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In his classical work, Kuramoto analytically described the onset of synchronization in all-to-all cou-
pled networks of phase oscillators with random intrinsic frequencies. Specifically, he identified a
critical value of the coupling strength, at which the incoherent state loses stability and a gradual
build-up of coherence begins. Recently, Kuramoto’s scenario was shown to hold for a large class of
coupled systems on convergent families of deterministic and random graphs [Chiba and Medvedev,
“The mean field analysis of the Kuramoto model on graphs. I. The mean field equation and the transi-
tion point formulas,” Discrete and Continuous Dynamical Systems—Series A (to be published); “The
mean field analysis of the Kuramoto model on graphs. II. Asymptotic stability of the incoherent state,
center manifold reduction, and bifurcations,” Discrete and Continuous Dynamical Systems—Series
A (submitted).]. Guided by these results, in the present work, we study several model problems illus-
trating the link between network topology and synchronization in coupled dynamical systems. First,
we identify several families of graphs, for which the transition to synchronization in the Kuramoto
model starts at the same critical value of the coupling strength and proceeds in a similar manner.
These examples include Erdős-Rényi random graphs, Paley graphs, complete bipartite graphs, and
certain stochastic block graphs. These examples illustrate that some rather simple structural proper-
ties such as the volume of the graph may determine the onset of synchronization, while finer structural
features may affect only higher order statistics of the transition to synchronization. Furthermore, we
study the transition to synchronization in the Kuramoto model on power law and small-world random
graphs. The former family of graphs endows the Kuramoto model with very good synchronizability:
the synchronization threshold can be made arbitrarily low by varying the parameter of the power law
degree distribution. For the Kuramoto model on small-world graphs, in addition to the transition to
synchronization, we identify a new bifurcation leading to stable random twisted states. The exam-
ples analyzed in this work complement the results in Chiba and Medvedev, “The mean field analysis
of the Kuramoto model on graphs. I. The mean field equation and the transition point formulas,”
Discrete and Continuous Dynamical Systems—Series A (to be published); “The mean field analysis
of the Kuramoto model on graphs. II. Asymptotic stability of the incoherent state, center manifold
reduction, and bifurcations,” Discrete and Continuous Dynamical Systems—Series A (submitted).
Published by AIP Publishing. https://doi.org/10.1063/1.5039609

Understanding principles of collective dynamics and syn-
chronization in complex networks is a challenging prob-
lem of nonlinear science with applications ranging from
neuronal networks to power grids. The Kuramoto model
of coupled phase oscillators provides a successful frame-
work for studying synchronization in diverse biological,
physical, and social networks. In particular, it reveals a
universal mechanism for the transition to synchronization
in ensembles of coupled oscillators with random intrin-
sic frequencies. A pitchfork bifurcation responsible for
the onset of synchronization in the Kuramoto model of
all-to-all coupled phase oscillators is a classical result.
This paper explains the onset of synchronization in the
Kuramoto model on a broad class of dense and sparse
random graphs. It provides explicit formulas character-
izing the onset of synchronization for several families
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b)medvedev@drexel.edu
c)mizuharm@tcnj.edu

of random graphs, which are important in applications,
including small-world, power law, Erdős-Rényi, and Paley
graphs, among others. For the Kuramoto model on small-
world graphs, in addition to the transition to synchroniza-
tion, a new bifurcation leading to stable random twisted
states is identified. The examples analyzed in this work
elucidate the relation between the structure and dynamics
in complex networks.

I. INTRODUCTION

The Kuramoto model (KM) of coupled phase oscilla-
tors provides an important paradigm for studying collective
dynamics and synchronization in ensembles of interacting
dynamical systems. In its original form, the KM describes
the dynamics of all-to-all coupled phase oscillators with
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randomly distributed intrinsic frequencies

θ̇i = ωi + Kn−1
n∑

j=1

sin(θj − θi), i ∈ [n] := {1, 2, . . . , n}.

(1)

Here, θi : R → T := R/2πZ is the phase of the oscillator
i ∈ [n]. The intrinsic frequencies ωi, i ∈ [n], are indepen-
dent identically distributed random variables. Throughout this
paper, we assume that the density of the absolutely contin-
uous probability distribution of ω1, g, is an even smooth
function. The sum on the right-hand side of (1) models the
interactions between oscillator i and the rest of the network.
Parameter K controls the strength of the interactions. The
sign of K determines the type of interactions. The coupling
is attractive if K > 0, and is repulsive otherwise. Sufficiently
strong attractive coupling favors synchrony.

For small positive values of K, the KM shows lit-
tle coherence. The phases fill out the unit circle approxi-
mately uniformly [Fig. 1(a)]. This dynamical regime is called
an incoherent state. It persists for positive values of K
smaller than the critical value Kc = 2[πg(0)]−1. For values of
K > Kc, the system undergoes a gradual build-up of coher-
ence approaching complete synchronization as K → ∞
[Fig. 1(b)]. Kuramoto identified the critical value Kc and
described the transition to synchrony, using the complex order
parameter

h(t) = n−1
n∑

j=1

eiθj(t). (2)

Below, we will often use the polar form of the order parameter

h(t) = r(t)eiψ(t). (3)

Specifically, he showed that for t � 1 (cf. Ref. 20)

r(t) =
{

O(n−1/2), 0 < K < Kc,
r∞(K − Kc)+ O(n−1/2), K > Kc,

(4)

where

r∞(x) = r1
√

x + O(x), x ≥ 0, r1 = 4

K2
c

√−πg′′(0)
. (5)

Here, 0 ≤ r(t) ≤ 1 and ψ(t) stand for the modulus and the
argument of the order parameter, respectively, defined by the
right-hand side of (2). The value of r is interpreted as a mea-
sure of coherence in the system dynamics. Indeed, if all phases
are independent random variables distributed uniformly on T

(complete incoherence), then r = o(1) with probability one,
by the Strong Law of Large Numbers. If, on the other hand,
all phase variables are equal, then r = 1. Equations (4) and
(5) suggest that the system undergoes a pitchfork bifurca-
tion en route to synchronization. This bifurcation is clearly
seen in the numerical experiments [see Fig. 1(c)]. Further-
more, Kuramoto’s scenario of the transition to synchrony was
recently confirmed by rigorous mathematical analysis of the
KM.3,6,7

In this paper, we investigate bifurcations in the KM on
a variety of graphs ranging from symmetric Cayley graphs
to random small-world and power law graphs. To visualize
the connectivity of a large graph, we use the pixel picture
of a graph. This is a square black and white plot, where
each black pixel stands for entry 1 in the adjacency matrix
of the graph (see Fig. 2). As we show below, the graph
structure plays a role in the transition to synchrony. Further-
more, some graphs may force bifurcations to spatial patterns
other than synchrony. To highlight the role of the network
topology, we present numerical experiments of the KM on
small-world graphs.21 These graphs are formed by replacing
some of the edges of a regular graph with random edges [see
Fig. 2(a)]. These results demonstrate that some graphs may
exhibit bifurcations to spatial patterns other than synchrony.

Figure 3(a) shows that for the KM on small-world graphs
like in that on complete graphs, the order parameter under-
goes a smooth transition. Near the critical value K+

c ≈ 3.2,
the asymptotic in time value of the order parameter starts to

(a) (b) (c)

FIG. 1. The distribution of the phases of coupled oscillators is shown on the unit circle in the complex plane: θk �→ eiθk ∈ C, k ∈ [n]. The strength of coupling
is below the critical value Kc in (a) and is above Kc in (b). The black arrow depicts the order parameter, as a vector in the complex plane [cf. (2)]. The bigger size
(modulus) of the order parameter corresponds to the higher degree of coherence. In (a), the modulus of the order parameter is close to zero, and the distribution
of the oscillators is close to the uniform distribution. In contrast, in (b), the distribution develops a region of higher density. The complex order parameter points
to the expected value (center of mass) of the distribution of the oscillators around T. (c) The modulus of the order parameter is plotted for different values of
K. For the KM on graphs, the order parameter must be suitably redefined [see (21)]. The maximum value of the order parameter for the KM on graphs depends
on the edge density of the graph [cf. (21)]. The gradual change of the modulus of the order parameter from values around zero to those close to 1 marks the
transition to synchronization. This and all other numerical bifurcation diagrams in this paper were computed using the KM with 4001 coupled oscillators. The
realization of ωi’s was generated for each value of K separately.
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(a) (b)

FIG. 2. Pixel pictures of small-world
(a) and power law (b) graphs on 100
nodes.

grow monotonically and approaches a value slightly greater
than 0.5 for increasing values of K. This change in the order
parameter corresponds to the transition to synchronization.
Interestingly, in contrast to the original KM, the model on
small-world graphs exhibits another transition at a negative
value of K, Kc ≈ −27 [Fig. 3(c)]. This time it grows mono-
tonically for decreasing values of K and approaches the value
approximately equal to 0.0475. The corresponding state of
the network is shown in Fig. 3(c). In the pattern shown in
this figure, the oscillators are distributed randomly about a
2-twisted state. A q-twisted state (q ∈ Z) is a linear function
on the unit circle: Tq(x) = 2πqx

n mod 2π , x ∈ [n], q-twisted
states have been studied before as stable steady states in
repulsively coupled KM on Cayley graphs.17,22 By changing
parameters controlling small-world connectivity, we find dif-
ferent q-twisted states bifurcating from the incoherent state for
decreasing negative K [see Figs. 4(a) and 4(b)]. These numer-
ical experiments show that in the KM on small-world graphs,
the incoherent state is stable for K ∈ (K−

c , K+
c ). For values

K > K+
c , the system undergoes the transition to synchrony,

while for K < K−
c , it leads to random patterns localized

around q-twisted states.
The loss of stability of the incoherent state in the KM on

spatially structured networks was analyzed in Refs. 4 and 5.
The linear stability analysis of the incoherent state yields the
critical values K±

c ,4 and the analysis of the bifurcations at K±
c

explains the emerging spatial patterns.5 In the present work,
using the insights from Refs. 4 and 5, we conduct numeri-
cal experiments illustrating the role of the network topology
in shaping the transition from the incoherent state to coher-
ent structures like synchronous and twisted states in the KM
on graphs. In particular, we present numerical simulations
showing for many distinct graphs the onset of synchronization
takes place at the same critical value and the graph struc-
ture has only higher order effects. We identify the dominant
structural properties of the graphs shaping the transition to
synchronization in the KM.

The effective analysis of the KM on large graphs requires
an analytically convenient description of graph sequences. To
this end, we employ the approach developed in Refs. 14 and
15 inspired by the theory of graph limits11 and, in particular,
by W-random graphs.12 We explain the graph models used in
this paper in Sec. II. The W-random graph framework affords
an analytically tractable mean field description of the KM on a
broad class of dense and sparse graphs. The mean field partial

differential equation for the KM on graphs is explained in
Sec. III. There, we also explain the generalization of the order
parameter suitable for the KM on graphs. After that we go
over the main results of Refs. 4 and 5. In Sec. IV, we present
our numerical results. We use carefully designed examples
of graphs to highlight the structural properties affecting the
onset of synchrony. For instance, we show that the KMs on
Erdős-Renyi and Paley graphs have the same critical value
Kc marking the onset of synchronization. Furthermore, the
mean field limits of the KM on these graphs coincide with
that for the KM on weighted complete graph. We demonstrate
the similarity in the transition to synchronization in the KM on
bipartite graphs and on the family of stochastic block graphs
interpolating a disconnected graph and a weighted complete
graph. This time the mean field equations for the two mod-
els are different, but the critical value Kc remains the same.
Furthermore, we investigate the bifurcations in the KM on
small-world and power law graphs illuminating the effects
of these random connectivity patterns on the dynamics of the
KM.

II. THE KM ON GRAPHS

We begin with the description of graph models that
will be used in this paper. Let �n = 〈V(�n), E(�n), An〉 be a
weighted directed graph on n nodes. V(�n) = [n] stands for
the node set of �n. An = (an,ij) is an n × n weight matrix. The
edge set

E(�n) = {{i, j} ∈ [n]2 : an,ij �= 0
}
.

If �n is a simple graph, then An is the adjacency matrix.
The KM on �n is defined as follows:

u̇n,i = ωi + (nαn)
−1

n∑
j=1

an,ij sin(un,j − un,i), i ∈ [n], (6)

un,i(0) = u0
n,i. (7)

The sequence αn �= 0 is only needed and {�n} is a sequence
of sparse graphs. Without proper rescaling, the continuum
limit (as n → ∞) of the KM on sparse graphs is trivial. The
sequence {αn} will be explained below, when we introduce
sparse W -random graphs. Until then, one can assume αn ≡ 1.

We will be studying solutions of (6) in the limit as
n → ∞. Clearly, such limiting behavior is possible only if
the sequence of graphs {�n} is convergent in the appropriate
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(a) (b)

FIG. 3. Transition to synchronization in
the KM on small-world graphs (a). For
negative K, the KM undergoes another
transition at K−

c < 0 (b). The emerging
pattern is shown in Figs. 4(a) and 4(b).

sense. We want to define {�n} in such a way that it includes
graphs of interest in applications and, at the same time, is con-
venient for deriving the continuum limit. To achieve this goal,
we use the ideas from the theory of graph limits.11 Specif-
ically, we choose a square integrable function W on a unit
square I2 := [0, 1]2. W is used to define the asymptotic behav-
ior of {�n} as n → ∞. It is called a graphon in the theory of
graph limits.11 Let

W := {
W ∈ L2(I2) : W(x, y) = W(y, x) a.e.

}
.

We define W0 ⊂ W as a set of measurable symmetric func-
tions on I2 with values in I. We discretize the unit interval
I: xn,j = j/n, j ∈ {0} ∪ [n] and denote In,i := (xn,i−1, xn,i], i ∈
[n].

The following graph models are inspired by W-random
graphs.2,12 Let �n = 〈V(�n), E(�n), An = (an,ij)〉.

(DD) Weighted deterministic graph �n = H(n, W) is defined
as follows:

an,ij = 〈W〉In,i×In,j := n2
∫

In,i×In,j

W(x, y)dxdy, (8)

where W ∈ W .
(RD) Dense random graph �n = Hr(n, W). Let W ∈ W0

and an,ij, 1 ≤ i ≤ j ≤ n, be independent identically

distributed (IID) random variables such that

P
(
an,ij = 1

) = 〈W〉In,i×In,j and

P
(
an,ij = 0

) = 1 − P
(
an,ij = 1

)
. (9)

(RS) Sparse random graphs �n = Hr(n, W , {αn}). Let W ∈ W
be a nonnegative function and positive sequence 1 ≥
αn ↘ 0 satisfy nαn → ∞ as n → ∞

P (i → j) = αn〈W̃n〉In,i×In,j and

W̃n(x, y) := min{α−1
n , W(x, y)}. (10)

We illustrate the random graph models in (RD) and (RS) with
the following examples.

Example II.1. (SW ) Small-world graph Sn,p,r =
Hr(n, Wp,r), r ∈ (0, 0.5), p ∈ (0, 0.5], is defined via

Wp,r(x, y) =
{

1 − p min{|x − y|, 1 − |x − y|} ≤ r,
p otherwise

(11)
[see Fig. 2(a)].

(ER) Erdős-Rényi graph Gn,p = Hr(n, Wp), Wp ≡ p ∈ (0, 1).
(SER) Sparse Erdős-Rényi graph G̃n,p = Hr(n, Wp, {n−β}),

β ∈ (0, 1).
(PL) Power law graph � = Hr(n, W γ , {n−β})

W(x, y) = (xy)−γ , 0 < γ < β < 1 (12)

[see Fig. 2(b)].

(a) (b) (c)

FIG. 4. The oscillators in (a) are clustered around a 2-twisted state (p = 0.2, r = 0.3, K = −36). By changing one of the parameters controlling small-world
connectivity (namely, by reducing the range of local interactions), one can obtain q-twisted states for different values of q ∈ Z, such as the 4-twisted state shown
in plot (b) (p = 0.2, r = 0.2, K = −40).
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The graphon W carries all the information needed for the
derivation of the continuum limit for the KM on deterministic
and random graphs (DD), (RD), and (RS). However, for the
KM on random graphs (RD) and (RS) taking the continuum
limit involves an additional step. Namely, we first approx-
imate the model on random graph by that on the averaged
deterministic weighted graph �n = H(n, W)

v̇n,i = ωn,i + Kn−1
n∑

j=1

W̄n,ij sin(vn,j − vn,i), i ∈ [n], (13)

vn,i(0) = u0
n,i, (14)

where W̄n,ij := 〈W̃n〉In,i×In,j .
The approximate model (13) is formally derived from

the original KM (6) on a random graph �n = Hr(n, W , {αn})
by averaging the right hand side of (6) over all possible
realizations of �n. The justification of averaging is given in
Ref. 8.

III. THE MEAN FIELD LIMIT

Solutions of the KM with distributed frequencies such as
incoherent state and the solutions bifurcating from the inco-
herent state are best described in statistical terms. To this end,
suppose ρ(t, u,ω, x) is the conditional density of the random
vector (u,ω) given ω, and parametrized by (t, x) ∈ R

+ × I.
Here, the spatial domain I = [0, 1] represents the continuum
of the oscillators in the limit n → ∞ (see Ref. 4 for pre-
cise meaning of the continuum limit). Then, ρ satisfies the
following initial value problem:

∂

∂t
ρ(t, u,ω, x)+ ∂

∂u
{ρ(t, u,ω, x)V(t, u,ω, x)} = 0, (15)

ρ(0, u,ω, x) = ρ0(u), (16)

where initial density ρ0(u) independent of ω and x for sim-
plicity (see Ref. 8 for the treatment of a more general case).
The velocity field V is defined via

V(t, u,ω, x) = ω + K
∫

I

∫
R

∫
T

W(x, y) sin(φ − u)

ρ(t,φ,ω, y)g(ω)dφdωdy. (17)

The density ρ(t, ·) approximates the distribution of the oscil-
lators around T at time t ∈ [0, T]. Specifically, in the large n
limit the empirical measures defined on the Borel σ -algebra
B(G), G := T × R:

μn
t (A) = n−1

n∑
i=1

δ[uni(t),ωi,xni](A), A ∈ B(G), (18)

converge weakly to the absolutely continuous measure

μt(A) =
∫

A
ρ(t, u,ω, x)g(ω)dudωdx, (19)

provided the initial data (7) converge weakly to μ0 [cf. Ref. 4
(Theorem 2.2), see also Ref. 8].

The mean field limit provides a powerful tool for studying
the KM. It gives a simple analytically tractable description of
complex dynamics in this model. In particular, the incoherent

state in the mean field description corresponds to the sta-
tionary density ρu = g(ω)/2π . The stability analysis of ρu,
a steady state solution of (15), yields the region of stability
of the incoherent state and the critical values of K, at which
it loses stability. Furthermore, the analysis of the bifurcations
at the critical values of K explains the phase transitions in the
KM (cf. Ref. 5). Importantly, we can trace the role of the net-
work topology in the loss of stability of the incoherent state
and emerging spatial patterns. In the remainder of this section,
we informally review some of the results of Refs. 4 and 5,
which will be used below.

The key ingredient in the analysis of the KM on graphs,
which was not used in the analysis of the original KM, is the
following kernel operator W : L2(I) → L2(I):

W[f ](x) =
∫

R

W(x, y)f (y)dy. (20)

Recall that W ∈ L2(I2) is a symmetric function. Thus,
W : L2(I2) → L2(I2) is a self-adjoint compact operator. The
eigenvalues of W, on one hand, carry the information about
the structure of the graphs in the sequence {�n}; on the other
hand, they appear in the stability analysis of the incoherent
state. Thus, through the eigenvalues of W, we can trace the
relation between the structure of the network and the onset of
synchronization in the KM on graphs.

Since W is self-adjoint and compact, the eigenvalues of
W are real and bounded with the only possible accumulation
point at 0. In all examples considered in this paper, the largest
eigenvalue μmax > 0 and the smallest μmin ≤ 0. The linear
stability analysis in Ref. 4 shows that the incoherent state is
stable for K ∈ [K−

c , K+
c ], where

K−
c = 2

πg(0)μmin
and K+

c = 2

πg(0)μmax
.

Except for small-world graphs, for all other graphs considered
below, the smallest eigenvalue μmin = 0. Thus, the incoherent
state in the KM on these graphs is stable for K ≤ Kc+. In this
section, we comment on the bifurcation at K+

c and postpone
the discussion of the bifurcation at K−

c until Sec. V, where we
deal with the KM on small-world graphs.

The analysis of the bifurcations in the KM on graphs
relies on the appropriate generalization of Kuramoto’s order
parameter (cf. Ref. 4)

hn(t) = [hn1(t), hn2(t), . . . , hnn(t)],

hni(t) = 1

n

n∑
j=1

Wn,ije
iθnj(t), i ∈ [n], (21)

and its continuous counterpart

h(t, x) =
∫

I

∫
R

∫
T

W(x, y)eiθρ(t, θ ,ω, y)g(ω)dθdωdy. (22)

The value of the continuous order parameter (22) h(t, x)
carries the information about the (local) degree of coher-
ence at point x and time t. It is adapted to a given network
connectivity through the kernel W .

The main challenge in the stability analysis of the inco-
herent state lies in the fact that for K ∈ [K−

c , K+
c ], the lin-

earized operator has continuous spectrum on the imaginary
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(a) (b)

FIG. 5. Pixel pictures of Erdős-Rényi (a) and Paley (b) graphs.

axis and no eigenvalues (cf. Ref. 4). To overcome this dif-
ficulty, in Ref. 5, the generalized spectral theory was used to
identify generalized eigenvalues responsible for the instability
at K+

c and to construct the finite-dimensional center mani-
fold. The explanation of these results is beyond the scope
of this paper. An interested reader is referred to Ref. 5 for
details. Here, we only present the main outcome of the bifur-
cation analysis. The center manifold reduction for the order
parameter near K+

c yields a stable branch of solutions

h∞(x, K) = g(0)2π3/2√
−g′′

(0)
μ3/2

maxC(x)
√

K − K+
c + o(

√
K − K+

c ),

0 < K − K+
c � 1, (23)

where C(x) is defined through the eigenfunction of W cor-
responding to μmax (see Ref. 5 for details). Formula (23)
generalizes the classical Kuramoto’s formula describing the
pitchfork bifurcation in the all-to-all coupled model to the KM
on graphs. The network structure enters into the description of
the pitchfork bifurcation through the largest eigenvalue μmax

and the corresponding eigenspace.

IV. RESULTS

In this section, we present numerical results elucidating
some of the implications of the bifurcation analysis outlined
in Sec. III.

A. Graphs approximating the complete graph

Our first set of examples deals with the KM on Erdős-
Rényi and Paley graphs (see Fig. 5). The former is a random
graph, whose edges are selected at random from the set of all
pairs of vertices with fixed probability p (see Example II.1).
Before giving the definition of the Paley graphs, we first recall
the definition of a Cayley graph on an additive cyclic group
Zn = Z/nZ.

Definition IV.1. Let S be a symmetric subset of Zn (i.e.,
S = −S). Then, �n = 〈V(�n), E(�n)〉 is a Cayley graph if
V(�n) = Zn and {a, b} ∈ E(�n), if b − a ∈ S. Cayley graph
�n is denoted Cay(Zn, S).

Definition IV.2. Let n = 1 (mod 4) be a prime and
denote

Qn = {x2 (mod n) : x ∈ Zn/{0}}.
Qn is viewed as a set (not multiset), i.e., each element has mul-
tiplicity 1. Then, Qn is a symmetric subset of Z×

n and |Qn| =
2−1(n − 1) [cf. Ref. 10 (Lemma 7.22)]. Pn = Cay(Zn, Qn) is
called a Paley graph.10

As all Cayley graphs, Paley graphs are highly symmetric
[Fig. 5(b)]. However, Paley graphs also belong to pseudoran-
dom graphs, which share many asymptotic properties with
Erdős-Rényi graphs with p = 1/2.1 In particular, both Erdős-
Rényi and Paley graphs have constant graph limit W1/2 ≡ 1/2
as n → ∞. The mean field limit for the KM for Erdős-Rényi
and Paley graphs has the same kernel constant W = W1/2 ≡
1/2 [cf. (15)], exactly as in the case of the KM on weighted

(a) (b) (c)

FIG. 6. A large time asymptotic value of the order parameter (21) (in a scaled l2-norm) is plotted for the KM on complete (a), Erdős-Rényi (b), Paley (c). The
transition from 0 to 1 takes place in the same region of K in all three plots. The critical value of the coupling strength K+

c ≈ 3.2 is the same for all three models.
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(a) (b)

FIG. 7. Pixel pictures of the bipartite graph (a) and stochastic block graph with two weakly connected components (b).

complete graphs. Since μmax(W1/2) = 1/2, the transition to
synchronization takes place at

K+
c = 4

πg(0)
≈ 3.183

for all three networks (see Fig. 6).

B. Bipartite and disconnected graphs

Our second set of examples features another pair of dis-
tinct networks, which are not pseudorandom, and yet have the
same synchronization threshold.

Here, we consider the KM on bipartite graphs Bn,n =
H(2n, Wbp) [see Fig. 7(a)]

Wbp(x, y) =
{

1, [0, 0.5)× [0.5, 1] ∪ [0.5, 1] × [0, 0.5),
0 otherwise.

Next, we consider the family of graphs interpolating between
the disconnected graph with two equal components and a
weighted complete graphs, �n,α = Hr(n, Wd,α):

Wd,α(x, y) =
{

1 − α, [0, 0.5)× [0, 0.5) ∪ [0.5, 1] × [0.5, 1],

α otherwise,

α ∈ [0, 0.5].

A simple calculation yields largest positive eigenvalues
for each of these families of graphs

μmax(Wbp) = μmax(Wd,α) = 0.5 ∀ α ∈ [0, 0.5].

Thus, as in the first set of examples, the KM on Bn,n and �n,α

undergoes transition to synchronization at K+
c = 4[πg(0)]−1

(see Fig. 8).

C. Power law graphs

Next, we turn to the KM on power law graphs. To gen-
erate graphs with power law degree distribution, we use
the method of sparse W-random graphs.2 Specifically, �n =
Hr(n, W γ , n−β) with graphon W γ defined in (12). For graphs
constructed using this method, it is known that the expected
degree of node i ∈ [n] is O(n1+γ−β i−γ ) and the edge density is
O(n−β) (cf. Ref. 9). Thus, �n = Hr(n, W γ , n−β) is a family of
sparse graphs with power law degree distribution. The mean
field limit for the KM on �n is given by (15) with W := W γ .
The analysis of the integral operator W [cf. (20)] with ker-
nel W := W γ shows that it has a single nonzero eigenvalue
(cf. Ref. 13)

μmax = (1 − 2γ )−1, γ ∈ (0, 0.5).

Thus, the synchronization threshold for the KM on power law
graphs is

K+
c = 2(1 − 2γ )

πg(0)
.

Note that as α → 1/2, K+
c tends to 0. Thus, the KM on power

law graphs features remarkable synchronizability despite
sparse connectivity. Numerics in Fig. 9 illustrate the onset of
synchronization in power law networks.

(a) (b)

FIG. 8. The onset of synchronization
in the KM on bipartite graph (a) and
on the stochastic block graph with two
weakly connected components (b) with
α = 0.05.



073109-8 Chiba, Medvedev, and Mizuhara Chaos 28, 073109 (2018)

FIG. 9. The onset of synchronization in the KM on power law graphs.
The parameter values γ = 0.4 and β = 0.6 were used in these numerical
experiments.

V. SMALL-WORLD GRAPHS

Small-world graphs are obtained by random rewiring of
regular k-nearest-neighbor networks.21 Consider a graph on
n nodes arranged around a circle, with each node connected
to k = �rn� neighbors from each side for some r ∈ (0, 0.5).
With probability p ∈ [0, 0.5], each of these edges connect-
ing k neighbors from each side is then replaced by a random
long-range (i.e., going outside the k-neighborhood) edge. The
pixel picture of a representative small-world graph is shown
in Fig. 2(a). A family of small-world graphs parametrized
by p interpolates between regular k-nearest-neighbor graph
(p = 0) and a fully random Erdős-Rényi graph (p = 0.5). For
intermediate values of p, small-world graphs combine fea-
tures of regular and random connectivity, just as seen in many
real-world networks.21

It is convenient to interpret a small-world graph as a
W -random graph Sn,p,r = Hr(n, Wp,r) [cf. (11)]. The mean
field limit of the KM on Sn,p,r is then given by (15) with
W := Wp,r. The corresponding kernel operator is given by

Wp,r(f ) =
∫

T1

Kp,r(· − y)f (y)dy, T1 := R/Z, (24)

where Kp,r(x) = (1 − p)1|x|≤r(x)+ p1|x|>r(x).
Using (24), we recast the eigenvalue problem for Wp,r as

follows:

Kp,r ∗ v = μv. (25)

By taking the Fourier transform of both sides of (25), we find
the eigenvalues of Wp,r

μk =
∫

T

Kp,r(x)e
−2π ikxdx

=
{

2(r + p − 2rp), k = 0,
(πk)−1(1 − 2p) sin(2πkr), k ∈ Z/{0}. (26)

The corresponding eigenvectors are wk = ei2πkx, k ∈ Z. Note
that μk = μ−k , since Kp,r is even [cf. (26)]. Thus, the

eigenspace corresponding to μ = μ0 is spanned by w0 = 1.
For μ �= μ0, the eigenspace corresponding to μ is spanned by

wk = ei2πkx and w−k = e−i2πkx, k ∈ Iμ, (27)

where Iμ = {k ∈ N : μk = μ}. The largest positive eigen-
value of Wp,r is

μ0 =
∫

I
Kp,r(x)dx = 2(r + p − 2pr).

Therefore, the onset of synchronization in the KM on small-
world graphs takes place at

K+
c = 1

πg(0)(r + p − 2pr)

[see Fig. 3(b)].
Importantly, Wp,r also has negative eigenvalues. Since

Wp,r is a compact operator, 0 is the only accumulation point
of the spectrum of Wp,r. Thus, there is the smallest (negative)
eigenvalue μmin = min{μk : k ∈ N}. Let q ∈ N be such that
μq = μmin. Assuming that the multiplicity of μmin is 2, the
center manifold reduction performed for the order parameter
in Ref. 5 yields the following stable branch bifurcating from
the incoherent state (h ≡ 0) at K = K−

c :

h∞(x, K) =
√
κ

β
e±i2πq(x+φ) + o(

√
κ),

0 < κ := K−
c − K � 1, β := − 8g′′(0)

π3g(0)4
, (28)

where φ ∈ [0, 1) depends on the initial data.
Equation (28) implies that at K = K−

c , the KM on small-
world graphs undergoes a pitchfork bifurcation. Unlike the
bifurcation at K = K+

c considered earlier, in the present case,
the center manifold is two-dimensional. It is spanned by
w±q = e±i2πqx. In the remainder of this section, we analyze
stable spatial patterns bifurcating from the incoherent state at
K = K−

c . To this end, we rewrite the velocity field (17) using
the order parameter

V(t, u,ω, x) = ω + K

2i

[
e−iuh(t, x)+ eiuh(t, x)

]
. (29)

The velocity field in the stationary regime is then given by

V∞(u,ω, x) = ω + K

2i

[
e−iuh∞(x, K)+ eiuh∞(x, K)

]
. (30)

Using the polar form of the order parameter

h∞(x, Kc − κ) = R∞(x, K)ei�(x),

R∞(x, K) =
√
κ

β
+ o(

√
κ), (31)

from (30), we obtain

V∞(u,ω, x) = ω − (K−
c − κ)

√
κ

β
sin[u − 2πq(x + φ)]

+ o(
√
κ). (32)

Since ρ∞ is a steady state solution of (15), it satisfies

∂u {V∞ρ∞} = 0. (33)



073109-9 Chiba, Medvedev, and Mizuhara Chaos 28, 073109 (2018)

(a) (b) (c)

FIG. 10. The formation of 2-twisted states for decreasing values of coupling strength K. From (a) to (c), we have, respectively, K = −32, K = −36, and
K = −50. In all simulations p = 0.2 and r = 0.3.

From (32) and (33), we have

ρ∞(u,ω, x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ [u ∓ 2πq(x + φ)

− arcsin
(
ω

√
β

K
√
κ

)
+ o(

√
κ)

]
, |ω| ≤ KR∞(x, K),

1
2π

√
ω2−K2R∞(x,K)2

|ω−KR∞(x,K) sin[u−�(x)]| , |ω| > KR∞(x, K).

(34)

Here, K = K−
c − κ and δ stands for the Dirac delta function.

Equation (34) describes partially phase locked solutions. They
combine phase locked oscillators (type I)

u = ±2πq(x + φ)+ Y(ω, κ)+ O
(√
κ
)

,

Y(ω, κ) = arcsin

(
ω

√
β

K
√
κ

)
, (35)

and those whose distribution is given by the second line in
(34) (type II). The oscillators of the first type form q-twisted
states subject to noise Y . Note that Y is a function of ω
and, therefore, is random. Just near the bifurcation, where
0 < κ � 1, the probability of |ω| > KR∞(x, K) is high and,
thus, most oscillators are of the second type [Figs. 10(a)].
However, as we move away from the bifurcations, we see the
number of oscillators of the first type increases and the noisy
twisted states become progressively more distinct [Figs. 10(b)
and 10(c)]. Thus, the bifurcation analysis of the KM on small-
world graphs identifies a family of stable twisted states (cf.
Refs. 17 and 22). By changing parameters of small-world con-
nectivity, one can control the winding number of the emerging
twisted states [see Fig. 4(c)].

VI. DISCUSSION

In this paper, we selected several representative families
of graphs to illustrate the link between network topology and
synchronization and pattern formation in the KM of coupled
phase oscillators. In particular, we showed that the transi-
tion to synchronization in the KM on pseudorandom graphs
(e.g., Erdős-Rényi, Paley, and complete graphs) starts at the
same critical value of the coupling strength and proceeds in
practically the same way. The bifurcation plots shown in Fig.
6 are very similar, although plots for the KM on Erdős-Rényi

and Paley graphs show more variability. The almost identi-
cal bifurcation plots for these models are due to the fact that
all three models result in the same mean field equation. This
means that the empirical measures generated by the trajec-
tories of these models are asymptotically the same limit as
n → ∞. The differences seen in plots (a)–(c) of Fig. 6 are due
to the higher order moments, which are not captured by the
mean field limit. Other families of graphs considered in this
paper include the bipartite graph and a family of stochastic
block graphs interpolating between a graph with two discon-
nected components and Erdős-Rényi graph. The KM on all
these graphs (including the disconnected graph) feature the
same transition to synchronization. Finally, we studied the
bifurcations in the KM on small-world and power law graphs
due to their importance in applications. A remarkable feature
of the KM on small-world graphs is the presence of the bifur-
cation leading to stable noisy twisted states. Twisted states are
known as attractors in repulsively coupled KM with identical
intrinsic frequencies.16–18,22 For the KM with random fre-
quencies from the Cauchy distribution, the transition from the

FIG. 11. Comparison of GPU and CPU computation time on Intel(R) Core
i7-7700 CPU with NVIDIA Quadro K1200 GPU showing dramatic speed-up
due to parallelization of computations.



073109-10 Chiba, Medvedev, and Mizuhara Chaos 28, 073109 (2018)

incoherent state to random twisted states was shown in Ref. 19
using the Ott-Antonsen ansatz. In this paper, we identified
the bifurcation in the repulsively coupled KM on small-
world graphs with intrinsic frequencies from arbitrary abso-
lutely continuous distribution with even sufficiently smooth
density.

To perform numerical experiments presented in this
paper, we had to overcome several challenges. Verification
of the bifurcation scenarios in the KM required a large num-
ber of simulations of large systems of ordinary differential
equations with random coefficients. Thus, the speed of com-
putations was critical in this project. All computations were
completed in MATLAB utilizing GPU computations for dra-
matic speed-up in the computational time (compared to CPU
computations), see Fig. 11. Time steps were performed using
Heun’s method with �t = 0.01, which was sufficient for
stable simulation results.

Each simulation was initialized with a random state
vector (un,1, . . . , un,n)

T with each component independently
chosen from a uniform distribution on [0, 2π) represent-
ing the phase of each oscillator. We additionally initialize
a random vector of internal frequencies chosen from a nor-
mal distribution. Unless otherwise noted, in all simulations
we take n = 4001, which is a prime 1 modulo 4, so that
the theory developed for Paley graphs applies. We observed
that taking Tfinal = 20 was sufficient for systems to exhibit
synchronization or q-twisted states.

Computationally solving (26) for the minimal neg-
ative eigenvalue is accomplished by observing the triv-
ial bound μk >

−1
kπ and iteratively computing μmin = μk0

for k0 ∈ {1, . . . , M } for increasing values of M until
μmin ≤ −1

Mπ
.
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