0 0
0 0 −δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

U3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(ε3). (5.59)

The eigenvalues of the matrix in the right hand side of the above are given by 0, 0,−δ. In the
original coordinate (v1, v2, v3), the eigenvectors associated with the zero eigenvalues are given
by (0, 1, 0)t and (1, 0, 1)t, which are sitting along the invariant set {φ2 = const., φ1 = φ3} of the
RG equation. On the other hand, the eigenvector associated with the eigenvalue −δ is transverse
to the invariant set. Therefore, we conclude that the invariant set {θ2 = const., θ1 = θ3} of the
original equation Eq.(5.52) is stable if |ε| is sufficiently small and if δ > 0.

Fig.2 presents the numerical solution to Eq.(5.52) for parameters ω1 = 1, b12 = b13 = b21 =

1, δ = 10, ε = 0.1 and with an initial values θ1(0) = 0, θ2(0) = 0, θ3(0) = 1.
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Fig. 2: A numerical result for Eq.(5.52) with ω1 = 1, b12 = b13 = −b12 = 1, δ = 10, ε = 0.1. It
is shown that |θ1 − θ3| tends to zero as t → ∞.
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