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Abstract

Interactions of inhibitory neurons produce gamma oscillations (30–80 Hz)
in the local field potential, which is known to be involved in functions such
as cognition and attention. In this study, the modified theta model is con-
sidered to investigate the theoretical relationship between the microscopic
structure of inhibitory neurons and their gamma oscillations under a wide
class of distribution functions of tonic currents on individual neurons. The
stability and bifurcation of gamma oscillations for the Vlasov equation of the
model is investigated by the generalized spectral theory. It is shown that
as a connection probability of neurons increases, a pair of generalized eigen-
values crosses the imaginary axis twice, which implies that a stable gamma
oscillation exists only when the connection probability has a value within a
suitable range. On the other hand, when the distribution of tonic currents
on individual neurons is the Lorentzian distribution, the Vlasov equation is
reduced to a finite dimensional dynamical system. The bifurcation analy-
ses of the reduced equation exhibit equivalent results with the generalized
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spectral theory. It is also demonstrated that the numerical computations of
neuronal population follow the analyses of the generalized spectral theory as
well as the bifurcation analysis of the reduced equation.

1 Introduction

The local field potential known as collective macroscopic oscillations in the
brain is organized by interacting neurons. Among them, gamma oscillations
(30–80 Hz) in the local field potential are known to be involved in functions
such as cognition and attention[1, 2, 3, 4]. In a physiological point of view,
inhibitory synaptic interactions introduced by GABAergic neurons play im-
portant role to generate gamma oscillations[1, 5]. However, there are only
limited approaches on how the properties of neurons at the microscopic level
affect macroscopic gamma oscillations.

In this study, the modified theta model (MT model) [6, 7], which is a dy-
namical system of membrane potentials of interacting neurons, is considered
to investigate the theoretical relationship between the microscopic structure
of inhibitory neurons and their gamma oscillations. The Vlasov equation
of the model is introdueced under the assumption that the network struc-
ture of neurons is the Erdös-Rényi random graph with the probability of
connection p. For the Vlasov equation, bifurcations from the steady state
(de-synchronized state) to the collective gamma oscillations (synchronized
state) will be studied as the parameter p varies under a wide class of distri-
bution functions of tonic currents on individual neurons.

The stability and bifurcation analysis is not straightforward because of
the continuous spectrum. Let T be a linear operator obtained by the lin-
earization of the Vlasov equation around the steady state. Since the op-
erator T has the continuous spectrum on the imaginary axis, the standard
stability theory of dynamical systems is not applicable. To handle such a
difficulty caused by the continuous spectrum, the generalized spectral the-
ory will be employed which was developed to treat a similar problem for the
Kuramoto model [8, 9]. Although there are no eigenvalues of T when p is
small enough, it will be shown that there exist generalized eigenvalues on
the left half plane. We further assume that the variance of tonic currents on
individual neurons is sufficiently small. Then, as the parameter p increases,
the generalized eigenvalues cross the continuous spectrum on the imaginary
axis and it implies that the gamma oscillation occurs. Further as p increases,
the eigenvalues again cross the continuous spectrum from the right half plane
to the left half plane. As a result, the gamma oscillation is destroyed. These
results imply that if the edge density is too large, the gamma oscillation is
not realized.
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In Sec.2, the modified theta model and its Vlasov equation are introduced.
A few properties of the steady state will be shown. In Sec.3, the Vlasov equa-
tion is reduced to a certain system of evolution equations by Ott-Antonsen
reduction. The linearized system around the steady state with the linear op-
erator T will be derived. In Sec.4, the distribution function for tonic currents
on individual neurons is assumed to be the delta function. In this case, the
eigenvalue problem of the operator T is completely resolved. If the distri-
bution function is not the delta function, the operator T has the continuous
spectrum in general, which is studied in Sec.5. In Sec.6, the generalized
spectral theory is applied to investigate the stability and bifurcations of the
steady state. In Sec.7 we consider the Lorentzian distribution of tonic cur-
rents where the Vlasov equation is reduced to a finite dimensional dynamical
system. It is demonstrated that the numerical computations of neuronal
population follow the analyses of the generalized spectral theory as well as
the bifurcation analysis of the reduced equation.

2 The modified theta model and its steady

state

For the dynamics of the membrane potential V (t) of a Type 1 single neuron,
the following type of quadratic integrate and fire (QIF) model with resting
potential and threshold [11] is sometimes used

cm
dV

dt
= gL

(V − VR)(V − VT )

VT − VR

+ I, (2.1)

where cm, VR, VT , gL and I are membrane capacitance, resting potential,
threshold potential, leak conductance and input current, respectively. Values
of these numerical constants used for numerical simulations in this paper are
listed in Table 1, although for mathematical statement, these specific values
are not used. When I = 0, the system has two fixed points V = VR, VT , and
most orbits approach to the stable one VR (if VR < VT ). On the other hand,
if I is larger than some value, two fixed points disappear by a saddle-node
bifurcation and any solution diverges to +∞ in a finite time. We assume
that a neuron fires when V (t) reaches +∞. Then, V (t) is reset to −∞ and
again goes to +∞ periodically.

Next, we consider the large population of neurons with interactions

cm
dVi

dt
= gL

(Vi − VR)(Vi − VT )

VT − VR

+ Ii − gisyn(t)(Vi − Vsyn), i = 1, · · · , N,(2.2)

where Vsyn is a reversal potential and gisyn(t) is an i-th synaptic conductance
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governed by the equation

dgisyn
dt

= −1

τ
gisyn + gpeak

∑
conn

∑
fire

δ(t− tjk). (2.3)

Here, gpeak and τ denote a peak conductance and a decay time, respectively
(see also Table 1). The summation

∑
conn runs over all neurons connected

with the i-th neuron. Thus, it reflects the structure of a network of neurons.
The second summation

∑
fire runs over all times tjk at which a j’s connected

neuron gets firing. Hence, a neuron affects the dynamics of neighboring
neurons when it fires. Eq.(2.2) is known as the Riccati equation which is
extended to a smooth vector field on a compactified phase space S1 (circle),
on which Vi = +∞ is topologically connected with −∞. Specifically, we
introduce the coordinate transformation Vi 7→ θi of the form

Vi =
VR + VT

2
+

VT − VR

2
tan

θi
2
. (2.4)

Then, Eq.(2.2) is rewritten as the MT model introduced in Kotani et al.
[6, 12]

cm
dθi
dt

= −gL cos θi + c1(1 + cos θi)Ii + gisyn(t)(c2(1 + cos θi)− sin θi), (2.5)

where c1 = 2/(VT −VR) and c2 = (2Vsyn−VR−VT )/(VT −VR) are constants.
By this transformation, V = VT , VR, (VT + VR)/2 and ±∞ are mapped to
points θ = π/2,−π/2, 0 and π on a circle, respectively.

Without loss of generality, we can drop cm by rescaling time (Indeed,
typical physiological value of cm is known to be about 1 µF/cm2). For math-
ematical analysis of the dynamics, it is convenient to consider the continuous
limit (Vlasov equation) of (2.5) given by

∂P

∂t
+

∂

∂θ
(vP ) = 0, P = P (t, θ, I)

v(t, θ, I) = −gL cos θ + c1(1 + cos θ)I + gsyn(t)(c2(1 + cos θ)− sin θ),

(2.6)

where P (t, θ, I) is a probability density of neurons on S1 parameterized by
the current I and time t. Further, we assume that a network is the Erdös-
Rényi random graph with the probability of connection p, and consider the
homogenization (averaging with respect to the realization of random graphs)
of Eq.(2.3) given by

dgsyn
dt

= −1

τ
gsyn + gpeak · p ·N

∫
R

v(t, π, I)P (t, π, I)G(I)dI. (2.7)
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N denotes the number of neurons, thus the first summation
∑

conn is replaced
by the number of edges pN . The second summation

∑
fire is replaced by the

above integral that denotes the flux of neurons at θ = π at which they fire.
Here, we suppose that the current I is a random variable drawn from a given
distribution function G(I). We introduce the following notation

f(I) = −1

2
gL +

1

2
c1I +

1

2
c2gsyn(t) +

i

2
gsyn(t)

h(I) = c1I + c2gsyn(t)

A(t) =

∫
R

v(t, π, I)P (t, π, I)G(I)dI = gL

∫
R

P (t, π, I)G(I)dI

µ = gpeak · p ·N,

(2.8)

where A(t) is a firing rate of the population and the relation v(t, π, I) = gL
is used. Then, our system is written as

∂P

∂t
+

∂

∂θ
(vP ) = 0, P = P (t, θ, I)

v(t, θ, I) = f(I)eiθ + h(I) + f(I)e−iθ

dgsyn
dt

= −1

τ
gsyn + µA(t).

(2.9)

In particular, µ = gpeak · p ·N controls the edge density of the network. Our
purpose is to investigate bifurcations of the system from the steady state (de-
synchronous state) to the synchronous collective firing (gamma oscillation)
as the bifurcation parameter µ varies.

In what follows, we assume that
(1) gL, gpeak, c1 are positive and c2 is a negative number (for numerical simu-
lations, we use the specific values shown in Table 1. They are physiologically
plausible for GABAergic neurons [6]), and
(2) G(I) is an even and unimodal function around the average η, which im-
plies G(I + η) = G(−I + η) and G′(I) < 0 (I > η).

Let us derive the steady state (de-synchronous state) (P, gsyn) = (P0, g0)
of the system (2.9). We need the following lemma.

Lemma 2.1. For the quadratic equation

fz2 + hz + f = 0, f ∈ C, h ∈ R,

the roots

z± =
1

2f

(
−h±

√
h2 − 4|f |2

)
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Vi(t) membrane potential unknown variable
gisyn(t) synaptic conductance unknown variable

Ii input current i.i.d. drawn from a distribution G(I)
cm membrane capacitance 1 (µF/cm2)
VR resting potential −62 (mV)
VT threshold potential −55 (mV)
Vsyn reversal potential −70 (mV)
gL leak conductance 0.1 (mS/cm2)
gpeak peak conductance 0.0214 (mS/cm2)
τ decay time 5 (ms)
c1 2/(VT − VR) 2/7
c2 (2Vsyn−VR−VT )/(VT − VR) −23/7
N the number of neurons 800

Table 1: Names of variables and values used for numerical simulations.

satisfy the following properties.

(i) When h2 − 4|f |2 ≤ 0, |z±| = 1.
(ii) When h2 − 4|f |2 > 0, |z+| < 1 and |z−| > 1.

Let (f0(I), h0(I)) denotes (f(I), h(I)) for which the value of the steady
state gsyn(t) = g0 is substituted. Define two sets

Ω1 = {I ∈ R |h0(I)
2 − 4|f0(I)|2 > 0}

Ω2 = {I ∈ R |h0(I)
2 − 4|f0(I)|2 ≤ 0}.

Due to Lemma 2.1, the equation f0(I)e
iθ + h0(I) + f0(I)e

−iθ = 0 has real
solution only when I ∈ Ω2. Hence, using unknown g0, the steady state of the
first equation of (2.9) is given by

P0(θ, I) =


C(I)

f0(I)eiθ + h0(I) + f0(I)e−iθ
(I ∈ Ω1)

δ(θ − θ0(I)) (I ∈ Ω2),

(2.10)

where C(I) is a normalization constant and δ(θ− θ0(I)) is the delta function

supported at θ0(I). θ0(I) satisfies f0(I)e
iθ0(I) + h0(I) + f0(I)e

−iθ0(I) = 0 and
−π < θ0(I) ≤ 0. The normalization condition provides

1 =

∫ 2π

0

C(I)

f0(I)eiθ + h0(I) + f0(I)e−iθ
dθ.
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Changing variables eiθ = z yields

1 =

∮
−iC(I)

f0(I)z2 + h0(I)z + f0(I)
dz =

∮
−iC(I)

f0(I)(z − z+)(z − z−)
dz,

where the integral path is the unit circle. Lemma 2.1 shows z+ is inside the
unit circle while z− is not. Thus, the residue theorem gives

1 =
2πC(I)

f0(I)

1

z+ − z−
⇒ C(I) =

1

2π

√
h0(I)2 − 4|f0(I)|2.

The next task is to calculate g0. When P is in the steady state P0(θ, I), we
have

A(t) = gL

∫
R

P0(π, I)G(I)dI =

∫
Ω1

C(I)G(I)dI + gL

∫
Ω2

δ(π − θ0(I))G(I)dI.

Since θ0(I) ̸= π, the second term in the right hand side disappears. The
steady state gsyn(t) = g0 is given by a solution of the following equation

g0 = τµA(t) =
τµ

2π

∫
Ω1

√
h0(I)2 − 4|f0(I)|2G(I)dI. (2.11)

Changing the variables from I to x by the relation

h0(I)
2 − 4|f0(I)|2 = 2gL(c1I + c2g0)− g20 − g2L =: x (2.12)

yields

g0 =
τµ

4πgLc1

∫ ∞

0

√
x ·G

(
x+ g20 + g2L − 2c2gLg0

2gLc1

)
dx. (2.13)

Further change of variables by x = ω2 gives

g0 =
τµ

4πgLc1

∫ ∞

−∞
ω2 · G̃ (ω) dω, (2.14)

where G̃ is an even function defined by

G̃(ω) = G

(
ω2 + g20 + g2L − 2c2gLg0

2gLc1

)
. (2.15)

The steady state (de-synchronous state) (P0, g0) is given by (2.10) and a
solution of (2.13) or (2.14), though g0 can be calculated only numerically.
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Proposition 2.2. Suppose that G(I) is even and unimodal around the
average η. For any µ ≥ 0, a nonnegative solution g0 = g0(µ) of (2.13)
uniquely exists. g0(µ) is monotonically increasing in µ and g0(µ) → ∞ as
µ → ∞.

Proof. Put

F (z) =
τ

4πgLc1

∫ ∞

0

√
x ·G

(
x+ z2 − 2c2gLz + g2L

2gLc1

)
dx.

Then, g0 is given by the intersection of the line y = z/µ and the curve
y = F (z). Since F (z) > 0 for any z ≥ 0, it is sufficient to show that F ′(z) < 0
for z > 0. Then, F (z) is monotonically decreasing and Proposition is proved.

F ′(z) =
τ

4πgLc1

2z − 2c2gL
2c1gL

∫ ∞

0

√
x ·G′

(
x+ z2 − 2c2gLz + g2L

2gLc1

)
dx.

Because of our assumption for the signs of parameters, the number in the
front of the integral is positive (recall that c2 < 0).

By the assumption for G, G′(I) is an odd function around I = η satisfying
G′(I) < 0 for I > η and G′(η) = 0. Thus, there is a unique number x0 such
that

H(x) = G′
(
x+ z2 − 2c2gLz + g2L

2gLc1

)
is an odd function around x = x0 satisfying H(x) < 0 for x > x0 and
H(x0) = 0. If x0 ≤ 0, then H(x) < 0 for x > 0 and F ′(z) is negative. If
x0 > 0, we decompose the above integral as∫ ∞

0

√
xH(x)dx =

∫ x0

0

√
xH(x)dx+

∫ 2x0

x0

√
xH(x)dx+

∫ ∞

2x0

√
xH(x)dx.

By the assumption, the sum of the first two terms is negative, and the third
term is also negative, which proves that F ′(z) < 0.

3 Ott-Antonsen reduction

For the system (2.9), we expand a solution in a Fourier series. Putting

zk(t, I) =

∫ 2π

0

P (t, θ, I)eikθdθ,
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we rewrite (2.9) as the system of equations of zk(t, I)’s given by

ż1 = i( f(I)z2 + h(I)z1 + f(I) )

żk = ik( f(I)zk+1 + h(I)zk + f(I)zk−1 )

ġsyn = −1

τ
gsyn + µA(t)

A(t) =
gL
2π

∫
R

(
1 +

∞∑
k=1

(z2k + z2k)−
∞∑
k=1

(z2k−1 + z2k−1)

)
G(I)dI.

(3.1)

It is easy to verify that the set in the phase space defined by {zk = zk1 | k =
1, 2 · · · } is an invariant set of this system, on which it is reduced to the
system (Ott-Antonsen reduction [13, 14, 15]). Thus, the reduced equations,
which has been introduced in Ref.[12], are given by

ż1 = i( f(I)z21 + h(I)z1 + f(I) )

ż1 = −i( f(I) z21 + h(I)z1 + f(I) )

ġsyn = −1

τ
gsyn + µA(t)

A(t) =
gL
2π

∫
R

(
1− z1

1 + z1
− z1

1 + z1

)
G(I)dI.

(3.2)

We regard this system as a dynamical system on the Hilbert space H :=
L2(R, G(I)dI)⊕L2(R, G(I)dI)⊕R (the equation for the complex conjugate
z1 is added because L2(R, G(I)dI) is considered as an R-vector space).

Lemma 3.1. The steady state (P0, g0) shown in Section 2 lies on the
invariant set.

Proof. We show that the steady state satisfies zk = zk1 . When I ∈ Ω2,

zk =

∫ 2π

0

δ(θ − θ0(I))e
ikθdθ = eikθ0(I) = zk1 .

When I ∈ Ω1,

zk =

∫ 2π

0

C(I)

f0(I)eiθ + h0(I) + f0(I)e−iθ
eikθdθ.

As in the previous section, this integral is calculated by using the residue
theorem with the definition of C(I) as

zk =
2πC(I)

f0(I)

zk+
z+ − z−

= zk+ = zk1 .
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This proves the lemma.

In what follows, we investigate the linear stability of the steady state
(z1, z1, g0) = (z+(I), z+(I), g0) of Eq.(3.2) given by

z+(I) =
1

2f0(I)

(
−h0(I) +

√
h0(I)2 − 4|f0(I)|2

)
and a positive solution of (2.13). The linearized equation of (3.2) around this
steady state is

d

dt

u
u
v

 =

Q(I) 0 P (I)

0 Q(I) P (I)

R(I) R(I) −1/τ

u
u
v

 := T

u
u
v

 , (3.3)

where 
Q(I) = i

√
h0(I)2 − 4|f0(I)|2,

P (I) =
i

2
(1 + z+)((c2 + i)z+ + c2 − i),

R(I)u = −µgL
2π

∫
R

u

(1 + z+)2
G(I)dI.

Q(I) and P (I) are multiplication operators on L2(R, G(I)dI) and R, respec-
tively, and R(I) is the integral operator on L2(R, G(I)dI). Thus, the above
matrix defines a linear operator T on H. For the linear stability of the steady
state, we will investigate the spectrum of T . The following relations will be
often used.

h0(I)
2 − 4|f0(I)|2 = 2gL(c1I + c2g0)− g20 − g2L, (3.4)

P (I)

(1 + z+)2
=

1

2gL

(√
h0(I)2 − 4|f0(I)|2 + i(c2gL − g0)

)
. (3.5)

4 Delta distribution

First, we consider the simplest case: we suppose that the distribution G(I) =
δ(I − η) is the delta function supported at η. In this case, the integral
operator is not involved and the system (3.2) is reduced to a 3-dim system.
The equation (2.11) to obtain g0 is reduced to

g0 =
µτ

2π

√
h(η)2 − 4|f(η)|2 = µτ

2π

√
2gL(c1η + c2g0)− g20 − g2L.
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The eigen-equation of the linearized system around the steady state (z+(η), z+(η), g0)
is given by

f(λ) := det


λ−Q(η) 0 −P (η)

0 λ−Q(η) −P (η)
µgL
2π

1

(1 + z+(η))2
µgL
2π

1

(1 + z+(η))2
λ+ 1/τ

 = 0. (4.1)

When µ = 0, g0 = 0. Thus, three eigenvalues are given by λ = −1/τ and

λ = ±i
√
2gLc1η − g2L. Since we are interested in the macroscopic oscillation

which will appear through a Hopf bifurcation, we assume that 2c1η−gL > 0;
i.e. there exist two eigenvalues on the imaginary axis when µ = 0.

Proposition 4.1. Suppose η > gL/(2c1) and 1/τ < −c2gL. For any
µ > 0, f(λ) = 0 has a negative real root α and a pair of complex roots
β, γ = β whose real parts are positive. The pair transversely crosses the
imaginary axis at µ = 0 from the left half plane to the right half plane.

Proof. As in Eq.(2.12), we put

x = 2gL(c1η + c2g0)− g20 − g2L =

(
2πg0
τµ

)2

.

With the aid of Eqs.(3.4) and (3.5), we can show that the eigen-equation
(4.1) is rearranged as

f(λ) = λ3 +
1

τ
λ2 + (x+

1

τ
g0)λ+

1

τ
(x+ g20 − c2gLg0) = 0

The relation between roots and coefficients implies

α + β + γ = −1

τ
, αβ + βγ + γα = x+

1

τ
g0, αβγ = −1

τ
(x+ g20 − c2gLg0).

Since all coefficients are positive, it turns out that there are no positive real
roots. By the assumption, we have

f(−1/τ) =
g0
τ
(g0 −

1

τ
− c2gL) > 0,

which implies that there exists a negative real root α satisfying α < −1/τ .
This shows β + γ = −1/τ − α > 0. Hence, if β and γ are real, at least one
of them is positive. This is a contradiction and they should be a complex
pair with positive real parts. The last statement follows from the implicit
function theorem to f(λ) = 0.

Fig.1 represents the motions of eigenvalues as µ increases from zero. The
proposition implies that a Hopf bifurcation occurs at µ = 0 and the gamma
oscillation is stable for any µ > 0.
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Figure 1: (Color online)The motions of eigenvalues as µ increases from zero.

5 Stability analysis 1

In general, the system (3.2) is an infinite dimensional dynamical system on
H and the linear operator T has the continuous spectrum. Let us derive the
eigen-equation of the operator T defined by (see Eq.(3.3))λ−Q(I) 0 −P (I)

0 λ−Q(I) −P (I)

−R(I) −R(I) λ+ 1/τ

u
u
v

 = 0.

The first two equations give u = (λ−Q(I))−1P (I)v. By substituting it into
the third equation, we obtain

λ+
1

τ
= −µgL

2π

∫
R

(
P (I)

(1 + z+)2
1

λ−Q(I)
+

P (I)

(1 + z+)2
1

λ−Q(I)

)
G(I)dI.(5.1)

The factors (λ−Q(I))−1 and (λ−Q(I))−1 suggest that if the support of G is
the whole real axis, which will be assumed in Sec.6, the continuous spectrum
of T is given by the set

{Q(I) | I ∈ R} ∪ {Q(I) | I ∈ R} = iR ∪R<0, (5.2)

that is, the whole imaginary axis and the negative real axis (Fig.2). Because
of the spectrum on the imaginary axis, the steady state looks neutrally stable
in H-topology. In the next section, we will employ the generalized spectral
theory to treat the continuous spectrum.
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(a) (b)

Figure 2: (Color online)(a) The continuous spectrum of the operator T .
(b) The generalized spectrum of T . The dotted lines denote the motion of
generalized eigenvalues and solid lines denote that of usual eigenvalues as µ
increases. See Section 6.

We further simplify Eq.(5.1). When I ∈ Ω2, Q(I) = Q(I) is a real
number. We also have

P (I)

(1 + z+)2
+

P (I)

(1 + z+)2

=
i

2

(
(c2 + i)z+ + c2 − i

1 + z+
− (c2 − i)z+ + c2 + i

1 + z+

)
=

1− |z+|2

|1 + z+|2
.

Due to Lemma 2.1, |z+| = 1 and the above quantity becomes zero. Thus, we
can assume I ∈ Ω1 in Eq.(5.1):

λ+
1

τ
= −µgL

2π

∫
Ω1

(
P (I)

(1 + z+)2
1

λ−Q(I)
+

P (I)

(1 + z+)2
1

λ−Q(I)

)
G(I)dI.

Changing the variables by (2.12) and using the formula (3.5) yield

λ+
1

τ
=

− µ

4πc1

∫ ∞

0

1

2gL

(√
x+ i(c2gL − g0)

λ− i
√
x

+

√
x− i(c2gL − g0)

λ+ i
√
x

)
·G
(
x+ g20 + g2L − 2c2gLg0

2gLc1

)
dx.

Further, we put x = ω2 to obtain

λ+
1

τ
= − µ

4πgLc1

∫ ∞

0

(
ω + i(c2gL − g0)

λ− iω
+

ω − i(c2gL − g0)

λ+ iω

)
G̃(ω)ωdω,

13



where G̃(ω) is defined by Eq.(2.15). Note that G̃(ω) is an even function.
Thus, putting ω 7→ −ω only for the second term gives

λ+
1

τ
= − µ

4πgLc1

∫ ∞

−∞

ω + i(c2gL − g0)

λ− iω
ωG̃(ω)dω, (5.3)

Finally, by using the relation

ω2

λ− iω
= iω − iωλ

λ− iω
,

we obtain

λ+
1

τ
=

µ

4πgLc1
(λ+ g0 − c2gL)

∫ ∞

−∞

iω

λ− iω
G̃(ω)dω. (5.4)

When µ = 0, there are no interactions of neurons and de-synchronous state
should be asymptotically stable. Thus, one may expect the existence of
eigenvalues on the left half plane. Unfortunately, this is not true.

Lemma 5.1. When µ = 0, there are no eigenvalues with nonzero real
parts.

Proof. The right hand side of Eq.(5.4) is a bounded holomorphic function
in λ on the right and left half planes. Thus, a possible eigenvalue for µ = 0 is
only λ = −1/τ . However, it is not a true eigenvalue because it is embedded in
the continuous spectrum and the corresponding eigenvector does not belong
to H.

Lemma 5.2. Suppose µ > 0.
(i) If λ is an eigenvalue, so is its complex conjugate.
(ii) There are no eigenvalues on the real axis.

This lemma implies that if a bifurcation occurs at some µ > 0, it will be
a Hopf bifurcation.

Proof. Putting λ = x+ iy in (5.3), we obtain
x+

1

τ
= − µ

4πgLc1

∫ ∞

−∞

xω + (c2gL − g0)(y − ω)

x2 + (y − ω)2
ωG̃(ω)dω

y = − µ

4πgLc1

∫ ∞

−∞

ω2 − yω + (c2gL − g0)x

x2 + (y − ω)2
ωG̃(ω)dω.

Since G̃ is an even function, it is easy to verify that if (x, y) is a solution, so
is (x,−y). Further, y = 0 always satisfies the second equation. Then, the
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first equation gives

x+
1

τ
= − µ

4πgLc1

∫ ∞

−∞

x− c2gL + g0
x2 + ω2

ω2G̃(ω)dω

If x > 0, the left hand side is positive, while the right hand side is negative. If
x ≤ 0, it is embedded in the continuous spectrum and not a true eigenvalue.

6 Stability analysis 2 (generalized spectral the-

ory)

In Section 5, the spectrum of the operator T on H = L2(R, G(I)dI) ⊕
L2(R, G(I)dI) ⊕R is conisdered: The operator T has the continuous spec-
trum on the imaginary axis and there are no eigenvalues on the left half plane
when µ = 0. This implies that the de-synchronous state is neutrally stable
but not asymptotically stable in the topology of H. However, the unknown
function P (t, θ, I) of Eq.(2.9) is not a L2 function but a distribution. Thus,
it is better to study the dynamics in a weaker topology rather than that of
H. For this purpose, we employ the generalized spectral theory in Section 6.
The generalized spectral theory was developed by Chiba [8, 9] to treat prob-
lems related to continuous spectra. He defined generalized eigenvalues and
proved that it plays a similar role to usual eigenvalues. In this section, a brief
review of the generalized spectral theory is given. All proofs are included in
[9]. Then, we will show that the operator T has the generalized eigenvalues
and they induce the stability and bifurcations of the de-synchronous state.

For a given function f(ω) on R, let us consider the function

A(λ) =

∫
R

1

λ− iω
f(ω)dω

of λ ∈ C. It is holomorphic on the right half plane, though singular on the
imaginary axis in general because of the factor (λ− iω)−1. However, if f(ω)
is a “nice” function, A(λ) may be well-defined on the imaginary axis. The
following lemma known as Sokhotskii formula [16] is fundamental.

Lemma 6.1. If f(ω) is a holomorphic function around the imaginary
axis, A(λ) is well-defined on the imaginary axis and it has an analytic con-
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tinuation from the right half plane to the left half plane given by

A(λ) =



∫
R

1

λ− iω
f(ω)dω (Re(λ) > 0)

lim
Re(λ)→0+

∫
R

1

λ− iω
f(ω)dω (Re(λ) = 0)∫

R

1

λ− iω
f(ω)dω + 2πf(−iλ) (Re(λ) < 0).

(6.1)

In [9], this idea is applied not to functions but to linear operators. Let T be a
linear operator defined on a Hilbert space H having the continuous spectrum
on the imaginary axis. By the definition of the spectrum set, the resolvent
operator (λ−T )−1 is singular on the imaginary axis. To consider the analytic
continuation of (λ−T )−1, let X ⊂ H be a “nice” dense subspace of H and X ′

be its dual space (the set of continuous linear functionals onX). If a topology
of X is stronger than that of H, the dual space is larger than H and we have
a triplet X ⊂ H ⊂ X ′, which is called the Gelfand triplet. We can prove
for some class of operators that if the resolvent (λ− T )−1 is regarded as an
operator from X into X ′, it has an analytic continuation from the right half
plane to the left half plane beyond the continuous spectrum on the imaginary
axis. If the analytic continuation has a singularity on the left half plane, it
is called a generalized eigenvalue. Namely, if the domain of the resolvent
is restricted to a “nice” space X (which depends on the problem at hand.
See [9, 10] for several examples), then the continuous spectrum disappears.
Instead of the continuous spectrum, generalized eigenvalues appear on the
left half plane. An associated eigenvector of a generalized eigenvalue is not
included in H but an element of the dual space X ′. Thus, we cannot find a
generalized eigenvalue in the Hilbert space theory. A generalized eigenvalue
plays a similar role to a usual eigenvalue. If it exists on the left half plane,
it induces an exponential decay of a solution of a linear system du/dt = Tu
with respect to the topology of X ′, which is weaker than that of H.

For our operator T given in (3.3), the resolvent has an analytic continu-
ation to the left half plane if the domain is restricted to a certain space of
holomorphic functions. The formula to give generalized eigenvalues is easily
obtained from (5.4) by applying Lemma 6.1. For it, we assume that the func-
tion G(I) defined on R has a continuation to the complex plane and regard
it as a function on C.

Proposition 6.2. Suppose that G(I) has a meromorphic continuation
to the complex plane. The analytic continuation of the eigen-equation (5.4)
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from the right half plane to the left half plane is given by

λ+
1

τ
=

µ

4πgLc1
(λ+ g0 − c2gL)

∫
iω

λ− iω
G̃(ω)dω (Re(λ) > 0)

µ

4πgLc1
(λ+ g0 − c2gL)

(∫
iω

λ− iω
G̃(ω)dω + 2πλG̃(−iλ)

)
(Re(λ) < 0)

(6.2)

A root of the first line is a usual eigenvalue, while that of the second line
gives a generalized eigenvalue of T . It is easy to confirm that if λ is a root,
then so is the complex conjugate λ.

Theorem 6.3. Suppose that G(I) has a meromorphic continuation to
the complex plane without poles on the real axis.

(i) When µ = 0, T has generalized eigenvalues λ = λ(µ) on the left half
plane. One of them is λ = −1/τ , and the others are determined by poles of

the function G̃(ω) on the upper half plane.
(ii) Suppose that η > gL/(2c1) and 1/τ < −c2gL. If the variance of G(I)
is sufficiently small, generalized eigenvalues λ(µ) cross the imaginary axis
transversely from left to right, and become usual eigenvalues.
(iii) If µ is sufficiently large, there are no (generalized) eigenvalues on the
region {λ |Re(λ) ≥ −1/τ}. In particular, there are no eigenvalues on the
right half plane.

See Fig.2 (b) for a schematic picture of the motions of generalized eigen-
values. This result implies that a pair of (generalized) eigenvalues crosses
the imaginary axis at least twice, so that a Hopf bifurcation occurs twice
(see also Lemma 5.2). At the first bifurcation, the stable synchronous firing
state (gamma oscillation) bifurcates from the de-synchronous state, and at
the second bifurcation, it disappears and the de-synchronous state becomes
stable again. It is remarkable that if the edge density µ of the network is too
large, synchronization does not occur.

Proof. (i) λ = −1/τ is a trivial solution of (6.2) when µ = 0. To find

another solution for µ = 0, note that if G̃(ω) has a pole ω∗ on the upper half

plane, then iω∗ is a pole of G̃(−iλ) on the left half plane. Let us express the
Laurent series as

G̃(−iλ) =
dp

(λ− iω∗)p
+

dp−1

(λ− iω∗)p−1
+ · · ·

for some positive integer p. Substituting it into the second line of (6.2) and
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multiplying the factor (λ− iω∗)
p give

µ

4πgLc1
(λ+ g0 − c2gL) · 2πλdp +O(λ− iω∗) = 0,

as λ → iω∗. Here note that the integral in (6.2) is bounded at λ = iω∗
because of Lemma 6.1. This proves that iω∗ is a solution for µ = 0.

(ii) Since G(I − η) is an even and unimodal function around the average
η, it converges to the delta function supported at η as the variance tends to
zero with respect to the topology of Schwartz distributions. Thus, Eq.(5.4)
converges to the eigen-equation for the delta function (4.1). Fix two values
0 < µ1 << 1 and 1 << µ2 < ∞. On the closed interval [µ1, µ2], the trajectory
of a (generalized) eigenvalue λ(µ) is uniformly approximated by that of the
eigenvalue for the delta function case if the variance is sufficiently small.
Then, the statement follows from Proposition 4.1.

(iii) Eq.(5.4) is also written as

λ+
1

τ
=

−µ

4πgLc1
(λ+ g0 − c2gL)

∫ ∞

−∞

(
1− λ

λ− iω

)
G̃(ω)dω.

By Proposition 2.2, g0(µ) → ∞ as µ → ∞. By changing the variable as
ω = g0ω̂, the above integral is rewritten as

g0

∫ ∞

−∞

(
1− λ

λ− ig0ω̂

)
G

(
g20(ω̂

2 + 1) + g2L − 2c2gLg0
2gLc1

)
dω̂.

This shows that the second term
∫∞
−∞ λ/(λ − iω)G̃(ω)dω is infinitesimally

smaller than the first term
∫∞
−∞ G̃(ω)dω as g0 → ∞. Hence, considering only

leading terms as µ → ∞, we obtain

λ+
1

τ
=

−µ

4πgLc1
(λ+ g0)

∫ ∞

−∞
G̃(ω)dω + o(µ).

If Re(λ) > −1/τ , the real part of the left hand side is positive, while that of
the right hand side is negative. This proves that there are no eigenvalues on
the region Re(λ) > −1/τ . The same argument is also valid for the second
line of (6.2). Thus, there are no generalized eigenvalues on the same region.

Remark. If G̃(ω) does not have poles on the upper half plane, there are
no generalized eigenvalues except −1/τ when µ = 0. Then, the statement
(ii) implies that generalized eigenvalues pop out from the infinity ∞ to the
left half plane when µ = +0, and they approach to the imaginary axis as the
variance tends to zero for fixed µ > 0.

Although the Lorentzian distribution G(I) = (∆/π)/((I−η)2+∆2) does
not have the variance, the statement (ii) is applicable because it converges
to the delta function as ∆ → 0.
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7 Numerical results

Here we consider the Lorentzian distribution G(I) = (∆/π)/((I − η)2 +∆2).
Then, the reduced equation (Eq. (3.2)) can be further simplified by virtue of
the residue theorem. We also introduce the order parameter α(t) ∈ C as

α(t) =

∫
R

∫ 2π

0

P (t, θ, I)eiθG(I)dθdI. (7.1)

Ott Antonsen ansatz and the residue theorem yield the following relations

α(t) = z1(t, η + i∆), (7.2)

A(t) =
gL
2π

[
1 + 2Re

(
−α(t)

1 + α(t)

)]
. (7.3)

By using these relations, the dynamics of the order parameter and the synap-
tic conductance are described as

α̇ = i( f(η + i∆)α2 + h(η + i∆)α + f(η + i∆) )

ġsyn = −1

τ
gsyn + µA(t)

A(t) =
gL
2π

[
1 + 2Re

(
−α(t)

1 + α(t)

)]
,

(7.4)

which has been presented in Ref. [12]. We employ bifurcation analyses for
the equations. Here, we adopt (η,∆) = (2, 0.05) and set µ as a bifurcation
parameter. The bifurcation diagram is shown in Fig. 3(a). We can see that
as µ increases, the populational gamma oscillation emerges at µ ∼ 0.18 via
Hopf bifurcation. The oscillatory state disappears by further increase of µ
at µ ∼ 4.7.

These dynamics are confirmed by direct numerical computations of the in-
dividual neuron (Eq. (2.5)) with homogenized synaptic dynamics (Eq. (2.7))
to avoid the effects of random variation and finite size effect that appear the
individual network structure. We show raster plots of individual firings with
µ = 8.6 ·10−2, 3.2, and 15.0 in Figs. 3(b-1),(c-1), and (d-1), respectively. The
vertical axis is a neuron index that is sorted in ascending order of I. We can
see that the emergence and disappearance of the populational oscillation co-
incides with the bifurcation analysis of the macroscopic equation (Eq. (7.4)).
Additionally, we show time-course of g with µ = 8.6 · 10−2, 3.2, and 15.0 in
Figs. 3(b-2),(c-2), and (d-2), respectively. The ferquency of the oscillation in
Figs. 3(c-2) is 34 Hz, therefore, it is gamma frequency oscillation. Numerical
results for the individual neuron model (Eq. (2.5) and (2.7)) well match to
those for the macroscopic equation (Eq. (7.4)).
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Figure 3: (Color online)(a) Bifurcation diagram of Eq. (7.4). The green
line is a stable steady state and the red one is an unstable one. The blue
lines indicate the upper and lower bounds of the gamma oscillation. (b-1)
Raster plot with µ = 8.6 · 10−2, (b-2) Time-course of the conductance g with
µ = 8.6 · 10−2. The blue line is a result of the individual neuron model
(Eq. (2.5) and (2.7)) and the red line is that of the macroscopic equation
(Eq. (7.4)). (c-1) Raster plot with µ = 3.2, (c-2) Time-course of g obtained
by the neuron model (blue) and the macroscopic equation (red) with µ = 3.2.
(d-1) Raster plot with µ = 15.0, (c-2) Time-course of g obtained by the
neuron model (blue) and the macroscopic equation (red) with µ = 15.0.
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8 Discussion

For the analysis of populational neuronal firings with steady-states or slow
frequency oscillations, it is effective to use the firing rate model, such as
Wilson-Cowan model [17], derived by the adiabatic approximation. On the
other hand, for analysis of oscillations with high frequency such as gamma
oscillations, the firing rate model is not appropriate as an approximation [18].
Instead, Vlasov equation of the MT model posesses the dynamics of distribu-
tion itself. This is why we utilized the MT model for the analyses of gamma
oscillations. Although some studies have analyzed the coupled dynamics of
the conventional theta neuron model [14, 15, 19, 20], the strength of using
the MT model lies in its ability to evaluate the collective dynamics under
synaptic interactions with physiologically appropriate conductance and re-
versal potential.

The inhibitory synaptic interactions by GABAergic neurons are known
to generate a macroscopic oscillation in the gamma frequency range, which is
named ING (interneuron gamma oscillation) [1, 5]. In addition, synaptic con-
nectivity in the cerebral cortex is different from individual to individual and
depends on the developmental stage. It has been reported that the synaptic
connections increase in early phase of development followed by decrease by
activity-dependent synaptic pruning [21, 22, 23].

Therefore, we investigate the relationship between the synaptic connectiv-
itiy and macroscopic gamma oscillations in the population of the inhibitory
neurons under meromorphic function G(I) that is even and unimodal around
the average and has no poles on the real axis. If the variance of G(I) is suffi-
ciently small, the generalized spectral theory indicate that the populational
gamma oscillation emerges only when the synaptic connectivity has a value
within an approariate range, which is confirmed by the numerical bifurcation
analysis under the Lorentzian distribution for G(I). As shown in Fig. 3(c-2),
the macroscopic oscillation with frequency of 33.6 Hz is observed, which is
within the range of gamma oscillation (30–80 Hz). In addition, the dynam-
ics of two asynchronous states by the numerical computations (Fig. 3(b-1)
and (d-1)) look very different. In the asynchronous state with smaller µ,
almost every neuron fires aperiodically (Fig. 3(b-1)). On the contrary, in
the asynchronous state with larger µ, only partial population fires and oth-
ers keep silent (Fig. 3(b-1)). We could say that normal neuronal populations
avoid the latter state that has excess connections between inhibitory neurons.
Besides biological plausibility, the second bifurcation seems mathematically
meaningful. The generalized spectral theory indicates that these transitions
of gamma oscillations are introduced by the nontrivial motion of the pair of
the generalized eigenvalues that cross the imaginary axis twice. Remarkably,
both types of asynchronous state are well characterized by the generalized
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eigenvalues on the left half plane.
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