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Abstract

The Kuramoto-Daido model, which describes synchronization phenomena, is a system

of ordinary differential equations on N -torus defined as coupled harmonic oscillators, whose

natural frequencies are drawn from some distribution function. In this paper, the continuous

model for the Kuramoto-Daido model is introduced and the linear stability of its trivial solution

(incoherent solution) is investigated. Kuramoto’s transition point Kc, at which the incoherent

solution changes the stability, is derived for an arbitrary distribution function for natural

frequencies. It is proved that if the coupling strength K is smaller than Kc, the incoherent

solution is asymptotically stable, while if K is larger than Kc, it is unstable.

§ 1. Introduction

Collective synchronization phenomena are observed in a variety of areas such as
chemical reactions, engineering circuits and biological populations [16]. In order to
investigate such a phenomenon, Kuramoto [9] proposed a system of ordinary differential
equations

(1.1)
dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, · · · , N,

where θi ∈ [0, 2π) denotes the phase of an i-th oscillator on a circle, ωi ∈ R denotes
its natural frequency, K > 0 is the coupling strength, and where N is the number
of oscillators. Eq.(1.1) is derived by means of the averaging method from coupled
dynamical systems having limit cycles, and now it is called the Kuramoto model.

It is obvious that when K = 0, θi(t) and θj(t) rotate on a circle at different
velocities unless ωi is equal to ωj , and it is true for sufficiently small K > 0. On the
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Figure 1. The order parameter for the Kuramoto model.

other hand, if K is sufficiently large, it is numerically observed that some of oscillators
or all of them tend to rotate at the same velocity on average, which is called the
synchronization [16, 18, 14]. If N is small, such a transition from de-synchronization
to synchronization may be well revealed by means of the bifurcation theory [3, 11, 12].
However, if N is large, it is difficult to investigate the transition from the view point of
the bifurcation theory and it is still far from understood.

In order to evaluate whether synchronization occurs or not, Kuramoto introduced
the order parameter r(t)e

√−1ψ(t) by

(1.2) r(t)e
√−1ψ(t) :=

1
N

N∑
j=1

e
√−1θj(t),

which gives the centroid of oscillators, where r, ψ ∈ R. It seems that if synchronous
state is formed, r(t) takes a positive number, while if de-synchronization is stable, r(t) is
zero on time average (see Fig.1). Based on this observation and some formal calculation,
Kuramoto conjectured a bifurcation diagram of r(t) as follows:

Kuramoto’s conjecture
Suppose that N → ∞ and natural frequencies ωi’s are distributed according to

a probability density function g(ω). If g(ω) is an even and unimodal function, then
the bifurcation diagram of r(t) is given as Fig.2 (a); that is, if the coupling strength
K is smaller than Kc := 2/(πg(0)), then r(t) ≡ 0 is asymptotically stable. On the
other hand, if K is larger than Kc, there exists a positive constant rc such that r(t) =
rc is asymptotically stable. Near the transition point Kc, the scaling law of rc is of
O((K −Kc)1/2).

Now the value Kc = 2/(πg(0)) is called the Kuramoto’s transition point. See [10]
and [18] for the Kuramoto’s discussion.

Significant papers of Strogatz et al. [19, 20, 15] partially confirmed the Kuramoto’s
conjecture. Though their arguments are not rigorous from a mathematical view point,
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Figure 2. Typical bifurcation diagrams of the order parameter for the cases that (a)
g(ω) is even and unimodal (b) g(ω) is even and bimodal. Solid lines denote stable
solutions and dotted lines denote unstable solutions.

almost all of them are justified as will be done in this paper. In [20], they introduced
the continuous model for the Kuramoto model and investigated the linear stability of a
trivial solution called the incoherent solution, which corresponds to the de-synchronous
state r ≡ 0. They derived the Kuramoto’s transition point Kc = 2/(πg(0)) and showed
that if K > Kc, the incoherent solution is unstable in the linear level (i.e. nonlinear
terms are neglected). When K < Kc, the linear operator T , which defines the linearized
equation of the continuous model around the incoherent solution, has no eigenvalues.
However, in [19], they found that an analytic continuation of the resolvent (λ−T )−1 may
have poles (resonance poles) on the left half plane, and they remarked a possibility that
resonance poles induce exponential decay of the order parameter. In [15], the stability
of the partially locked state, which corresponds to a solution with positive constant
r = rc, is investigated in the linear level.

Despite the active interest in the case that the distribution function g(ω) is even
and unimodal, bifurcation diagrams of r for g(ω) other than the even and unimodal
cases are not revealed well. Martens et al. [13] investigated the bifurcation diagram for
a bimodal g(ω) which consists of two Lorentzian distributions. In particular, they found
that stable partially locked states can coexist with stable incoherent solutions if K is
slightly smaller than Kc (see Fig.2 (b)). Such a diagram seems to be common for any
bimodal distributions.

A simple extension of the Kuramoto model defined to be

(1.3)
dθi
dt

= ωi +
K

N

N∑
j=1

f(θj − θi), i = 1, · · · , N,

is called the Kuramoto-Daido model [4, 5, 6, 7], where the 2π-periodic function f :
R → R is called the coupling function. Daido [7] investigated bifurcation diagrams of
the order parameter for the Kuramoto-Daido model with even and unimodal g(ω) by
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a similar argument to Kuramoto’s one. He found that if f(θ) �= sin θ, partially locked
states may coexist with stable incoherent solutions even if g(ω) is even and unimodal.

All such studies by physicist are based on formal calculations and numerical simu-
lations. The purpose of this paper is to justify and extend their results as mathematics
for the Kuramoto-Daido model with any distribution function g(ω). The continuous
model for the Kuramoto-Daido model is introduced and the linear stability of the in-
coherent solution is studied. In particular, the spectrum and the semigroup of a linear
operator T , which is obtained by linearizing the continuous model around the incoherent
solution, will be investigated in detail. At first, a formula for obtaining the transition
point Kc for an arbitrary distribution g(ω) is derived. As a corollary, the Kuramoto’s
transition point Kc = 2/(πg(0)) is obtained if g(ω) is an even and unimodal function. If
K > Kc, it is proved that the incoherent solution is unstable because the operator T has
eigenvalues on the right half plane. It means that if the coupling strength K is large,
the de-synchronous state is unstable and thus synchronization may occur. On the other
hand, if 0 < K < Kc, it will be shown that the spectrum of the operator T consists
of the continuous spectrum and it lies on the imaginary axis. Thus the stability of the
incoherent solution is nontrivial. Despite this fact, under appropriate assumptions for
g(ω), the order parameter proves to decay exponentially because of existence of reso-
nance poles on the left half plane as was expected by Strogatz et al. [19]. It suggests
that in general, linear stability of a trivial solution of a linear equation on an infinite
dimensional space is determined by not only the spectrum of the linear operator but
also its resonance poles.

§ 2. Continuous model

In this section, we introduce a continuous model of the Kuramoto-Daido model and
show a few properties of it.

Let us consider the Kuramoto-Daido model (1.3). We suppose that the coupling
function f is a C1 periodic function with the period 2π. It is expanded in a Fourier
series as

(2.1) f(θ) =
∞∑

l=−∞
fl e

√−1lθ, fl ∈ C.

We can suppose that f0 = 0 without loss of generality because f0 is renormalized into
the constants ωi. For the Kuramoto model (f(θ) = sin θ), f±1 = ±1/(2

√−1) and
fl = 0 (l �= ±1). Following Daido [7], we introduce the generalized order parameters Ẑ0

k

by

(2.2) Ẑ0
k(t) =

1
N

N∑
j=1

e
√−1kθj(t), k = 0,±1,±2, · · · .
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In particular, Ẑ0
1 is the order parameter defined in Section 1. By using them, Eq.(1.3)

is rewritten as

(2.3)
dθi
dt

= ωi +K
∞∑

l=−∞
flẐ

0
l (t)e

−√−1lθi .

Motivated by these equations, we introduce a continuous model of the Kuramoto-Daido
model, which is an evolution equation of a probability density function ρt = ρt(θ, ω) on
S1 × R parameterized by t ∈ R, as



∂ρt
∂t

+
∂

∂θ

((
ω +K

∞∑
l=−∞

flZ
0
l (t)e

−√−1lθ
)
ρt

)
= 0,

Z0
k(t) =

∫
R

∫ 2π

0

e
√−1kθρt(θ, ω)dθdω,

ρ0(θ, ω) = h(θ, ω),

(2.4)

where h(θ, ω) is an initial density function. The Z0
k(t) is a continuous version of Ẑ0

k(t),
and we also call it the generalized order parameter. We can prove that Eq.(2.4) is proper
in the sense that Ẑ0

k(t) → Z0
k(t) as N → ∞ under some assumptions, although the proof

is not given in this paper. If we regard

v := ω +K

∞∑
l=−∞

flZ
0
l (t)e

−√−1lθ

as a velocity field, Eq.(2.4) provides an equation of continuity ∂ρt/∂t + ∂(ρtv)/∂θ = 0
known in fluid dynamics. It is easy to prove the low of conservation of mass:

(2.5)
∫
R

∫ 2π

0

ρt(θ, ω)dθ =
∫
R

∫ 2π

0

h(θ, ω)dθ =: g(ω).

A function g defined as above gives a probability density function for natural frequencies
ω ∈ R such that

∫
R
g(ω)dω = 1.

By using the characteristic curve method, Eq.(2.4) is formally integrated as follows:
Consider the equation

dx

dt
= ω +K

∞∑
l=−∞

flZ
0
l (t)e

−√−1lx, x ∈ S1,(2.6)

which defines a characteristic curve. Let x = x(t, s; θ, ω) be a solution of Eq.(2.6)
satisfying x(s, s; θ, ω) = θ. Then, ρt is given as

(2.7) ρt(θ, ω) = h(x(0, t; θ, ω), ω) exp
[
K

∫ t

0

∞∑
l=−∞

√−1 l fl Z0
l (s)e

−√−1lx(s,t;θ,ω)ds
]
.
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By using Eq.(2.7), it is easy to show the equality

(2.8)
∫
R

∫ 2π

0

a(θ, ω)ρt(θ, ω)dθdω =
∫
R

∫ 2π

0

a(x(t, 0; θ, ω), ω)h(θ, ω)dθdω,

for any continuous function a(θ, ω). In particular, the generalized order parameters
Z0
k(t) are rewritten as

(2.9) Z0
k(t) =

∫
R

∫ 2π

0

e
√−1kx(t,0;θ,ω)h(θ, ω)dθdω.

Substituting it into Eqs.(2.6), (2.7), we obtain

(2.10)
d

dt
x(t, s; θ, ω) = ω +K

∫
R

∫ 2π

0

f(x(t, 0; θ′, ω′) − x(t, s; θ, ω))h(θ′, ω′)dθ′dω′,

and

ρt(θ, ω) = h(x(0, t; θ, ω), ω) ×

exp
[
K

∫ t

0

ds ·
∫
R

∫ 2π

0

∂f

∂θ

(
x(s, 0; θ′, ω′) − x(s, t; θ, ω)

)
h(θ′, ω′)dθ′dω′

]
,(2.11)

respectively. Even if h(θ, ω) is not differentiable, we consider Eq.(2.11) to be a weak
solution of Eq.(2.4). It is easy in usual way to prove that the integro-ODE (2.10) has a
unique solution for any t > 0, and this proves that the continuous model Eq.(2.4) has a
unique weak solution (2.11) for an arbitrary initial data h(θ, ω).

Throughout this paper, we suppose that the initial date h(θ, ω) is of the form
h(θ, ω) = ĥ(θ)g(ω). This assumption corresponds to the assumption for the Kuramoto-
Daido model (1.3) that initial values {θj(0)}Nj=1 and natural frequencies {ωj}Nj=1 are
independently distributed. This is a physically natural assumption used in many liter-
atures. In this case, ρt(θ, ω) is written as ρt(θ, ω) = ρ̂t(θ, ω)g(ω), where

ρ̂t(θ, ω) = ĥ(x(0, t; θ, ω)) ×

exp
[
K

∫ t

0

ds ·
∫
R

∫ 2π

0

∂f

∂θ

(
x(s, 0; θ′, ω′) − x(s, t; θ, ω)

)
ĥ(θ′)g(ω′)dθ′dω′

]
,(2.12)

and ρ̂t(θ, ω) satisfies the same equation as Eq.(2.4).

§ 3. Linear stability of the incoherent solution

A trivial solution of the continuous model (2.4), which is independent of θ and
t, is given by ρt(θ, ω) = g(ω)/(2π), or equivalently ρ̂t(θ, ω) = 1/(2π). It is called the
incoherent solution, which corresponds to the de-synchronized state. Note that in this



Linear stability of the incoherent solution for the Kuramoto-Daido model 7

case r = 0. In this section, we investigate the stability of the incoherent solution and
the order parameter.

Let

(3.1) Zj(t, ω) :=
∫ 2π

0

e
√−1jθρ̂t(θ, ω)dθ

be the Fourier coefficients of ρ̂t(θ, ω). Then, Z0(t, ω) = 1 and Zj , j = ±1,±2, · · · satisfy
the differential equations

dZj
dt

=
√−1jωZj +

√−1jK
∞∑
−∞

flZ
0
l (t)Zj−l

=
√−1jωZj +

√−1jKfjZ0
j (t) +

√−1jK
∑
l �=j

flZ
0
l (t)Zj−l.

The incoherent solution corresponds to the zero solution Zj ≡ 0 for j = ±1,±2, · · · .
Since |Zj(t, ω)| ≤ 1, Zj(t, ω) is in the Hilbert space L2(R, g(ω)dω) for every t :

||Zj ||2L2(R,g(ω)dω) =
∫
R

|Zj(t, ω)|2g(ω)dω ≤ 1.

Thus we linearize the above equation as an evolution equation on L2(R, g(ω)dω)

(3.2)
dZj
dt

=
(
j
√−1M + j

√−1KfjP
)
Zj , j = ±1,±2, · · · ,

where M : q(ω) �→ ωq(ω) is the multiplication operator on L2(R, g(ω)dω) and P is the
projection on L2(R, g(ω)dω) defined to be

(3.3) Pq(ω) =
∫
R

q(ω)g(ω)dω.

If we put P0(ω) ≡ 1, P is also written as Pq(ω) = (q, P0), where ( , ) is the inner
product on L2(R, g(ω)dω):

(3.4) (q1, q2) :=
∫
R

q1(ω)q2(ω)g(ω)dω.

Note that the order parameter is given as Z0
1 = (Z1, P0). To determine the stability of

the incoherent solution and the order parameter, we have to investigate the spectrum
and the semigroup of the operator Tj := j

√−1M + j
√−1KfjP.

§ 3.1. Analysis of the operator
√−1M

If fj = 0, Tj = j
√−1M. It is known that the multiplication operator M on

L2(R, g(ω)dω) is self-adjoint and its spectrum is given by σ(M) = supp(g) ⊂ R, where
supp(g) is a support of the density function g. Thus the spectrum of j

√−1M is

(3.5) σ(j
√−1M) = j

√−1 · supp(g) = {j√−1λ |λ ∈ supp(g)} ⊂ √−1R.
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The semi-group ej
√−1Mt generated by j

√−1M is given as ej
√−1Mtq(ω) = ej

√−1ωtq(ω).
In particular, we obtain

(3.6) (ej
√−1Mtq1, q2) =

∫
R

ej
√−1ωtq1(ω)q2(ω)g(ω)dω

for any q1, q2 ∈ L2(R, g(ω)dω). This is the Fourier transform of the function q1(ω)q2(ω)g(ω).
Thus if q1(ω)q2(ω)g(ω) is real analytic on R and has an analytic continuation to a neigh-
borhood of the real axis, then (ej

√−1Mtq1, q2) decays exponentially as t → ∞, while if
q1(ω)q2(ω)g(ω) is Cr, then it decays as O(1/tr) (see Vilenkin [21]).

These facts are summarized as follows:

Proposition 3.1. Suppose that fj = 0 and Eq.(3.2) is reduced to dZj/dt =
j
√−1MZj. A solution of this equation with an initial value q(ω) ∈ L2(R, g(ω)dω)

is given by Zj(t) = ej
√−1Mtq(ω) = ej

√−1ωtq(ω). In particular the linearized order
parameter Z0

1 (t) = (e
√−1Mtq, P0) decays exponentially as t→ ∞ if g(ω) and q(ω) have

analytic continuations to a neighborhood of the real axis.

The resolvent (λ− j
√−1M)−1 of the operator j

√−1M is calculated as

(3.7) ((λ− j
√−1M)−1q1, q2) =

∫
R

1
λ− j

√−1ω
q1(ω)q2(ω)g(ω)dω.

We define the function D(λ) to be

(3.8) D(λ) = ((λ− j
√−1M)−1P0, P0) =

∫
R

1
λ− j

√−1ω
g(ω)dω

(recall that P0(ω) ≡ 1). It is holomorphic in C\σ(j
√−1M) and will play an important

role in the later calculation.

§ 3.2. Analysis of the operator Tj = j
√−1M + j

√−1KfjP
In what follows, we suppose that fj �= 0. The domain D(Tj) of Tj is given by

D(M) ∩ D(P) = D(M). Since M is self-adjoint and since P is bounded, Tj is a closed
operator [8]. Let 	(Tj) be the resolvent set of Tj and σ(Tj) = C\	(Tj) the spectrum.
Since Tj is closed, there is no residual spectrum. Let σp(Tj) and σc(Tj) be the point
spectrum (the set of eigenvalues) and the continuous spectrum of Tj , respectively.

Proposition 3.2. (i) Eigenvalues λ of Tj are given as roots of

(3.9) D(λ) =
1

j
√−1Kfj

, λ ∈ C\σ(j
√−1M).
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(ii) The continuous spectrum of Tj is given by

(3.10) σc(Tj) = σ(j
√−1M) = j

√−1 · supp(g).

Proof. (i) Suppose that λ ∈ σp(Tj)\σ(j
√−1M). Then, there exists x ∈

L2(R, g(ω)dω) such that

λx = (j
√−1M + j

√−1KfjP)x, x �= 0.

Since λ /∈ σ(j
√−1M), (λ− j

√−1M)−1 is defined and the above is rewritten as

x= (λ− j
√−1M)−1j

√−1KfjPx
= j

√−1Kfj(x, P0)(λ− j
√−1M)−1P0(ω).

By taking the inner product with P0(ω), we obtain

(3.11) 1 = j
√−1Kfj((λ− j

√−1M)−1P0, P0) = j
√−1KfjD(λ).

This proves that roots of Eq.(3.9) is in σp(Tj). The corresponding eigenvector is given
by x = (λ − j

√−1M)−1P0(ω) = 1/(λ − j
√−1ω). If λ ∈ √−1R, x /∈ L2(R, g(ω)dω).

Thus there are no eigenvalues on the imaginary axis.
(ii) This follows from the fact that the essential spectrum is stable under the bounded
perturbation and that there are no eigenvalues on σ(j

√−1M), see [8].

§ 3.3. Eigenvalues of the operator Tj and the transition point formula

Our next task is to calculate roots of Eq.(3.9) to obtain eigenvalues of Tj =
j
√−1M + j

√−1KfjP. By putting λ = x +
√−1y, x, y ∈ R, Eq.(3.9) is rewritten

as

(3.12)




∫
R

x

x2 + (jω − y)2
g(ω)dω = − Im(fj)

jK|fj |2 ,∫
R

jω − y

x2 + (jω − y)2
g(ω)dω = − Re(fj)

jK|fj |2 .

In what follows, we suppose that Im(fj) < 0. The case Im(fj) ≥ 0 will be treated in
Sec.3.5. The next lemma is easily obtained.

Lemma 3.3.
(i) When Im(fj) < 0, λ satisfies Re(λ) > 0 for any K > 0.
(ii) If K > 0 is sufficiently large, there exists at least one eigenvalue λ near infinity.
(iii) If K > 0 is sufficiently small, there are no eigenvalues.
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Proof. Part (i) of the lemma immediately follows from the first equation of Eq.(3.12).
To prove part (ii) of the lemma, note that if |λ| is large, Eq.(3.9) is rewritten as

1
λ

+O(
1
λ2

) =
1

j
√−1Kfj

.

Thus the Rouché’s theorem proves that Eq.(3.9) has a root λ ∼ j
√−1Kfj if K > 0

is sufficiently large. To prove part (iii) of the lemma, we see that the left hand side of
the first equation of Eq.(3.12) is bounded for any x, y ∈ R. To do so, let G(ω) be the
primitive function of g(ω) and fix δ > 0 small. The left hand side of the first equation
of Eq.(3.12) is calculated as

∫
R

xg(ω)dω
x2 + (jω − y)2

=
∫ ∞

y/j+δ

xg(ω)dω
x2 + (jω − y)2

+
∫ y/j−δ

−∞

xg(ω)dω
x2 + (jω − y)2

+
∫ y/j+δ

y/j−δ

xg(ω)dω
x2 + (jω − y)2

=
∫ ∞

y/j+δ

xg(ω)dω
x2 + (jω − y)2

+
∫ y/j−δ

−∞

xg(ω)dω
x2 + (jω − y)2

+
x

x2 + j2δ2
(G(y/j + δ) −G(y/j − δ)) +

∫ y/j+δ

y/j−δ

2jx(jω − y)
(x2 + (jω − y)2)2

G(ω)dω.

The first three terms in the right hand side above are bounded for any x, y ∈ R. Since
G is continuous, there exists a number ξ such that the last term is rewritten as

∫ y/j+δ

y/j−δ

2jx(jω − y)
(x2 + (jω − y)2)2

G(ω)dω = 2jδ · 2xξ
(x2 + ξ2)2

G(y/j + ξ/j).

This is bounded for any x, y ∈ R. Now we have proved that the left hand side of the
first equation of Eq.(3.12) is bounded for any x > 0, although the right hand side tends
to infinity as K → +0. Thus Eq.(3.9) has no roots if K is small.

Lemma 3.3 shows that if K > 0 is sufficiently large, the trivial solution Zj = 0
of the system dZj/dt = TjZj is unstable because of the eigenvalues with positive real
parts. Our purpose in this subsection is to determine the bifurcation point K(j)

c , which
is the minimum value of K such that if K < K

(j)
c , the operator Tj has no eigenvalues on

the right half plane. To calculate eigenvalues λ = λ(K) explicitly is difficult in general.
However, note that since zeros of a holomorphic function do not vanish because of the
argument principle, λ(K) disappears if and only if it is absorbed into the continuous
spectrum σ(j

√−1M), on which D(λ) is not holomorphic. This fact suggests that to
determine K(j)

c , it is sufficient to investigate Eq.(3.9) or Eq.(3.12) near the imaginary
axis. Since we are interested in λ(K) absorbed into σ(j

√−1M) ⊂ √−1R, take the
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Figure 3. A schematic view of behavior of roots λ of Eq.(3.9) when K decreases.

limit x→ +0 in Eq.(3.12):

(3.13)




lim
x→+0

∫
R

x

x2 + (jω − y)2
g(ω)dω = − Im(fj)

jK|fj |2 ,

lim
x→+0

∫
R

jω − y

x2 + (jω − y)2
g(ω)dω = − Re(fj)

jK|fj |2 .

These equations determine Kn and yn such that one of the eigenvalues λn(K) converges
to

√−1yn as K → Kn + 0 (see Fig.3). To calculate them, we need the next lemma.

Lemma 3.4. (i) Suppose that λn(K) → √−1yn as K → Kn. Then, g(ω) is
continuous at ω = yn.
(ii) If g(ω) is continuous at ω = y, then

(3.14) lim
x→+0

∫
R

x

x2 + (jω − y)2
g(ω)dω = πg(y/j)/j.

Proof. To prove (i), suppose that g(ω) is discontinuous at ω = 0 without loss of
generality.

STEP 1: At first, we suppose that g(ω) is piecewise continuous. Put g(+0) =
h+, g(−0) = h− and h+ �= h−. In this case, for any ε > 0, there exists δ > 0 such
that if −δ < ω < 0, then |g(ω) − h−| < ε and if 0 < ω < δ, then |g(ω) − h+| < ε. For
Eq.(3.9), we suppose |λ| = |x +

√−1y| < δ and y > 0. The case y < 0 is treated in a
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similar manner. We calculate D(λ) as

D(λ) =
∫ ∞

δ

g(ω)
λ− j

√−1ω
dω +

∫ −δ

−∞

g(ω)
λ− j

√−1ω
dω

+
∫ δ

0

1
λ− j

√−1ω
(g(ω) − h+ + h+) dω +

∫ 0

−δ

1
λ− j

√−1ω
(g(ω) − h− + h−) dω

=
∫ ∞

δ

g(ω)
λ− j

√−1ω
dω +

∫ ∞

δ

g(−ω)
λ+ j

√−1ω
dω

+
∫ δ

0

1
λ− j

√−1ω
(g(ω) − h+) dω +

∫ δ

0

1
λ+ j

√−1ω
(g(−ω) − h−) dω

+
∫ δ

0

1
λ− j

√−1ω
(h+ − h−) dω + h−

∫ δ

0

dω

λ− j
√−1ω

+ h−
∫ δ

0

dω

λ+ j
√−1ω

.(3.15)

Since |λ| < δ, there exists a positive number M , which is independent of λ, such that∫ ∞

δ

g(±ω)
λ∓ j

√−1ω
dω < M.

Thus |D(λ)| is estimated as

|D(λ)| ≥ |h+ − h−|
∫ δ

0

dω

|λ− j
√−1ω| − ε

∫ δ

0

dω

|λ− j
√−1ω| − ε

∫ δ

0

dω

|λ+ j
√−1ω|

−
∣∣∣∣h−j log

(√−1λ+ jδ√−1λ− jδ

)∣∣∣∣− 2M.

Since y > 0, |λ− j
√−1ω| < |λ+ j

√−1ω|. This shows that

(3.16) |D(λ)| ≥ (|h+ − h−| − 2ε)
∫ δ

0

dω

|λ− j
√−1ω| −

∣∣∣∣h−j log
(√−1λ+ jδ√−1λ− jδ

)∣∣∣∣− 2M.

The right hand side tends to infinity as λ → 0 if 2ε < |h+ − h−|. This proves that
Eq.(3.9) has no roots at λ = 0 for positive K.

STEP 2: In general, since g(ω) is a non-negative measurable function, there exists
a monotonic increasing sequence {gn(ω)}∞n=1 of non-negative simple functions such that
gn(ω) → g(ω) for each ω. In particular if g(ω) is discontinuous at ω = 0, we can choose
{gn(ω)}∞n=1 so that gn(ω) is discontinuous at ω = 0 for any n ∈ N. Then, the proof is
done in the same way as STEP 1 by approximating g(ω) by gn(ω).

(ii) The formula Eq.(3.14) is proved in Ahlfors [1].

Let (y,K) be one of the solutions of Eq.(3.13). Since g(ω) is continuous at ω = y,
substituting it into the first equation of Eq.(3.13) yields

(3.17) πg(y/j) = − Im(fj)
K|fj |2 .
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Substituting K = −Im(fj)/(π|fj |2g(y/j)) obtained from the above into the second
equation of Eq.(3.13) results in

(3.18) lim
x→0

∫
R

jω − y

x2 + (jω − y)2
g(ω)dω =

πRe(fj)
j Im(fj)

g(y/j).

This equation for y determines imaginary parts to which λ(K) converges as Re(λ(K)) →
+0. Let y1, y2, · · · be roots of Eq.(3.18). Then,

(3.19) Kn =
−Im(fj)

π|fj |2g(yn/j) , n = 1, 2, · · ·

give the values such that Re(λ(K)) → 0 as K → Kn + 0. Now we obtain the next
theorem.

Theorem 3.5. Suppose that Im(fj) < 0. Let y1, y2, · · · be roots of Eq.(3.18).
Put

(3.20) K(j)
c := inf

n
Kn =

−Im(fj)
π|fj |2 supn g(yn/j)

.

If 0 < K < K
(j)
c , the operator Tj has no eigenvalues, while if K is slightly larger than

K
(j)
c , Tj has eigenvalues on the right half plane.

Note that infnKn is positive because of Lemma.3.3 (iii). As a corollary, we obtain
the transition point (bifurcation point to the partially locked state) conjectured by
Kuramoto [10]:

Corollary 3.6 (Kuramoto’s transition point). Suppose that the probability den-
sity function g(ω) is even and max g(ω) = g(0). If Re(f1) = 0 and Im(f1) = −1/2 (it
corresponds to f(θ) = sin θ in Eq.(1.3)), then K

(1)
c defined as above is given by

(3.21) K(1)
c =

2
πg(0)

.

When K > K
(1)
c , the solution Z1 = 0 of Eq.(3.2) is unstable.

§ 3.4. Semi-group generated by the operator T1 (Im(f1) < 0)

Since we are interested in the dynamics of the order parameter Z0
1 (t) = (Z1, P0),

in what follows, we consider only j = 1 while cases j = 2, 3, · · · are investigated in
the same way. Theorem 3.5 shows that K(1)

c is the least bifurcation point and the
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trivial solution Z1(t, ω) = 0 of Eq.(3.2) is unstable if K is slightly larger than K
(1)
c . If

0 < K < K
(1)
c , the spectrum of T1 is on the imaginary axis: σ(T1) = σ(

√−1M), and
thus the dynamics of Z1 is nontrivial. In this subsection, we investigate the dynamics
of Z1 and the order parameter for 0 < K < K

(1)
c . We will see that the order parameter

may decay exponentially even if the spectrum lies on the imaginary axis because of
existence of resonance poles.

Since
√−1M has the semi-group e

√−1Mt and since P is bounded, the operator
T1 =

√−1M+
√−1Kf1P also generates the semi-group (Kato [8]), say eT1t. A solution

of Eq.(3.2) with an initial value q(ω) ∈ L2(R, g(ω)dω) is given by eT1tq(ω). The eT1t is
calculated by using the Laplace inversion formula

(3.22) eT1t = lim
y→∞

1
2π

√−1

∫ x+
√−1y

x−√−1y

eλt(λ− T1)−1dλ,

where x > 0 is chosen so that the contour is to the right of the spectrum of T1

(Yosida [22]). At first, let us calculate the resolvent (λ− T1)−1.

Lemma 3.7. For any q(ω) ∈ L2(R, g(ω)dω), the equality

(3.23) F0(λ) := ((λ− T1)−1q, P0) =
((λ−√−1M)−1q, P0)

1 −√−1Kf1D(λ)

holds.

Proof. Put

R(λ)q := (λ− T1)−1q = (λ−√−1M−√−1Kf1P)−1q,

which yields

(λ−√−1M)R(λ)q = q +
√−1Kf1PR(λ)q

= q +
√−1Kf1(R(λ)q, P0)P0.

This is rearranged as

R(λ)q = (λ−√−1M)−1q +
√−1Kf1(R(λ)q, P0)(λ−√−1M)−1P0.

By taking the inner product with P0, we obtain

(R(λ)q, P0) = ((λ−√−1M)−1q, P0) +
√−1Kf1(R(λ)q, P0)D(λ).

This proves Eq.(3.23).
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Let Z0
1 (t) = (Z1, P0) be the order parameter with the initial condition Z1(0, ω) =

q(ω). Eqs.(3.22) and (3.23) show that Z0
1 (t) is given by

(3.24) Z0
1 (t) = (eT1tq, P0) = lim

y→∞
1

2π
√−1

∫ x+
√−1y

x−√−1y

eλt
((λ−√−1M)−1q, P0)

1 −√−1Kf1D(λ)
dλ.

One of the effective way to calculate the integral above is to use the residue theorem.
Recall that the resolvent (λ− T1)−1 is holomorphic on C\σ(T1). Since we assume that
0 < K < K

(1)
c , T1 has no eigenvalues and the continuous spectrum lies on the imaginary

axis : σ(T1) = σ(
√−1M) =

√−1 · supp(g). Thus the integrand eλtF0(λ) in Eq.(3.24)
is holomorphic on the right half plane and may not be holomorphic on σ(T1). However,
under assumptions below, we can show that F0(λ) has an analytic continuation F1(λ)
through the line σ(T1) from right to left. Then, F1(λ) may have poles on the left half
plane (the second Riemann sheet of the resolvent), which are called resonance poles [17].
The resonance pole µ affects the integral in Eq.(3.24) through the residue theorem (see
Fig.4). In this manner, the order parameter Z0

1 (t) can decay with the exponential rate
Re(µ). Such an exponential decay caused by resonance poles is well known in the theory
of Schrödinger operators [17], and for the Kuramoto model, it is investigated numerically
by Strogatz et al. [19] and Balmforth et al. [2].

At first, we construct an analytic continuation of the function F0(λ).

Lemma 3.8. Suppose that the probability density function g(ω) and an initial
condition q(ω) are real analytic on R. If g(ω) and q(ω) have meromorphic continuations
g∗(λ) and q∗(λ) to the upper half plane, respectively, then the function F0(λ) defined
on the right half plane has the meromorphic continuation F1(λ) to the left half plane,
which is given by

(3.25) F1(λ) =
((λ−√−1M)−1q, P0) + 2πq∗(−√−1λ)g∗(−√−1λ)

1 −√−1Kf1D(λ) − 2π
√−1Kf1g∗(−

√−1λ)
.

Proof. By the formula (3.14), we obtain
(3.26)

lim
Re(λ)→+0

((λ−√−1M)−1q, P0)− lim
Re(λ)→−0

((λ−√−1M)−1q, P0) = 2πq(Im(λ))·g(Im(λ)).

Thus the meromorphic continuation of ((λ−√−1M)−1q, P0) from right to left is given
by

(3.27)

{
((λ−√−1M)−1q, P0) (Re(λ) > 0),
((λ−√−1M)−1q, P0) + 2πq∗(−√−1λ)g∗(−√−1λ) (Re(λ) < 0).

This proves Eq.(3.25).
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Poles of F1(λ) (resonance poles) on the left half plane are given as roots of the
equation

(3.28) D(λ) + 2πg∗(−√−1λ) =
1√−1Kf1

, Re(λ) < 0

and poles of the function q∗(−√−1λ). In the next theorem, we suppose for simplicity
that q∗(−√−1λ) has no poles. Now we calculate the order parameter Z0

1 (t).

Theorem 3.9. For Eq.(3.2) with j = 1, suppose that
(i) Im(f1) < 0 and 0 < K < K

(1)
c .

(ii) the probability density function g(ω) is real analytic on R and has a meromorphic
continuation g∗(λ) to the upper half plane.
(iii) an initial condition q(ω) is real analytic on R and has an analytic continuation
q∗(λ) to the upper half plane.
(iv) there exists a positive number δ such that |F1(λ)| → 0 as |λ| → ∞ in the angular
domains

(3.29) |arg(λ)| ≤ δ, |arg(λ) − π| ≤ δ.

(v) there exist positive constants D and β such that

(3.30) |F1(λ)| ≤ Deβ|λ|

in the angular domain π/2 + δ ≤ arg(λ) ≤ 3π/2 − δ.

Then, there exist resonance poles of T1 on the left half plane. Let α1, α2, · · · be resonance
poles such that |α1| ≤ |α2| ≤ · · · . Then, there exists a positive constant t0 such that the
order parameter is given by

(3.31) Z0
1 (t) = (eT1tq, P0) =

∞∑
n=1

pn(t)eαnt, t > t0

where pn(t) is a polynomial in t. In particular, Z0
1 (t) decays exponentially as t→ ∞.

Proof. At first, we prove the existence of resonance poles. Resonance poles are
roots of Eq.(3.28), which is the analytic continuation of the equation (3.9) for j = 1.
Thus one of the resonance poles is obtained as a continuation of an eigenvalue λ(K).
Recall that λ(K) converges into the imaginary axis as K → K

(1)
c + 0. To prove that

there exists a resonance pole on the left half plane when K < K
(1)
c , we have to show

that λ(K) does not stay on the imaginary axis for K < K
(1)
c . Differentiating Eq.(3.9)

with respect to K, we obtain

(3.32) λ′(K)
∫
R

1
(λ−√−1ω)2

g(ω)dω =
1√−1K2f1

,
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Figure 4. The contour for the Laplace inversion formula.

which proves that λ′(K) �= 0. Further, roots y of Eq.(3.18), which determines eigenval-
ues on the imaginary axis, are isolated because both side of Eq.(3.18) are analytic with
respect to y. This means that λ(K) can not move along the imaginary axis. This proves
that an eigenvalue λ(K) gets across the imaginary axis from right to left as K decreases
from K

(1)
c , which gives a root of Eq.(3.28). Note that there may exist resonance poles

which are not continuations of eigenvalues (see Example 3.11).
Next, let us prove Eq.(3.31). Let d > 0 be a small number and r sufficiently large

number. Take paths C1 to C6 as are shown in Fig.4:

C1 = {d+
√−1y | − r ≤ y ≤ r},

C2 = {x+
√−1r | 0 ≤ x ≤ d},

C3 = {re
√−1θ |π/2 ≤ θ ≤ π/2 + δ},

C4 = {re
√−1θ |π/2 + δ ≤ θ ≤ 3π/2 − δ},

and C5 and C6 are defined in a similar way to C3 and C2, respectively. We put C =∑6
j=1 Cj .

Let α1, α2, · · · , αn(C) be resonance poles inside the closed curve C, where we assume
that there are no resonance poles on the curve C by deforming it slightly if necessary.
Let R1(t), R2(t), · · · , Rn(c)(t) be corresponding residues of eλtF1(λ), respectively. Note
that if αj is a pole of F1(λ) of order mj , Rj(t) is of the form Rj(t) = pj(t)eαjt with a
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polynomial pj(t) of degree mj − 1. By the residue theorem, we have

2π
√−1

n(C)∑
j=1

Rj(t) =
∫
C6+C1+C2

eλtF0(λ)dλ+
∫
C3+C4+C5

eλtF1(λ)dλ.

The integral
∫
C1
eλtF0(λ)dλ/(2π

√−1) converges to Z0
1 (t) as r → ∞. It is easy to show

that the integrals along C2, C3, C5, C6 tend to zero as r → ∞ because of the assumption
(iv). We have to estimate the integral along C4 as∣∣∣∣

∫
C4

eλtF1(λ)dλ
∣∣∣∣≤
∫ 3π/2−δ

π/2+δ

rert cos θ |F1(re
√−1θ)|dθ

≤ max
π/2+δ≤θ≤3π/2−δ

|F1(re
√−1θ)|

∫ 3π/2−δ

π/2+δ

rert cos θdθ

≤Deβr
∫ π/2

δ

2re−rt sinφdφ

≤Deβr
∫ π/2

δ

2re−2rtφ/πdφ

≤Deβr · π
t

(
e−2rtδ/π − e−rt

)
.(3.33)

Thus if t > t0 := max {β, πβ/(2δ)}, this integral tends to zero as r → ∞.

Example 3.10. If g(ω) is a rational function, the assumptions are satisfied when
q∗(λ) is bounded on the upper half plane. In this case, the number of resonance poles
is finite and thus Eq.(3.31) becomes finite sum. For example if g(ω) = 1/(π(1 + ω2)) is
the Lorentzian distribution, a resonance pole is given by λ =

√−1Kf1 − 1 (a root of
Eq.(3.28)). Therefore Z0

1 (t) decays with the exponential rates Re(
√−1Kf1 − 1).

Example 3.11. If g(ω) is the Gaussian distribution, the assumptions are sat-
isfied when q∗(λ) is of exponential type; that is, there exist positive constants C and
β such that |q∗(λ)| ≤ Ceβ|λ|. Since the analytic continuation g∗(λ) has an essential
singularity at infinity, there exist infinitely many resonance poles and they accumulate
at infinity.

§ 3.5. Semi-group generated by the operator T1 (Im(f1) ≥ 0)

In Sec.3.1 and Sec.3.4, we investigate the semi-group generated by the operator
T1 =

√−1M +
√−1Kf1P for the cases f1 = 0 and Im(f1) < 0, respectively. In this

subsection, we consider the case Im(f1) ≥ 0.

Theorem 3.12. Suppose that the assumptions (ii) to (v) of Thm.3.9 hold. If Im(f1) ≥
0, for an arbitrarily fixed K > 0, the order parameter Z0

1 (t) = (eT1tq, P0) decays
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exponentially as t→ ∞.

We show an idea of the proof. If Im(f1) = 0, T1/
√−1 = M+KRe(f1)P is self-adjoint

and a rank one perturbation of the multiplication M. By Theorem X-4.3 in [8], T1/
√−1

and M are unitarily equivalent. Since (e
√−1Mtq, P0) decays exponentially (see Sec.3.1),

we can prove that so is (eT1tq, P0).
If Im(f1) > 0, change the parameter as K �→ −K. Then, the problem is reduced

to the case K < 0 and Im(f1) < 0, and Thm.3.12 is proved in a similar manner to the
proof of Thm.3.9.
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