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Abstract

Lie theory is applied to perturbation problems of ordinary differential equations to con-
struct approximate solutions and invariant manifolds according to Iwasa and Nozaki’s RG
approach [Iwasa, Nozaki, Progr. Theoret. Phys. 116 (2006)]. It is proved that asymptotic
behavior of solutions are obtained from the Lie equations even if original equations have no
symmetries. Normal forms of the Lie equations are introduced to investigate existence of
invariant manifolds.

1 Introduction

Methods for studying differential equations by means of symmetries have been well devel-
oped and known as Lie theory. If a differential equation is invariant under the action of a
Lie group, a family of solutions are obtained from a special solution [12,15,16]. However,
if one’s purpose is to construct approximate solutions not exact solutions, a given equation
need not to be exactly invariant under the action of a Lie group.

Baikov, Gazizov and Ibragimov [18] introduced approximate symmetries to obtain ap-
proximate solutions of differential equations. Cicogna and Gaeta [10] investigated the re-
lation between approximate symmetries and normal forms of vector fields. Gaeta et al.
[11,12] also proposed asymptotic symmetries which provide asymptotic behaviors of solu-
tions. Iwasa and Nozaki [13] proposed the Lie equation to construct group invariant so-
lutions of a perturbation problem of the form dx/dt = f (x) + εg(x), where ε is a small
parameter. What is remarkable in their paper is that the parameter ε is also moved by an
approximate Lie group action to obtain approximate solutions of the problem from an exact
solution of the unperturbed problem dx/dt = f (x). Though many perturbation techniques
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for ordinary differential equations have been developed so far [7], a main advantage of meth-
ods based on Lie theory is that they are easily extended to methods for partial differential
equations [11,12,18] and difference equations [14].

The purpose of this article is to give the mathematical basis of Iwasa and Nozaki’s
method [13,20]. The Lie equation is defined by means of Lie theory and it is proved that a
solution of the Lie equation approximates an exact solution of a given equation of the form
dx/dt = f (x) + εg(x, ε). A normal form of the Lie equation is also introduced to transform
the Lie equation into a simple form. If the unperturbed term f (x) is linear, it turns out that a
normal form of the Lie equation can be calculated systematically. Further, it will be proved
that a normal form of the Lie equation provides invariant manifolds of a given equation as
well as approximate solutions under appropriate assumptions. While the theory of normal
forms for vector fields have been well developed [9, 19, 21], a normal form of the Lie equa-
tion provides a new approach to perturbation problems because the independent variable of
the Lie equation is ε, not time t.

A few papers called methods based on Lie theory the renormalization group (RG) method
[13,15] because of some analogy with the RG method in quantum field theory. We avoid
using such a terminology because it may be confused with the Chen Goldenfeld and Oono’s
RG method (CGO RG method) [2,3,4,7], which is also one of the perturbation methods for
differential equations. Nevertheless some relation between our method and the CGO RG
method is shown in Section 3.4. In this article, Iwasa and Nozaki’s method is called the
perturbative Lie theory.

This article is organized as follows: In Sec.2, we demonstrate our idea on the perturbative
Lie theory. The Lie equation is defined and it will be proved that it provides approximate
solutions for a given equation. In Sec.3, we consider perturbed linear systems. A normal
form of the Lie equation will be introduced and a main theorem of this article on existence
of invariant manifolds will be proved through the CGO RG method. Sec.4 presents a few
examples.

2 Perturbative Lie theory

In this section, the perturbative Lie theory is developed according to Iwasa and Nozaki [13].
Let us consider a system of differential equations on Rn of the form

dx
dt
= ẋ = f (x) + εg(x, ε), x ∈ Rn, (2.1)

where ε ∈ R is a small parameter and f and g are C∞ vector fields on Rn. We suppose that
g(x, ε) is C∞ in ε and expanded in a formal Taylor series as

ẋ = f (x) + εg1(x) + ε2g2(x) + ε3g3(x) + · · · . (2.2)

Let ϕt be the flow of the unperturbed system ẋ = f (x); that is, ϕt(x0) is a solution of the
system ẋ = f (x) through x0 at t = 0. For Eq.(2.1), we consider the associated system on
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Rn × R of the form {
ẋ = f (x) + ξg(x, ξ),
ξ̇ = 0.

(2.3)

Note that special solutions of Eq.(2.3) satisfying ξ = 0 and ξ = ε are, respectively, solutions
of the unperturbed system and Eq.(2.1).

Suppose that a one-parameter group H = {hτ | τ ∈ R} acts on the (t, x, ξ) space as

hτ(t, x, ξ) = (vτ(t, x, ξ), uτ(t, x, ξ), ξ + τ), τ ∈ R, (2.4)

where vτ : R × Rn × R→ R and uτ : R × Rn × R→ Rn are C∞ maps. Let

X =
∂

∂ξ
+ ψ(t, x, ξ)

∂

∂t
+

n∑
j=1

φ j(t, x, ξ)
∂

∂x j
, x = (x1, · · · , xn) (2.5)

be the infinitesimal generator of the action of H. Then, v = vτ(t, x, ξ) and u = uτ(t, x, ξ) are
solutions of the initial value problem

d
dτ

(
v
u

)
=

(
ψ(v, u, ξ + τ)
φ(v, u, ξ + τ)

)
, v|τ=0 = t, u|τ=0 = x, (2.6)

where φ = (φ1, · · · , φn).
Now we suppose that Eq.(2.3) is invariant under the action of H (this assumption will be

removed later). Then, the action hτ transforms a solution of Eq.(2.3) into another solution
of Eq.(2.3) (see Olver [16]). In particular, the graph (t, ϕt(x0), 0) of a solution of Eq.(2.3) is
transformed as

hτ(t, ϕt(x0), 0) = (vτ(t, ϕt(x0), 0), uτ(t, ϕt(x0), 0), τ). (2.7)

Putting τ = ε yields

hε(t, ϕt(x0), 0) = (vε(t, ϕt(x0), 0), uε(t, ϕt(x0), 0), ε). (2.8)

Since the right hand side of Eq.(2.8) is a graph of a solution of Eq.(2.1), we can obtain a
solution of Eq.(2.1) if we know vε, uε and ϕt. Since v = vε(t, x, 0) and u = uε(t, x, 0) satisfy
the initial value problem

d
dε

(
v
u

)
=

(
ψ(v, u, ε)
φ(v, u, ε)

)
, v|ε=0 = t, u|ε=0 = x, (2.9)

we expect that qualitative properties of the solution (2.8) are obtained from those of the
vector field (ψ, φ) on the (v, u) space. The system (2.9) is called the Lie equation.

In what follows, we consider constructing ψ and φ. According to Eq.(2.5), the first
prolongation of the infinitesimal generator X becomes

P(1)X =
∂

∂ξ
+ ψ(t, x, ε)

∂

∂t
+

n∑
j=1

φ j(t, x, ξ)
∂

∂x j
+

n∑
j=1

φ(1)
j (t, x, ẋ, ξ)

∂

∂ẋ j
, (2.10)
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where φ(1)
j is defined as

φ(1)
j (t, x, ẋ, ξ) =

∂φ j

∂t
+

n∑
k=1

∂φ j

∂xk
ẋk −

⎛⎜⎜⎜⎜⎜⎝∂ψ∂t
+

n∑
k=1

∂ψ

∂xk
ẋk

⎞⎟⎟⎟⎟⎟⎠ ẋ j. (2.11)

Then, Eq.(2.3) is invariant under the action of H if and only if it satisfies

P(1)X(ẋ − f (x) − ξg(x, ξ))
∣∣∣∣
ẋ= f (x)+ξg(x,ξ)

= 0, (2.12)

see Olver [16] for the proof. This equality provides

−g(x, ξ) − ξ∂g
∂ξ

(x, ξ) −
(
∂ f
∂x

(x) + ξ
∂g
∂x

(x, ξ)

)
φ(t, x, ξ) +

∂φ

∂x
(t, x, ξ)( f (x) + ξg(x, ξ))

+
∂φ

∂t
(t, x, ξ) −

(
∂ψ

∂t
(t, x, ξ) +

∂ψ

∂x
(t, x, ξ)( f (x) + ξg(x, ξ))

)
( f (x) + ξg(x, ξ)) = 0. (2.13)

Let us expand ψ and φ as

ψ(t, x, ξ) = ψ(0)(t, x) + ξψ(1)(t, x) + ξ2ψ(2)(t, x) + · · · , (2.14)

φ(t, x, ξ) = φ(0)(t, x) + ξφ(1)(t, x) + ξ2φ(2)(t, x) + · · · . (2.15)

Substituting them into Eq.(2.13) and equating the coefficient of each ξk, we obtain the system
of partial differential equations (PDEs) :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ(0)

∂t
=
∂ f
∂x

(x)φ(0) − ∂φ
(0)

∂x
f (x) + g1(x) +

(
∂ψ(0)

∂t
+
∂ψ(0)

∂x
f (x)

)
f (x),

∂φ(1)

∂t
=
∂ f
∂x

(x)φ(1) − ∂φ
(1)

∂x
f (x) +

∂g1

∂x
(x)φ(0) − ∂φ

(0)

∂x
g1(x) + 2g2(x)

+

(
∂ψ(1)

∂t
+
∂ψ(1)

∂x
f (x)

)
f (x) +

∂ψ(0)

∂t
g1(x) +

∂ψ(0)

∂x
g1(x) · f (x) +

∂ψ(0)

∂x
f (x) · g1(x),

...
(2.16)

This system can be solved with respect to φ(k)’s for arbitrarily given ψ(0), ψ(1), · · · .
If g(x, ξ) is Cω with respect to ξ and invariant under the Cω action of the group H, the se-

ries (2.15) obtained by solving (2.16) converges for appropriate choices of ψ(0), ψ(1), · · · .
However, we do not need such an assumption because our purpose in this article is to
construct approximate solutions of Eq.(2.1). For this purpose, it is sufficient to calculate
Eq.(2.15) up to some finite order of ξ and we need not assume that Eq.(2.3) is invariant
under the action of H.

In what follows, we suppose that ψ = 0 for simplicity. This implies that vτ(t, x, ξ) = t
and the action of H does not change the time t. In this case, Eq.(2.13) provides a system of
linear PDEs of φ(k) of the form

∂φ(k)

∂t
=
∂ f
∂x

(x)φ(k) − ∂φ
(k)

∂x
f (x) + Hk(t, x), (2.17)
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where Hk are defined to be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(t, x) = g1(x),

H1(t, x) =
∂g1

∂x
(x)φ(0)(t, x) − ∂φ

(0)

∂x
(t, x)g1(x) + 2g2(x),

...

Hk(t, x) =
k∑

j=1

(
∂gj

∂x
(x)φ(k− j)(t, x) − ∂φ

(k− j)

∂x
(t, x)gj(x)

)
+ (k + 1)gk+1(x),

...

(2.18)

A solution of Eq.(2.17) satisfying the initial condition φ(k)(0, x) = h(k)(x) is given by

φ(k)(t, x) =

(
∂ϕ−t

∂x
(x)

)−1

h(k)(ϕ−t(x)) +

(
∂ϕ−t

∂x
(x)

)−1 ∫ t

0

(
∂ϕs

∂x
(ϕ−t(x))

)−1

Hk(s, ϕs−t(x))ds,

(2.19)
where ϕt is the flow of the vector field f as was mentioned. With these φ(k)’s, we solve the
Lie equation

∂u
∂ε
= φ(0)(t, u) + εφ(1)(t, u) + · · · + εmφ(m)(t, u), (2.20)

truncated at an εm-order term with the initial condition u|ε=0 = ϕt(x0). Then a solution
u = u(t, ε) gives an approximate solution of Eq.(2.1). We call Eq.(2.20) the m-th order
Lie equation. Note that functions h(k)(x) in Eq.(2.19) are arbitrarily fixed to prove Thm.2.1
below. Such non-uniqueness of reduced systems in perturbation theory also arises in normal
forms [19,21-23], RG equations [5] and other singular perturbation methods [24]. In the
next section, h(k) will be chosen so that the right hand side of the Lie equation Eq.(2.20)
becomes a polynomial in t when gi’s are polynomial vector fields.

Theorem 2.1. Let u = u(t, ε) be a solution of the m-th order Lie equation (2.20) with
u(t, 0) = ϕt(x0) and x(t) a solution of Eq.(2.1) with x(0) = u(0, ε). Then, there exist positive
numbers C and T = T (ε) such that the inequality

||x(t) − u(t, ε)|| < Cεm+1 (2.21)

holds for 0 ≤ t ≤ T (ε).
The function T (ε) depends on problems but is larger than O(1) in general. In Sec.3.4,

we will show that if the unperturbed term f (x) is linear and written as f (x) = Ax with the
matrix A all of whose eigenvalues lie on the imaginary axis, then T (ε) ∼ O(1/ε).

Proof. Eq.(2.20) is expressed as

∂u
∂ε
= φ(t, u, ε) + εm+1r(t, u, ε), (2.22)

with some C∞ function r(t, u, ε). Differentiating the both sides of the above with respect to
t, we obtain

∂2u
∂ε∂t

=
∂φ

∂t
(t, u, ε) +

∂φ

∂u
(t, u, ε)

∂u
∂t
+ εm+1 dr

dt
(t, u(t, ε), ε). (2.23)

5



Substituting Eq.(2.13) yields

∂2u
∂ε∂t

= g(u, ε) + ε
∂g
∂ε

(u, ε) +

(
∂ f
∂u

(u) + ε
∂g
∂u

(u, ε)

)
φ(t, u, ε)

−∂φ
∂u

(t, u, ε) ( f (u) + εg(u, ε)) +
∂φ

∂u
(t, u, ε)

∂u
∂t
+ εm+1 dr

dt
(t, u(t, ε), ε)

=
∂

∂ε
( f (u(t, ε)) + εg(u(t, ε), ε)) +

∂φ

∂u
(t, u, ε)

(
∂u
∂t
− f (u) − εg(u, ε)

)

−εm+1

(
∂ f
∂u

(u) + ε
∂g
∂u

(u, ε)

)
r(t, u, ε) + εm+1 dr

dt
(t, u(t, ε), ε). (2.24)

Let us put

U(t, ε) =
∂u
∂t

(t, ε) − f (u(t, ε)) − εg(u(t, ε), ε). (2.25)

Since u(t, 0) = ϕt(x0), U(t, 0) = 0. Then Eq.(2.24) is rewritten as

∂U
∂ε
=
∂φ

∂u
(t, u, ε)U + εm+1r̃(t, ε), (2.26)

where r̃(t, ε) is a C∞ function determined by the last two terms in Eq.(2.24). Let X(t, ε) be
the fundamental matrix for the linear system ∂U/∂ε = ∂φ/∂u · U such that X(t, 0) = id.
Then, Eq.(2.26) is solved as

U(t, ε) = X(t, ε)
∫ ε

0
X(t, η)−1ηm+1r̃(t, η)dη. (2.27)

This proves that there exists a C∞ function w(t, ε) such that

U(t, ε) = εm+2w(t, ε). (2.28)

Now we obtain the system

∂u
∂t
= f (u) + εg(u, ε) + εm+2w(t, ε). (2.29)

By changing the coordinates as x = ϕt(x̂) and u = ϕt(û), Eqs.(2.1) and (2.29) are reduced to
the systems

∂x̂
∂t
= ε

(
∂ϕt

∂x
(x̂)

)−1

g(ϕt(x̂), ε), (2.30)

and
∂û
∂t
= ε

(
∂ϕt

∂x
(û)

)−1

g(ϕt(û), ε) + εm+2

(
∂ϕt

∂x
(û)

)−1

w(t, ε), (2.31)

respectively. Let L1 > 0 be an ε-independent Lipschitz constant of the function (∂ϕt(x)/∂x)−1g(ϕt(x), ε)
on the domain 0 ≤ t ≤ T1(ε) and x ∈ K, where K ⊂ Rn is a sufficiently large compact sub-
set. Let L2 > 0 be an ε-independent constant such that ||(∂ϕt(x)/∂x)−1w(t, ε)|| < L2 for
0 ≤ t ≤ T2(ε). Then Eqs.(2.30) and (2.31) provide

||x̂(t) − û(t, ε)|| < εL1

∫ t

0
||x̂(s) − û(s, ε)||ds + εm+2L2t, (2.32)
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for 0 ≤ t ≤ min{T1,T2}. Now the Gronwall lemma proves the inequality

||x̂(t) − û(t, ε)|| < L2

L1
εm+1(eεL1t − 1), (2.33)

which implies that ||x̂(t) − û(t, ε)|| < Ĉεm+1 for 0 ≤ t ≤ min{T1,T2, 1/ε} with some positive
constant Ĉ. Suppose that ϕt is bounded for 0 ≤ t ≤ T3. Then, we obtain the inequality
||x(t) − u(t, ε)|| < Cεm+1 for 0 ≤ t ≤ min{T1,T2,T3, 1/ε}. This proves Theorem 2.1. �

If the unperturbed system ẋ = f (x) is nonlinear, to calculate Eq.(2.19) is difficult in
general. In the next section, we consider the case that f (x) is linear, which enables us to
investigate properties of the Lie equation (2.20) in detail.

3 Lie equations for perturbed linear systems

In this section, we suppose that the unperturbed term in Eq.(2.1) is linear and written as
f (x) = Ax, where A is an n × n constant matrix. In Sec.3.1, we introduce a decomposition
of the space of C∞ vector fields and P-Q operators to simplify φ(k) given in Eq.(2.19). In
Sec.3.2, we calculate φ(0) for the case that A is not diagonalizable and define a zeroth order
normal form of the Lie equation. In Sec.3.3, we assume that A is a diagonal matrix. In this
case, a normal form of the Lie equation up to all order will be obtained. In Sec 3.4, we
investigate the special case that all eigenvalues of A lie on the imaginary axis. In this case, it
will be proved that invariant manifolds of Eq.(2.1) are obtained from those of a normal form
of the Lie equation.

3.1 Decomposition of the space of C∞ vector fields

We consider a system of the form

ẋ = Ax + εg1(x) + ε2g2(x) + · · · , x ∈ Rn, (3.1)

where ε ∈ R is a small parameter, A is an n × n constant matrix and gi(x), i = 1, 2, · · · are
C∞ vector fields. We assume that A is of the Jordan form for simplicity.

In this case, Eqs.(2.17) and (2.19) are written as

∂φ(k)

∂t
= Aφ(k) − ∂φ

(k)

∂x
Ax + Hk(t, x), (3.2)

φ(k)(t, x) = eAth(k)(e−Atx) + eAt

∫ t

0
e−AsHk(s, e

A(s−t)x)ds, (3.3)

respectively. In particular, φ(0) is given by

φ(0)(t, x) = eAth(0)(e−Atx) + eAt

∫ t

0
e−Asg1(eA(s−t)x)ds. (3.4)
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Let us choose the undetermined function h(0) so that φ(0) is polynomial in t when g1 is a
polynomial vector field. For this purpose, we define the operators PI ,PK and Q as follows:

Let P0(Rn) be the set of polynomial vector fields on Rn whose degrees are equal to or
larger than one. Define the linear map LA on P0(Rn) to be

LA(F)(x) =
∂F
∂x

(x)Ax − AF(x). (3.5)

Then, the direct sum decomposition

P0(Rn) = ImLA ⊕ KerLA∗ (3.6)

holds, where A∗ is the conjugate transpose of A. In particular if A = diag (λ1, · · · , λn) is a
diagonal matrix, ImLA and KerLA∗ are given by

ImLA = span{ xq1

1 xq2

2 · · · xqn
n e j |

n∑
k=1

λkqk � λ j}, (3.7)

KerLA∗ = {F ∈ P0(Rn) | F(eAtx) = eAtF(x)}
= span{ xq1

1 xq2

2 · · · xqn
n e j |

n∑
k=1

λkqk = λ j}, (3.8)

respectively, where e1, · · · , en are the canonical basis of Rn (see Chow, Li and Wang [9] for
the proof). Here we note that the equality

∂F
∂x

(x)Ax − AF(x) = 0 (3.9)

is equivalent to the equality F(eAtx) = eAtF(x).
By the completion, the direct sum decomposition (3.6) is extended to that of the set of

C∞ vector fields vanishing at the origin.

Proposition 3.1. Let K ⊂ Rn be an open set including the origin whose closure K̄ is
compact. Let X∞0 (K) be the set of C∞ vector fields f on K satisfying f (0) = 0. Define the
linear map LA : X∞0 (K)→ X∞0 (K) as Eq.(3.5). Then, the direct sum decomposition

X∞0 (K) = VI ⊕ VK (3.10)

holds, where

VI := ImLA, (3.11)

VK := { f ∈ X∞0 (K) | f (eA∗t x) = eA∗t f (x)}. (3.12)

This proposition immediately follows from the facts that the set of polynomials is dense
in X∞0 (K) with respect to the C∞ topology (see Hirsch [17]) and that the projections PI :
P0(Rn)→ ImLA and PK : P0(Rn)→ KerLA∗ are continuous.
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We define the projections PI : X∞0 (K) → VI and PK : X∞0 (K) → VK . For g ∈ VI , there
exists a vector field F ∈ X∞0 (K) such that

∂F
∂x

(x)Ax − AF(x) = g(x). (3.13)

Such F(x) is not unique because if F satisfies the above equality, then F + h with h ∈ VK

also satisfies it. We write F = Q(g) if F satisfies Eq.(3.13) and PK(F) = 0. Then Q defines
the linear map from VI to VI .

We show a few equalities which are convenient when calculating φ(k)’s.

Proposition 3.2. The following equalities hold for any g ∈ VI .

(i) PK ◦ Q(g) = 0, (3.14)

(ii) Q(Dg · Q(g) + DQ(g) · g) = PI(DQ(g) · Q(g)), (3.15)

(iii) e−Asg(eAsx) =
∂

∂s

(
e−AsQ(g)(eAsx)

)
, s ∈ R, (3.16)

where D denotes the derivative with respect to x.

Proof. Part (i) of Prop.3.2 follows from the definition of Q. To prove (ii) of Prop.3.2, we
write F = Q(g). By using Eq.(3.13), it is easy to verify the equality

∂

∂x

(
∂F
∂x

(x)F(x)

)
Ax − A

(
∂F
∂x

(x)F(x)

)
=
∂g
∂x

(x)F(x) +
∂F
∂x

(x)g(x), (3.17)

which implies (ii) of Prop.3.2. Part (iii) of Prop.3.2 is proved by a straightforward calcula-
tion. �

3.2 Non-diagonal case

Now we turn back to φ(0) in Eq.(3.4). By Prop.3.1, g1 is decomposed as g1 = g1I + g1K ,
where g1I = PI(g1) and g1K = PK(g1). Then, part (iii) of Prop.3.2 is used to yield

φ(0)(t, x) = eAth(0)(e−Atx) +
∫ t

0
e−A(s−t)g1I(e

A(s−t)x)ds +
∫ t

0
e−A(s−t)g1K(eA(s−t)x)ds

= eAth(0)(e−Atx) +
∫ t

0

∂

∂s

(
e−A(s−t)Q(g1I)(e

A(s−t)x)
)
ds +

∫ t

0
e−A(s−t)g1K(eA(s−t)x)ds

= eAth(0)(e−Atx) + Q(g1I)(x) − eAtQ(g1I)(e
−Atx)+

∫ t

0
e−A(s−t)g1K(eA(s−t)x)ds. (3.18)

Recall that our purpose is to determine h(0) so that φ(0) becomes a polynomial in t. For this
purpose, putting h(0) = Q(g1I), we obtain

φ(0)(t, x) = Q(g1I)(x) +
∫ t

0
e−A(s−t)g1K(eA(s−t)x)ds. (3.19)
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Next thing to do is to calculate the second term in the right hand side of the above. Let
A = Λ+ N be the Jordan decomposition of A, where Λ = Λ∗ is a diagonal matrix and N is a
nilpotent matrix. Since g1K satisfies g1K(eA∗t x) = eA∗tg1K(x), Eq.(3.19) is calculated as

φ(0)(t, x) = Q(g1I)(x) +
∫ t

0
e−N(s−t)e−Λ(s−t)g1K(eΛ(s−t)eN(s−t)x)ds

= Q(g1I)(x) +
∫ t

0
e−N(s−t)eN∗(s−t)e−A∗(s−t)g1K(eA∗(s−t)e−N∗(s−t)eN(s−t)x)ds

= Q(g1I)(x) +
∫ t

0
e−N(s−t)eN∗(s−t)g1K(e−N∗(s−t)eN(s−t)x)ds. (3.20)

This provides a desired form of φ(0). Thus the Lie equation (2.20) is given by

du
dε
= Q(g1I)(u) +

∫ t

0
e−N(s−t)eN∗(s−t)g1K(e−N∗(s−t)eN(s−t)u)ds + O(ε). (3.21)

Further, it is easy to verify that if we change variables as

u = y + εQ(g1I)(y), (3.22)

then Eq.(3.21) is transformed into the system

dy
dε
=

∫ t

0
e−N(s−t)eN∗(s−t)g1K(e−N∗(s−t)eN(s−t)y)ds + O(ε). (3.23)

This system is called the zeroth order normal form of the Lie equation if the O(ε)-term is
truncated. Note that since Q(g1I)(0) = 0, the transformation u 
→ y defined as Eq.(3.22)
gives a diffeomorphism, which is called the near identity transformation, near the origin if
|ε| is sufficiently small.

Higher order terms φ(1), φ(2), · · · are calculated in a similar manner. In particular, we
can show by induction that if gi(x), i = 1, 2, · · · are polynomials, all φ(0), φ(1), φ(2), · · · are
polynomials in t if we choose undetermined functions h(i)’s appropriately as above (see
also Sec.3.3). Although to derive explicit forms of φ(1), φ(2), · · · involves hard calculation,
if the matrix A is diagonal, we can obtain all of them as is shown in the next subsection.
Note that for the purpose to make φ(i)’s to be polynomials, there are many possibilities of
choices of h(i)’s. Actually, for any polynomial vector field h̃ ∈ VK , put h(0) = Q(g1I) + h̃
in Eq.(3.18). Then, the resultant Lie equation (3.21) is again polynomial in t, although it
is slightly modified. Such non-uniqueness is well known in normal forms theory and have
been studied by many authors for further reduction of normal forms, see Chen, Della Dora
[22], Gaeta [23] and references therein. In this article, we choose h(i)’s so that h(i) ∈ VI for
simplicity.

3.3 Diagonal case

In this subsection, we suppose that the matrix A in Eq.(3.1) is a diagonal matrix. Then,
Eq.(3.20) takes the form

φ(0)(t, x) = Q(g1I)(x) + g1K(x)t. (3.24)
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Calculated in the same way as the previous subsection, φ(1) proves to be of the form

φ(1)(t, x) = 2QPI(R2)(x) − ∂Q(g1I)
∂x

(x)Q(g1I)(x) + 2PK(R2)(x)t + Q[g1I , g1K](x)t, (3.25)

where QPI = Q ◦ PI , the function R2 is defined as

R2(x) =
∂g1

∂x
(x)Q(g1I)(x) + g2(x) − ∂Q(g1I)

∂x
(x)g1K(x), (3.26)

and where [ · , · ] denotes the commutator of vector fields defined as

[ f , g](x) =
∂ f
∂x

(x)g(x) − ∂g
∂x

(x) f (x). (3.27)

Eq.(3.25) is proved in Appendix. Note that φ(1)(t, x) is a linear function in t as well as
φ(0)(t, x), while φ(k)(t, x), k ≥ 2 shown below is a polynomial of degree k in t. Thus the first
order Lie equation is given by

du
dε
= Q(g1I)(x) + g1K(x)t

+ ε

(
2QPI(R2)(x) − ∂Q(g1I)

∂x
(x)Q(g1I)(x) + 2PK(R2)(x)t + Q[g1I , g1K](x)t

)
.(3.28)

By changing the variables as

u = y + εQ(g1I)(y) + ε2QPI(R2)(y), (3.29)

it turns out that Eq.(3.28) is transformed into a system of the form

dy
dε
= g1K(x)t + 2εPK(R2)(x)t + O(ε2). (3.30)

If the O(ε2)-term is truncated, we call it the first order normal form of the Lie equation. This
procedure is done for more higher order terms of ε. To write down them, at first, define the
functions Gk through the equality

∞∑
k=1

εkgk(y0 + εy1 + ε
2y2 + · · · ) =

∞∑
k=1

εkGk(y0, y1, · · · , yk−1). (3.31)

For example, G1,G2 and G3 are given by

G1(y0) = g1(y0), (3.32)

G2(y0, y1) =
∂g1

∂y
(y0)y1 + g2(y0), (3.33)

G3(y0, y1, y2) =
1
2
∂2g1

∂y2
(y0)y2

1 +
∂g1

∂y
(y0)y2 +

∂g2

∂y
(y0)y1 + g3(y0), (3.34)
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respectively.

Theorem 3.3. Let us define functions Rk : Rn → Rn, k = 1, 2, · · · to be

R1(y) = g1(x), (3.35)

and

Rk(y) = Gk(y,QPI(R1)(y),QPI(R2)(y), · · · ,QPI(Rk−1)(y))

−
k−1∑
j=1

∂QPI(Rj)

∂y
(y)PK(Rk− j)(y), (3.36)

for k = 2, 3, · · · . With these Rk’s, define Rk(y, t)’s to be

R1(y, t) = PK(R1)(y)t = g1K(y)t, (3.37)

R2(y, t) = 2PK(R2)(y)t, (3.38)

R3(y, t) = 3PK(R3)(y)t +
2∑

j=1

∫ t

0
[PK(Rj),R3− j](y, s)ds, (3.39)

...

Rk(y, t) = kPK(Rk)(y)t +
k−1∑
j=1

∫ t

0
[PK(Rj),Rk− j](y, s)ds, (3.40)

...

Then, by the coordinate transformation defined to be

u = y + εQPI(R1)(y) + ε2QPI(R2)(y) + · · · + εm+1QPI(Rm+1)(y), (3.41)

the Lie equation (2.20) is transformed into the system of the form

dy
dε
= R1(y, t) + εR2(y, t) + · · · + εmRm+1(y, t) + O(εm+1). (3.42)

If the O(εm+1)-term is truncated, we call it the m-th order normal form of the Lie equation
for Eq.(3.1).

Note that R1(y, t) ∼ O(t), R2(y, t) ∼ O(t) and Rk(y, t) ∼ O(tk−1) if k ≥ 3. This fact is also
proved by Iwasa [20]. For example, R3(y, t) is rewritten as

R3(y, t) = 3PK(R3)(y)t +
1
2

[PK(R1),PK(R2)](y) t2. (3.43)

This theorem for m = 0 and m = 1 is already proved. More higher order case is proved by
a similar calculation as above, although we omit it here. It is also proved by transforming
Eq.(3.42) into the RG equation (see Sec.3.4) and using Thm.A.6 of Chiba [4].
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3.4 Non-hyperbolic case

If the matrix A in Eq.(3.1) is hyperbolic, which means that no eigenvalues of A lie on the
imaginary axis, then the flow of Eq.(3.1) near the origin is topologically conjugate to the lin-
ear system ẋ = Ax and the stability of the origin is easily determined. If A has eigenvalues
on the imaginary axis, Eq.(3.1) has a center manifold at the origin and nontrivial phenom-
ena, such as bifurcations, may occur on the center manifold. We consider such a situation
in this subsection. By using the center manifold reduction [1,6], we can assume that all
eigenvalues of A lie on the imaginary axis without loss of generality. We also suppose that
A is diagonalizable. In this case, the operators PK and QPI are calculated as follows:

Recall that if A = A∗, the equality∫ t

0
e−A(s−t)g(eA(s−t)x)ds =

∫ t

0
e−A(s−t)PI(g)(eA(s−t)x)ds +

∫ t

0
e−A(s−t)PK(g)(eA(s−t)x)ds

= QPI(g)(x) − eAtQPI(g)(e−Atx) + PK(g)(x)t (3.44)

holds. We have to calculate QPI(g) and PK(g) to obtain the normal form of the Lie equation
(3.42). Since e−Asg(eAsx) is an almost periodic function with respect to s, it is expanded in
a Fourier series as e−Asg(eAsx) =

∑
λi∈Λ c(λi, x)e

√−1λi s, where Λ is the set of Fourier expo-
nents and c(λi, x) ∈ Rn is a Fourier coefficient. In particular, the Fourier coefficient c(0, x)
associated with the zero Fourier exponent is the average of e−Asg(eAsx):

c(0, x) = lim
t→∞

1
t

∫ t

e−Asg(eAsx)ds. (3.45)

Thus we obtain∫ t

0
e−A(s−t)g(eA(s−t)x)ds =

∫ t

0

∑
λi∈Λ

c(λi, x)e
√−1λi(s−t)ds

=
∑
λi�0

1√−1λi

c(λi, x)(1 − e−
√−1λit) + c(0, x)t. (3.46)

Comparing it with Eq.(3.44), we obtain

PK(g)(x) = c(0, x) = lim
t→∞

1
t

∫ t

e−Asg(eAsx)ds, (3.47)

QPI(g)(x) =
∑
λi�0

1√−1λi

c(λi, x). (3.48)

These formulas for PK and QPI allow one to calculate the normal forms of the Lie equations
systematically.

In our situation, Theorem 2.1 for approximate solutions is refined as follows:

Theorem 3.4. Suppose that all eigenvalues of the diagonalizable matrix A lie on the
imaginary axis. Let u = u(t, ε) be a solution of the m-th order Lie equation (2.20) with
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u(t, 0) = eAtx0 and x(t) a solution of Eq.(3.1) with x(0) = u(0, ε). Then, there exist positive
constants C and T such that the inequality

||x(t) − u(t, ε)|| < Cεm+1 (3.49)

holds for 0 ≤ t ≤ T/ε.
Indeed, we can show that ϕt and the error function w(t, ε) in Eq.(2.29) are almost periodic

functions with respect to t and thus they are bounded for all t ∈ R (see Chiba[4] for the
detail). Then the numbers T1,T2 and T3 in the proof of Thm.2.1 are taken to be arbitrarily
large and this proves Thm.3.4.

Now we suppose that the normal form of the Lie equation for Eq.(3.1) satisfies R1 =

· · · = Rm−1 = 0 for some integer m ≥ 1. Then Eq.(3.42) is reduced to

dy
dε
= εm−1Rm(y, t)

= mεm−1PK(Rm)(y)t

= mεm−1t lim
t→∞

1
t

∫ t

e−AsRm(eAsy)ds. (3.50)

To change the independent variable ε to t, we integrate the above as

y = y(ε = 0) +
∫ ε

0
mηm−1PK(Rm)(y(η))tdη

= y(ε = 0) + εmPK(Rm)(y(ε))t −
∫ ε

0
ηm∂PK(Rm)

∂y
(y(η))

dy
dη

tdη

= y(ε = 0) + εmPK(Rm)(y(ε))t + O(εm+1). (3.51)

Differentiating with respect to t, we obtain

dy
dt
= εmPK(Rm)(y) + εm∂PK(Rm)

∂y
(y)

dy
dt

t + O(εm+1)

= εmPK(Rm)(y) + O(εm+1). (3.52)

This equation is just the same as the m-th order RG equation in the CGO RG method [4,7].
It is known that topological properties of the original equation (3.1) are well understood by
using the RG equation. In particular, the next theorem holds.

Theorem 3.5 (Chiba [4,7]). Suppose that all eigenvalues of the diagonalizable matrix A
lie on the imaginary axis and that the normal form of the Lie equation for Eq.(3.1) satisfies
R1 = · · · = Rm−1 = 0 for some integer m ≥ 1. If the system dy/dt = εmPK(Rm)(y) has a
normally hyperbolic invariant manifold N, then for sufficiently small |ε|, the system (3.1)
has an invariant manifold Nε, which is diffeomorphic to N. In particular the stability of Nε

coincides with that of N.

This theorem is used to investigate existence of invariant manifolds and bifurcations
[4-8]. It is remarkable that while our idea based on Lie theory is quite different from the
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CGO RG approach based on the renormalization group in quantum field theory, the Lie
equation yields the same result as the CGO RG if the independent variable ε is changed
to time t. The mathematical basis of the CGO RG method is well studied in [4,7]. In
particular the relationship between the CGO RG method and other perturbation methods,
such as normal forms [5], center manifold reduction [6], the multiple scale method etc. [7],
is well investigated. Nevertheless, it should be emphasized that the approach based on Lie
theory is easily extended to difference equations [14], and applications to a much wider
range of problems remain as future works.

4 Examples

In this section, we give a few examples to verify our theorems.
Example 4.1. Consider the perturbed harmonic oscillator

ẍ + x + 2ε sin x = 0, x ∈ R. (4.1)

It is convenient to introduce the complex variable z through x = i(z− z), ẋ = −(z+ z), where
i =
√−1. Then, the above equation is rewritten as{

ż = iz + ε sin i(z − z),
ż = −iz + ε sin i(z − z).

(4.2)

Thus the zeroth order normal form of the Lie equation is obtained by using Eq.(3.47) as

d
dε

(
y1

y2

)
= PK(g)(y)t = t · lim

t→∞
1
t

∫ t

0

(
e−is 0
0 eis

) (
sin i(eisy1 − e−isy2)
sin i(eisy1 − e−isy2)

)
ds, (4.3)

where y2 = y1. Putting y1 = reiθ, y2 = re−iθ yields⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
r′(ε) = − t

2π

∫ 2π

0
cos s · sin(2r sin s)ds = 0,

θ′(ε) =
t

2πr

∫ 2π

0
sin s · sin(2r sin s)ds =

t
r

J1(2r),
(4.4)

where Jn(r) is the Bessel function of the first kind defined as the solution of the equation
r2x′′ + rx′ + (r2 − n2)x = 0. This system with the initial condition y1(0) = ceit, y2(0) =
ce−it, c ∈ R (i.e. r(0) = c, θ(0) = t) is easily solved to yield

r(ε) = 0, θ(ε) = t +
εt
c

J1(2c). (4.5)

Thus approximate solutions of Eq.(4.2) are given by

z(t) = c exp i
(
t +

εt
c

J1(2c)
)
. (4.6)
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Finally, approximate solutions of Eq.(4.1) are given by

x(t) = i(z(t) − z(t)) = −2c sin
(
t +

εt
c

J1(2c)
)
. (4.7)

A numerical solution of Eq.(4.1) and the approximate solution (4.7) are presented as Fig.1
for comparison. The dashed curve is the approximate solution (4.7) for ε = 0.1, c = 1/2 (in
this case, x(0) = 0 and ẋ(0) = −1−0.2 · J1(1)). The solid curve denotes a numerical solution
of Eq.(4.1) for ε = 0.1 with x(0) = 0, ẋ(0) = −1 − 0.2 · J1(1). The dotted line denotes an
exact solution of the unperturbed system ẍ + x = 0. The figure shows that the phase lag
caused by the perturbation is correctly captured by the approximate solution (4.7).

t

x

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

Fig. 1: The solid line denotes a numerical solution of Eq.(4.1). The dashed line denotes the
approximate solution (4.7). They almost overlap with one another. The dotted line denotes
an exact solution for the unperturbed system ẍ + x = 0.

Example 4.2. Consider the system on R2{
ẋ1 = x2 + x2

2 − ε2x1,
ẋ2 = −x1 + 2ε2x2 − x1x2 + cx2

2,
(4.8)

where c > 0 is a constant. Changing the coordinates by (x1, x2) = (εX1, εX2) yields{
Ẋ1 = X2 + εX2

2 − ε2X1,
Ẋ2 = −X1 + ε(cX2

2 − X1X2) + 2ε2X2.
(4.9)

We introduce the complex variable z by X1 = z + z, X2 = i(z − z). Then, the above system is
rewritten as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ż = iz +
ε

2

(
ic(z − z)2 − 2z2 + 2zz

)
+
ε2

2
(z − 3z),

ż = −iz +
ε

2

(
−ic(z − z)2 − 2z2

+ 2zz
)
− ε

2

2
(3z − z).

(4.10)
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For this system, it is easy to verify that R1 = PK(g)t vanishes and the first order normal form
of the Lie equation is given by

d
dε

(
y1

y2

)
= εR2(y, t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε

6
(3y1 − y2

1y2(9c + 12i + 4ic2))t
ε

6
(3y2 − y1y

2
2(9c − 12i − 4ic2))t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.11)

Putting y1 = reiθ, y2 = re−iθ results in⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dr/dε =

1
2
εr(1 − 3cr2)t,

dθ/dε = −2
3
εr2(3 + c2)t.

(4.12)

It is easy to show that this system has a stable (resp. unstable) periodic orbit r =
√

1/3c if
ε > 0 (resp. ε < 0). Thus Thm.3.5 implies that the original system (4.8) also has a stable
(resp. unstable) periodic orbit if ε > 0 (resp. ε < 0). This type of bifurcation, periodic orbits
exist for both of ε > 0 and ε < 0, is known as the degenerate Hopf bifurcation.

A Appendix

In this appendix, we prove Eq.(3.25). At first, we prove the next proposition.

Proposition A. Suppose that A = A∗. For g ∈ VI and h ∈ VK , the following equalities hold:

(i)
∂g
∂x

h ∈ VI , Q
(
∂g
∂x

h

)
=
∂Q(g)
∂x

h, (A.1)

(ii)
∂h
∂x

g ∈ VI , Q
(
∂h
∂x

g

)
=
∂h
∂x
Q(g), (A.2)

(iii) [g, h] ∈ VI , Q([g, h]) = [Q(g), h]. (A.3)

Proof. Put F = Q(g). Note that g and h satisfy the equalities

∂F
∂x

(x)Ax − AF(x) = g(x), (A.4)

∂h
∂x

(x)Ax − Ah(x) = 0. (A.5)

By using these equalities, we can prove the following equalities

∂

∂x

(
∂F
∂x

(x)h(x)

)
Ax − A

(
∂F
∂x

(x)h(x)

)
=
∂g
∂x

(x)h(x), (A.6)

∂

∂x

(
∂h
∂x

(x)F(x)

)
Ax − A

(
∂h
∂x

(x)F(x)

)
=
∂h
∂x

(x)g(x), (A.7)

which imply that ∂g/∂x · h ∈ VI and ∂h/∂x · g ∈ VI . The same calculation also shows that
∂F/∂x · h ∈ VI and ∂h/∂x · F ∈ VI . They prove (i) and (ii) of Proposition A. Part (iii) of
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Proposition A immediately follows from (i) and (ii). �

Proof of Eq.(3.25). Eqs.(3.3) and (3.24) are put together to yield

φ(1)(t, x) = eAth(1)(e−Atx) +
∫ t

0
e−A(s−t)

(∂g1

∂x
(eA(s−t)x)φ(0)(s, eA(s−t)x)

−∂φ
(0)

∂x
(s, eA(s−t)x)g1(eA(s−t)x) + 2g2(eA(s−t)x)

)
ds

= eAth(1)(e−Atx) +
∫ t

0
e−A(s−t) ([g1,Q(g1I)] + 2g2) (eA(s−t)x)ds

+

∫ t

0
e−A(s−t)[g1, g1K](eA(s−t)x)sds

= eAth(1)(e−Atx) +
∫ t

0
e−A(s−t) ([g1,Q(g1I)] + 2g2) (eA(s−t)x)ds

+

∫ t

0
e−A(s−t)[g1, g1K](eA(s−t)x)ds · t

−
∫ t

0
ds

∫ s

0
e−A(s′−t)[g1, g1K](eA(s′−t)x)ds′. (A.8)

Since [g1, g1K] = [g1I + g1K , g1K] = [g1I , g1K], the above is rewritten as

φ(1)(t, x) = eAth(1)(e−Atx) +
∫ t

0
e−A(s−t) ([g1,Q(g1I)] + 2g2) (eA(s−t)x)ds

+

∫ t

0
e−A(s−t)[g1I , g1K](eA(s−t)x)ds · t

−
∫ t

0
ds

∫ s

0
e−A(s′−t)[g1I , g1K](eA(s′−t)x)ds′. (A.9)

Prop.A (iii) and Prop.3.2 (iii) are used to yield

φ(1)(t, x) = eAth(1)(e−Atx) +
∫ t

0
e−A(s−t) ([g1,Q(g1I)] + 2g2) (eA(s−t)x)ds

+Q[g1I , g1K](x)t − eAtQ[g1I , g1K](e−Atx)t

−
∫ t

0

(
e−A(s−t)Q[g1I , g1K](eA(s−t)x) − eAtQ[g1I , g1K](e−Atx)

)
ds

= eAth(1)(e−Atx) + Q[g1I , g1K](x)t

+

∫ t

0
e−A(s−t) ([g1,Q(g1I)] − [Q(g1I), g1K] + 2g2) (eA(s−t)x)ds

= eAth(1)(e−Atx) + Q[g1I , g1K](x)t

+

∫ t

0
e−A(s−t)

(
2
∂g1

∂x
Q(g1I) + 2g2 − 2

∂Q(g1I)
∂x

g1K

)
(eA(s−t)x)ds

−
∫ t

0
e−A(s−t)

(
∂g1I

∂x
Q(g1I) +

∂Q(g1I)
∂x

g1I

)
(eA(s−t)x)ds. (A.10)
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Finally, Prop.3.2 (ii) and (iii) show that

φ(1)(t, x) = eAth(1)(e−Atx) + Q[g1I , g1K](x)t

+2
∫ t

0
e−A(s−t)

(
∂g1

∂x
Q(g1I) + g2 − ∂Q(g1I)

∂x
g1K

)
(eA(s−t)x)ds

−
∫ t

0

∂

∂s

(
e−A(s−t)∂Q(g1I)

∂x
(eA(s−t)x)Q(g1I)(e

A(s−t)x)

)
ds

= eAth(1)(e−Atx) + Q[g1I , g1K](x)t + 2
∫ t

0
e−A(s−t)R2(eA(s−t)x)ds

−∂Q(g1I)
∂x

(x)Q(g1I)(x) + eAt ∂Q(g1I)
∂x

(e−Atx)Q(g1I)(e
−Atx)

= eAth(1)(e−Atx) − 2eAtQPI(R2)(e−Atx) + eAt∂Q(g1I)
∂x

(e−Atx)Q(g1I)(e
−Atx)

+ 2QPI(R2)(x) − ∂Q(g1I)
∂x

(x)Q(g1I)(x) + 2PK(R2)(x)t + Q[g1I , g1K](x)t.(A.11)

Choosing h(1) appropriately, we obtain Eq.(3.25). �
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