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Abstract

The Kuramoto model is a system of ordinary differential equations for describing syn-
chronization phenomena defined as a coupled phase oscillators. In this paper, a bifurcation
structure of the infinite dimensional Kuramoto model is investigated. A purpose here is
to prove the bifurcation diagram of the model conjectured by Kuramoto in 1984; if the
coupling strength K between oscillators, which is a parameter of the system, is smaller
than some threshold Kc, the de-synchronous state (trivial steady state) is asymptotically
stable, while if K exceeds Kc, a nontrivial stable solution, which corresponds to the syn-
chronization, bifurcates from the de-synchronous state. One of the difficulties to prove
the conjecture is that a certain non-selfadjoint linear operator, which defines a linear part
of the Kuramoto model, has the continuous spectrum on the imaginary axis. Hence, the
standard spectral theory is not applicable to prove a bifurcation as well as the asymptotic
stability of the steady state. In this paper, the spectral theory on a space of generalized
functions is developed with the aid of a rigged Hilbert space to avoid the continuous spec-
trum on the imaginary axis. Although the linear operator has an unbounded continuous
spectrum on a Hilbert space, it is shown that it admits a spectral decomposition consist-
ing of a countable number of eigenfunctions on a space of generalized functions. The
semigroup generated by the linear operator will be estimated with the aid of the spectral
theory on a rigged Hilbert space to prove the linear stability of the steady state of the sys-
tem. The center manifold theory is also developed on a space of generalized functions. It
is proved that there exists a finite dimensional center manifold on a space of generalized
functions, while a center manifold on a Hilbert space is of infinite dimensional because of
the continuous spectrum on the imaginary axis. These results are applied to the stability
and bifurcation theory of the Kuramoto model to obtain a bifurcation diagram conjectured
by Kuramoto.
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Fig. 1: The order parameter of the Kuramoto model.

1 Introduction

Collective synchronization phenomena are observed in a variety of areas such as chemical
reactions, engineering circuits and biological populations [38]. In order to investigate such
phenomena, Kuramoto [26] proposed the system of ordinary differential equations

dθi

dt
= ωi +

K
N

N∑
j=1

sin(θ j − θi), i = 1, · · · ,N, (1.1)

where θi = θi(t) ∈ [0, 2π) is a dependent variable which denotes the phase of an i-th
oscillator on a circle, ωi ∈ R denotes its natural frequency, K > 0 is a coupling strength,
and where N is the number of oscillators. Eq.(1.1) is derived by means of the averaging
method from coupled dynamical systems having limit cycles, and now it is called the
Kuramoto model.

It is obvious that when K = 0, θi(t) and θ j(t) rotate on a circle at different velocities
unlessωi is equal toω j, and this fact is true for sufficiently small K > 0. On the other hand,
if K is sufficiently large, it is numerically observed that some of oscillators or all of them
tend to rotate at the same velocity on average, which is called the synchronization [38, 43].
If N is small, such a transition from de-synchronization to synchronization may be well
revealed by means of the bifurcation theory [12, 28, 29]. However, if N is large, it is
difficult to investigate the transition from the view point of the bifurcation theory and it is
still far from understood.

In order to evaluate whether synchronization occurs or not, Kuramoto introduced the
order parameter r(t)e

√−1ψ(t) by

r(t)e
√−1ψ(t) :=

1
N

N∑
j=1

e
√−1θ j(t), (1.2)

where r, ψ ∈ R. The order parameter gives the centroid of oscillators. It seems that if
synchronous state is formed, r(t) takes a positive number, while if de-synchronization is
stable, r(t) is zero on time average (see Fig.1). Further, this is true for every t when N
is sufficiently large so that a statistical-mechanical description is applied. Based on this
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Fig. 2: Typical bifurcation diagrams of the order parameter for the cases that (a) g(ω) is
even and unimodal (b) g(ω) is even and bimodal. Solid lines denote stable solutions and
dotted lines denote unstable solutions.

observation and some formal calculations, Kuramoto conjectured a bifurcation diagram
of r(t) as follows:

Kuramoto conjecture
Suppose that N → ∞ and natural frequenciesωi’s are distributed according to a proba-

bility density function g(ω). If g(ω) is an even and unimodal function such that g′′(0) � 0,
then the bifurcation diagram of r(t) is given as Fig.2 (a); that is, if the coupling strength K
is smaller than Kc := 2/(πg(0)), then r(t) ≡ 0 is asymptotically stable. On the other hand,
if K is larger than Kc, the synchronous state emerges; there exists a positive constant rc

such that r(t) = rc is asymptotically stable. Near the transition point Kc, rc is of order
O((K − Kc)1/2).

A function g(ω) is called unimodal (at ω = 0) if g(ω1) > g(ω2) for 0 ≤ ω1 < ω2 and
g(ω1) < g(ω2) for ω1 < ω2 ≤ 0. Now the value Kc = 2/(πg(0)) is called the Kuramoto
transition point. See [27] and [43] for Kuramoto’s discussion.

In the present paper, the Kuramoto conjecture will be proved in the following sense:
At first, we will define the continuous limit of the model in Sec.2 to express the dynamics
of the infinite number of oscillators (N → ∞). The trivial steady state of the continuous
model corresponds to the de-synchronous state r ≡ 0. For the continuous model, the
following theorems will be proved.

Theorem 1.1 (instability of the trivial state). Suppose that g(ω) is even, unimodal and
continuous. When K > Kc := 2/(πg(0)), then the trivial steady state of the continuous
model is linearly unstable.

This linear instability result was essentially obtained by Strogatz and Mirollo [44].
Although we do not give a proof of a local nonlinear instability, it is proved in the same
way as the local nonlinear stability result below.

Theorem 1.2 (local stability of the trivial state). Suppose that g(ω) is the Gaussian
distribution or a rational function which is even, unimodal and bounded on R. When
0 < K < Kc, there exists a positive constant δ such that if the initial condition h(θ) for the
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continuous model (2.1) satisfies∣∣∣∣∣∣
∫ 2π

0
e j
√−1θh(θ)dθ

∣∣∣∣∣∣ ≤ δ, j = 1, 2, · · · , (1.3)

then the continuous limit η(t) of the order parameter defined in (2.1) decays to zero expo-
nentially as t → ∞.

This stability result will be stated as Thm.6.1 in more detail: under the above assump-
tions, the trivial state of the continuous model proves to be locally stable with respect
to a topology of a certain topological vector space constructing a rigged Hilbert space.
Thm.1.2 is obtained as a corollary of Thm.6.1.

Theorem 1.3 (bifurcation). Suppose that g(ω) is the Gaussian distribution or a rational
function which is even, unimodal and bounded on R. For the continuous model, there
exist positive constants ε0 and δ such that if Kc < K < Kc + ε0 and if the initial condition
h(θ) satisfies ∣∣∣∣∣∣

∫ 2π

0
e
√−1 jθh(θ)dθ

∣∣∣∣∣∣ < δ, j = 1, 2, · · · , (1.4)

then the continuous limit η(t) of the order parameter tends to the constant expressed as

r(t) = |η(t)| =
√

−16
πK4

c g′′(0)

√
K − Kc + O(K − Kc), (1.5)

as t → ∞. In particular, the bifurcation diagram of the order parameter is given as Fig.2
(a).

This result will be proved in Thm.7.10 with the aid of the center manifold theory on a
rigged Hilbert space. Again, a bifurcation of a stable nontrivial solution of the continuous
model will be proved with respect to a topology of a certain topological vector space.

A few remarks are in order.
• Our bifurcation theory is applicable to a certain class of distribution functions g(ω). It
will turn out that one of the most essential assumptions is the holomorphy (meromorphy)
of g(ω). For example, let us slightly deform the Gaussian g(ω) so that it sags in the center
as it becomes bimodal function. In this case, since g′′(0) > 0, |η(t)| above is positive when
K < Kc. This means that a subcritical bifurcation occurs and the bifurcation diagram
shown in Fig.2 (b) is obtained at least near the bifurcation point K = Kc.
• It is proved in [11] that the order parameter (1.2) for the N-dimensional Kuramoto model
converges to that of the continuous model (2.1) as N → ∞ in a certain probabilistic sense
for each t > 0.
• In [10], bifurcation diagrams of the Kuramoto-Daido model (i.e. a coupling function
includes higher harmonic terms such as sin 2(θ j − θi)) are obtained in the same way as
the present paper, although the existence of center manifolds has not been proved for the
Kuramoto-Daido model.
• In this paper, only local stability is proved and global one is still open.
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In the rest of this section, known results for the Kuramoto conjecture will be briefly
reviewed and our idea to prove the above theorems are explained. See Strogatz [43] for
history of the Kuramoto conjecture.

In the last two decades, many studies to confirm the Kuramoto conjecture have been
done. Significant papers of Strogatz and coauthors [44, 45] investigated the linear sta-
bility of the trivial solution, which corresponds to the de-synchronous state r ≡ 0. In
[44], they introduced the continuous model for the Kuramoto model to describe the situ-
ation N → ∞. They derived the Kuramoto transition point Kc = 2/(πg(0)) and showed
that if K > Kc, the de-synchronous state is unstable because of eigenvalues on the right
half plane. On the other hand, when 0 < K ≤ Kc, a linear operator T1, which defines
the linearized equation of the continuous model around the de-synchronous state, has no
eigenvalues; the spectrum of T1 consists only of the continuous spectrum on the imaginary
axis. This implies that the standard stability theory of dynamical systems is not applicable
to this system. However, in [45], they found that an analytic continuation of the resolvent
(λ − T1)−1 may have poles (resonance poles) on the left half plane for a wide class of
distribution functions g(ω). They remarked a possibility that resonance poles induce a
decay of the order parameter r by a linear analysis. This claim will be rigorously proved
in this paper for a certain class of distribution functions by taking into account nonlinear
terms (Thm.1.2). In [34], the spectra of linearized systems around other steady states,
which correspond to solutions with positive r = rc, are investigated. They found that lin-
ear operators, which is obtained from the linearization of the system around synchronous
states, have continuous spectra on the imaginary axis. Nevertheless, they again remarked
that such solutions can be asymptotically stable because of the resonance poles.

Since results of Strogatz et al. are based on a linearized analysis, effects of nonlin-
ear terms are neglected. To investigate nonlinear dynamics, the bifurcation theory is often
used. However, investigating the bifurcation structure near the transition point Kc involves
further difficult problems because the operator T1 has a continuous spectrum on the imag-
inary axis, that is, a center manifold in a usual sense is of infinite dimensional. To avoid
this difficulty, Bonilla et al. [2, 7, 8] and Crawford et al. [13, 14, 15] added a perturbation
(noise) with the strength D > 0 to the Kuramoto model. Then, the continuous spectrum
moves to the left side by D, and thus the usual center manifold reduction is applicable.
When g(ω) is an even and unimodal function, they obtained the Kuramoto bifurcation
diagram (Fig.2 (a)), however, obviously their methods are not valid when D = 0. For
example, in Crawford’s method, an eigenfunction of T1 associated with a center subspace
diverges as D → 0 because an eigenvalue on the imaginary axis is embedded in the con-
tinuous spectrum as D→ 0. Thus the original Kuramoto conjecture was still open.

Despite the active interest in the case that the distribution function g(ω) is even and
unimodal, bifurcation diagrams of r for g(ω) other than the even and unimodal case are
not understood well. Martens et al. [31] investigated the bifurcation diagram for a bimodal
g(ω) which consists of two Lorentzian distributions. In particular, they found that stable
synchronous states can coexist with stable de-synchronous states if K is slightly smaller
than Kc (see Fig.2 (b)). Their analysis depends on extensive symmetries of the Kuramoto
model found by Ott and Antonsen [36, 37] (see also [32]) and on the special form of g(ω),
however, such a diagram seems to be common for any bimodal distributions.

In this paper, the stability, spectral and bifurcation theory of the continuous model
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of the Kuramoto model will be developed to prove the Kuramoto conjecture. Let T1

be a linear operator obtained by linearizing the continuous model (2.1) around the de-
synchronous state. The spectrum and the semigroup of T1 will be investigated in detail.
The operator T1 = T1(K) defined on the weighted Lebesgue space L2(R, g(ω)dω) has the
continuous spectrum σc(T1) on the imaginary axis for any K > 0. For example, when
g is the Gaussian distribution, then σc(T1) =

√−1R. At first, we derive the transition
point (bifurcation point) Kc for any distribution function g(ω); When K > Kc, T1 has
eigenvalues λ = λ(K) on the right half plane. As K decreases, λ(K) goes to the left side,
and at K = Kc, the eigenvalues are absorbed into the continuous spectrum on the imagi-
nary axis and disappear. When 0 < K < Kc, there are no eigenvalues and the spectrum
of T1 consists of the continuous spectrum. As a corollary, the Kuramoto transition point
Kc = 2/(πg(0)) is obtained if g(ω) is an even and unimodal function. When K > Kc, it is
proved that the de-synchronous state is unstable because the operator T1 has eigenvalues
on the right half plane.

On the other hand, when 0 < K ≤ Kc, the operator T1 has no eigenvalues and the
continuous spectrum lies on the imaginary axis. Thus the stability of the de-synchronous
state is nontrivial. Despite this fact, under appropriate assumptions for g(ω), the order
parameter proves to decay exponentially to zero as t → ∞ because of the existence of
resonance poles on the left half plane, as was expected by Strogatz et al. [45]. To prove
it, the notion of spectrum is extended. Roughly speaking, the spectrum is the set of
singularities of the resolvent (λ − T1)−1. However, if g(ω) has an analytic continuation,
the resolvent has an analytic continuation if the domain is restricted to a suitable function
space. The analytic continuation has singularities, which are called resonance poles, on
the second Riemann sheet. By using the Laplace inversion formula for a semigroup, we
will prove that the resonance poles induce an exponential decay of the order parameter.
This suggests that in general, linear stability of a trivial solution of a linear equation on an
infinite dimensional space is determined by not only the spectrum of the linear operator
but also its resonance poles.

Next purpose is to investigate a bifurcation at K = Kc. To handle the continuous
spectrum on the imaginary axis, a spectral theory of the resonance poles is developed
with the aid of a rigged Hilbert space (Gelfand triplet). A rigged Hilbert space consists of
three topological vector spaces

X ⊂ H ⊂ X′,

a space X of test functions, a Hilbert space H (in our problem, this is the weighted
Lebesgue space L2(R, g(ω)dω)) and the dual space X′ of X (a space of continuous lin-
ear functionals on X called generalized functions). A suitable choice of X depends on
g(ω). In this paper, two cases are considered: (i) g(ω) is the Gaussian distribution, (ii)
g(ω) is a rational function (e.g. Lorentzian distribution g(ω) = 1/(π(1 + ω2))). For the
case (i), X := Exp+ is a space of holomorphic functions φ(z) defined near the real axis
and the upper half plane such that supIm(z)≥−ε |φ(z)|e−β|z| is finite for some ε > 0 and β ≥ 0.
For the case (ii), X := H+ is a space of bounded holomorphic functions on the real axis
and the upper half plane. For both cases, we will show that if the domain of the resolvent
(λ − T1)−1 is restricted to X, then it has an X′-valued meromorphic continuation from the
right half plane to the left half plane beyond the continuous spectrum on the imaginary
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axis. Although (λ − T1)−1 diverges on the imaginary axis as an operator on H because
of the continuous spectrum, it has an analytic continuation from the right to the left as
an operator from X into X′. Singularities of the continuation of the resolvent is called
resonance poles λn (n = 0, 1, · · · ). We will show that there exists a generalized function
µn ∈ X′ satisfying

T×1 µn = λnµn,

where T×1 : X′ → X′ is a dual operator of T1 and µn is called the generalized eigenfunction
associated with the resonance pole. Despite the fact that T1 is not a selfadjoint operator
and it has the continuous spectrum, it is proved that the operator T1 admits the spectral
decomposition on X′ consisting of a countable number of generalized eigenfunctions:
roughly speaking, any element φ in X is decomposed as

φ =

∞∑
n=0

µn(φ) · µn.

Further, it is shown that for the case (ii), the decomposition is reduced to a finite sum be-
cause of a certain degeneracy of the space X = H+. We further investigate the semigroup
generated by T1 and the projection to the eigenspace of µn. It is proved that the semigroup
eT1t behaves as

eT1tφ =

∞∑
n=0

eλntµn(φ) · µn

for any φ ∈ X. This equality completely determines the dynamics of the linearized Ku-
ramoto model. In particular, when 0 < K < Kc, all resonance poles lie on the left half
plane: Re(λn) < 0, which proves the linear stability of the de-synchronous state. When
K = Kc, there are resonance poles on the imaginary axis. We define a generalized center
subspace Ec on X′ to be a space spanned by generalized eigenfunctions associated with
resonance poles on the imaginary axis. It is remarkable that though the center subspace in
a usual sense is of infinite dimensional because of the continuous spectrum on the imagi-
nary axis, the dimension of the generalized center subspace on X′ is finite in general. The
projection operator to the generalized center subspace will be investigated in detail.

Note that the spectral decomposition based on a rigged Hilbert space was originally
proposed by Gelfand et al. [19, 30]. They proposed a spectral decomposition of a self-
adjoint operator by using a system of generalized eigenfunctions, however, it involves
an integral; that is, eigenfunctions are uncountable. Our results are quite different from
Gelfand’s one in that our operator T1 is not selfadjoint and its spectral decomposition
consists of a countable number of eigenfunctions.

Finally, we apply the center manifold reduction to the continuous Kuramoto model by
regarding it as an evolution equation on X′. Since the generalized center subspace is of fi-
nite dimensional, a corresponding center manifold on X′ seems to be a finite dimensional
manifold. However, there are no existence theorems of center manifolds on X′ because
X′ is not a Banach space. To prove the existence of a center manifold, we introduce a
topology on X in a technical way so that the dual space X′ becomes a complete metric
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space. With this topology, X′ becomes a topological vector space called Montel space,
which is obtained as a projective limit of Banach spaces. This topology has a very conve-
nient property that every weakly convergent series in X′ is also convergent with respect the
metric. By using this topology and the spectral decomposition, the existence of a finite di-
mensional center manifold for the Kuramoto model will be proved. The dynamics on the
center manifold will be derived when g(ω) is Gaussian. In this case, the center manifold
on X′ is of one dimensional, and we can show that the synchronous solution (a solution
such that r > 0) emerges through the pitchfork bifurcation, which proves Thm.1.3.

This paper is organized as follows: In Sec.2, the continuous model for the Kuramoto
model is defined and its basic properties are reviewed. In Sec.3, Kuramoto’s transition
point Kc is derived and it is proved that if K > Kc, the de-synchronous state is unsta-
ble because of eigenvalues on the right half plane. In Sec.4, the linear stability of the
de-synchronous state is investigated. We will show that when 0 < K < Kc, the order
parameter decays exponentially to zero as t → ∞ because of the existence of resonance
poles. In Sec.5, the spectral theory of resonance poles on a rigged Hilbert space is de-
veloped. We investigate properties of the operator T1, the semigroup, eigenfunctions,
projections by means of the rigged Hilbert space. In Sec.6, the nonlinear stability of the
de-synchronous state is proved as an application of the spectral decomposition on the
rigged Hilbert space. It is shown that when 0 < K < Kc, the order parameter tends to
zero as t → ∞ without neglecting the nonlinear term. The center manifold theory will
be developed in Sec.7. Sec.7.1 to Sec.7.4 are devoted to the proof of the existence of a
center manifold on the dual space X′. In Sec.7.5, the dynamics on the center manifold is
derived, and the Kuramoto conjecture is solved.

2 Continuous model

In this section, we define a continuous model of the Kuramoto model and show a few
properties of it.

For the N-dimensional Kuramoto model (1.1), taking the continuous limit N → ∞,
we obtain the continuous model of the Kuramoto model, which is an evolution equation
of a probability measure ρt = ρt(θ, ω) on S 1 = [0, 2π) parameterized by t ∈ R and ω ∈ R,
defined as 

∂ρt

∂t
+
∂

∂θ

((
ω +

K

2
√−1

(η(t)e−
√−1θ − η(t)e

√−1θ)
)
ρt

)
= 0,

η(t) :=
∫

R

∫ 2π

0
e
√−1θρt(θ, ω)g(ω)dθdω,

ρ0(θ, ω) = h(θ),

(2.1)

where h(θ) is an initial condition and g(ω) is a given probability density function for
natural frequencies. We are assuming that the initial condition h(θ) is independent of ω.
This assumption corresponds to the assumption for the discrete model (1.1) that initial
values {θ j(0)}Nj=1 and natural frequencies {ω j}Nj=1 are independently distributed, and is a
physically natural assumption often used in literature. However, we will also consider ω-
dependent initial conditions h(θ, ω), a probability measure on S 1 parameterized by ω, for
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mathematical reasons, in Sec.7. Roughly speaking, ρt(θ, ω) denotes a probability that an
oscillator having a natural frequency ω is placed at a position θ (for example, see [1, 15]
for how to derive Eq.(2.1)). Since h and ρt are measures on S 1, they should be denoted
as dh(θ) and dρt(θ, · ), however, we use the present notation for simplicity. The η(t) is
a continuous version of (1.2), and we also call it the order parameter. η(t) denotes the
complex conjugate of η(t). We can prove that Eq.(2.1) is a proper continuous model in
the sense that the order parameter (1.2) of the N-dimensional Kuramoto model converges
to η(t) as N → ∞ under some assumptions, see Chiba [11]. The purpose in this paper is
to investigate the dynamics of Eq.(2.1).

A few properties of Eq.(2.1) are in order. It is easy to prove the low of conservation
of mass: ∫

R

∫ 2π

0
ρt(θ, ω)g(ω)dθdω =

∫
R

∫ 2π

0
h(θ)g(ω)dθdω = 1. (2.2)

By using the characteristic curve method, Eq.(2.1) is formally integrated as follows: Con-
sider the equation

dx
dt
= ω +

K

2
√−1

(η(t)e−
√−1x − η(t)e

√−1x), x ∈ [0, 2π), (2.3)

which defines a characteristic curve. Let x = x(t, s; θ, ω) be a solution of Eq.(2.3) satisfy-
ing the initial condition x(s, s; θ, ω) = θ at an initial time s. Then, along the characteristic
curve, Eq.(2.1) is integrated to yield

ρt(θ, ω) = h(x(0, t; θ, ω)) exp
[K

2

∫ t

0
(η(s)e−

√−1x(s,t;θ,ω) + η(s)e
√−1x(s,t;θ,ω))ds

]
, (2.4)

see [11] for the proof. By using Eq.(2.4), it is easy to show the equality∫ 2π

0
a(θ, ω)ρt(θ, ω)dθ =

∫ 2π

0
a(x(t, 0; θ, ω), ω)h(θ)dθ, (2.5)

for any measurable function a(θ, ω). In particular, the order parameter η(t) are rewritten
as

η(t) =
∫

R

∫ 2π

0
e
√−1x(t,0;θ,ω)g(ω)h(θ)dθdω. (2.6)

These expressions will be often used for a nonlinear stability analysis. Substituting it into
Eqs.(2.3) and (2.4), we obtain

d
dt

x(t, s; θ, ω) = ω + K
∫

R

∫ 2π

0
sin
(
x(t, 0; θ′, ω′) − x(t, s; θ, ω)

)
g(ω′)h(θ′)dθ′dω′, (2.7)

and

ρt(θ, ω) = h(x(0, t; θ, ω)) ×
exp
[
K
∫ t

0
ds ·
∫

R

∫ 2π

0
cos
(
x(s, 0; θ′, ω′) − x(s, t; θ, ω)

)
h(θ′)g(ω′)dθ′dω′

]
, (2.8)
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respectively. They define a system of integro-ordinary differential equations which is
equivalent to Eq.(2.1). Even if h(θ) is not differentiable, we consider Eq.(2.8) to be a weak
solution of Eq.(2.1). Indeed, even if h and ρt are not differentiable, the quantity (2.5) is
differentiable with respect to t when a(θ, ω) is differentiable. It is natural to consider the
dynamics of weak solutions because ρt is a probability measure and we are interested in
the dynamics of its moments, in particular the order parameter. In [11], the existence and
uniqueness of weak solutions of Eq.(2.1) is proved.

3 Transition point formula and the linear instability

A trivial solution of the continuous model (2.1), which is independent of θ and t, is given
by the uniform distribution ρt(θ, ω) = 1/(2π). In this case, η(t) ≡ 0. This solution is called
the incoherent state or the de-synchronous state. In this section and the next section, we
investigate the linear stability of the de-synchronous state. The nonlinear stability will be
discussed in Sec.6. The analysis of the spectrum of a linear operator obtained from the
Kuramoto-type model was first reported by Strogatz and Mirollo [44].

Let

Zj(t, ω) :=
∫ 2π

0
e
√−1 jθρt(θ, ω)dθ =

∫ 2π

0
e
√−1 jx(t,0;θ,ω)h(θ)dθ (3.1)

be the Fourier coefficients of ρt(θ, ω). Then, Z0(t, ω) = 1 and Zj satisfy the differential
equations

dZ1

dt
=
√−1ωZ1 +

K
2
η(t) − K

2
η(t)Z2, (3.2)

and

dZj

dt
= j

√−1ωZj +
jK
2

(η(t)Zj−1 − η(t)Zj+1), (3.3)

for j = 2, 3, · · · . The order parameter η(t) is the integral of Z1(t, ω) with the weight
g(ω). The de-synchronous state corresponds to the trivial solution Zj ≡ 0 for j =
1, 2, · · · . Eq.(3.1) shows |Zj(t, ω)| ≤ 1 and thus Zj(t, ω) is in the weighted Lebesgue
space L2(R, g(ω)dω) for every t :

||Zj(t, · )||2L2(R,g(ω)dω) =

∫
R
|Zj(t, ω)|2g(ω)dω ≤ 1.

In order to investigate the linear stability of the trivial solution, the above equations are
linearized around the origin as

dZ1

dt
=

(√−1M + K
2
P
)

Z1, (3.4)

and

dZj

dt
= j
√−1MZj, (3.5)
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for j = 2, 3, · · · , whereM : q(ω) 
→ ωq(ω) is the multiplication operator on L2(R, g(ω)dω)
and P is the projection on L2(R, g(ω)dω) defined to be

Pq(ω) =
∫

R
q(ω)g(ω)dω. (3.6)

If we put P0(ω) ≡ 1, P is also expressed as Pq(ω) = (q, P0), where ( , ) is the inner
product on L2(R, g(ω)dω) defined as

(q1, q2) :=
∫

R
q1(ω)q2(ω)g(ω)dω. (3.7)

Note that the order parameter is given as η(t) = PZ1 = (Z1, P0). To determine the linear
stability of the de-synchronous state and the order parameter, we have to investigate the

spectrum and the semigroup of the operator T1 :=
√−1M + K

2
P.

Remark. We need not assume that the Fourier series
∑∞
−∞ Zj(t, ω)e

√−1 jθ converges to
ρt(θ, ω) in any sense. It is known that there is a one-to-one correspondence between a
measure on S 1 and its Fourier coefficients (see Shohat and Tamarkin [41]). Thus the dy-
namics of {Zj(t, ω)}∞−∞ uniquely determines the dynamics of ρt(θ, ω), and vice versa. In
particular, since a weak solution of the initial value problem (2.1) is unique (Chiba [11]),
so is Eqs.(3.2),(3.3). In what follows, we will consider the dynamics of {Zj(t, ω)}∞−∞ in-
stead of ρt.

3.1 Analysis of the operator
√−1M

Before investigating the operator T1, we give a few properties of the multiplication op-
erator M : q(ω) 
→ ωq(ω) on L2(R, g(ω)dω). The domain D(M) of M is dense in
L2(R, g(ω)dω). It is well known that its spectrum is given by σ(M) = supp(g) ⊂ R,
where supp(g) is a support of the function g. Thus the spectrum of

√−1M is

σ(
√−1M) =

√−1 · supp(g) = { √−1λ | λ ∈ supp(g)} ⊂ √−1R. (3.8)

SinceM is selfadjoint,
√−1M generates a C0 semigroup e

√−1Mt given as e
√−1Mtq(ω) =

e
√−1ωtq(ω). In particular, we obtain

(e
√−1Mtq1, q2) =

∫
R

e
√−1ωtq1(ω)q2(ω)g(ω)dω, (3.9)

for any q1, q2 ∈ L2(R, g(ω)dω). This is the Fourier transform of the function q1(ω)q2(ω)g(ω).
Thus if q1(ω)q2(ω)g(ω) is real analytic on R and has an analytic continuation to the upper
half plane, then (e

√−1Mtq1, q2) decays exponentially as t → ∞, while if q1(ω)q2(ω)g(ω) is
Cr, then it decays as O(1/tr) (see Vilenkin [49]). This means that e

√−1Mt does not decay in
L2(R, g(ω)dω), however, it decays to zero in a suitable weak topology. A weak topology
will play an important role in this paper. These facts are summarized as follows:

Proposition 3.1. A solution of the equation (3.5) with an initial value q(ω) ∈ L2(R, g(ω)dω)
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is given by Zj(t, ω) = e j
√−1Mtq(ω) = e j

√−1ωtq(ω). The quantity (e j
√−1Mtq1, q2) decays ex-

ponentially to zero as t → ∞ if g(ω), q1(ω) and q2(ω) have analytic continuations to the
upper half plane.

This proposition suggests that analyticity of g(ω) and initial conditions also plays an
important role for an analysis of the operator T1. The resolvent (λ − √−1M)−1 of the
operator

√−1M is calculated as

((λ − √−1M)−1q1, q2) =
∫

R

1

λ − √−1ω
q1(ω)q2(ω)g(ω)dω. (3.10)

We define the function D(λ) to be

D(λ) = ((λ − √−1M)−1P0, P0) =
∫

R

1

λ − √−1ω
g(ω)dω (3.11)

(recall that P0(ω) ≡ 1). It is holomorphic in C\σ(
√−1M) and will be used in later

calculations.

3.2 Eigenvalues of the operator T1 and the transition point formula

The domain of T1 =
√−1M + K

2P is given by D(M) ∩ D(P) = D(M), which is dense
in L2(R, g(ω)dω). SinceM is selfadjoint and P is bounded, T1 is a closed operator [23].
Let �(T1) be the resolvent set of T1 and σ(T1) = C\�(T1) the spectrum. Let σp(T1) and
σc(T1) be the point spectrum (the set of eigenvalues) and the continuous spectrum of T1,
respectively.

Proposition 3.2. (i) Eigenvalues λ of T1, if they exist, are given as roots of

D(λ) =
2
K
, λ ∈ C\σ(

√−1M). (3.12)

Furthermore, there are no eigenvalues on the imaginary axis.
(ii) T1 has no residual spectrum. The continuous spectrum of T1 is given by

σc(T1) = σ(
√−1M) =

√−1 · supp(g). (3.13)

Proof. (i) Suppose that λ ∈ σp(T1)\σ(
√−1M). Then, there exists x ∈ L2(R, g(ω)dω)

such that

λx = (
√−1M + K

2
P)x, x � 0.

Since λ � σ(
√−1M), (λ − √−1M)−1 is defined and the above is rewritten as

x = (λ − √−1M)−1 K
2
Px

=
K
2

(x, P0)(λ − √−1M)−1P0(ω).

13



By taking the inner product with P0(ω), we obtain

1 =
K
2

((λ − √−1M)−1P0, P0) =
K
2

D(λ). (3.14)

This proves that roots of Eq.(3.12) are in σp(T1)\σ(
√−1M). The corresponding eigen-

vector is given by x = (λ − √−1M)−1P0(ω) = 1/(λ − √−1ω). If λ ∈ √−1R, x �
L2(R, g(ω)dω). Thus there are no eigenvalues on the imaginary axis. In particular, there
are no eigenvalues on σ(

√−1M).
(ii) SinceM is selfadjoint,

√−1M is a Fredholm operator without the residual spectrum.
Since K isM-compact, T1 also has no residual spectrum due to the stability theorem of
Fredholm operators (see Kato [23]). The latter statement follows from the fact that the
essential spectrum is stable under the bounded perturbation [23]: the essential spectrum
of T1 is the same as σ(

√−1M). Since there are no eigenvalues on σ(
√−1M), it coincides

with the continuous spectrum. �

Our next task is to calculate roots of Eq.(3.12) to obtain eigenvalues of T1 =
√−1M+

K
2P. By putting λ = x +

√−1y with x, y ∈ R, Eq.(3.12) is rewritten as
∫

R

x
x2 + (ω − y)2

g(ω)dω =
2
K
,∫

R

ω − y
x2 + (ω − y)2

g(ω)dω = 0.
(3.15)

The next lemma is easily obtained.

Lemma 3.3.
(i) If an eigenvalue λ exists, it satisfies Re(λ) > 0 for any K > 0.
(ii) If K > 0 is sufficiently large, there exists at least one eigenvalue λ near infinity.
(iii) If K > 0 is sufficiently small, there are no eigenvalues.

Proof. Part (i) of the lemma immediately follows from the first equation of Eq.(3.15):
Since the right hand side is positive, x in the left had side has to be positive. To prove part
(ii) of the lemma, note that if |λ| is large, Eq.(3.12) is expanded as

1
λ
+ O(

1
λ2

) =
2
K
.

Thus Rouché’s theorem proves that Eq.(3.12) has a root λ ∼ K/2 if K > 0 is sufficiently
large. To prove part (iii) of the lemma, we see that the left hand side of the first equation
of Eq.(3.15) is bounded for any x, y ∈ R. To do so, let G(ω) be the primitive function of
g(ω) and fix δ > 0 small. The left hand side of the first equation of Eq.(3.15) is calculated
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as ∫
R

xg(ω)dω
x2 + (ω − y)2

=

∫ ∞
y+δ

xg(ω)dω
x2 + (ω − y)2

+

∫ y−δ

−∞

xg(ω)dω
x2 + (ω − y)2

+

∫ y+δ

y−δ

xg(ω)dω
x2 + (ω − y)2

=

∫ ∞
y+δ

xg(ω)dω
x2 + (ω − y)2

+

∫ y−δ

−∞

xg(ω)dω
x2 + (ω − y)2

+
x

x2 + δ2
(G(y + δ) −G(y − δ)) +

∫ y+δ

y−δ

2x(ω − y)
(x2 + (ω − y)2)2

G(ω)dω.

The first three terms in the right hand side above are bounded for any x, y ∈ R. By the
mean value theorem, there exists a number ξ such that the last term is estimated as∫ y+δ

y−δ

2x(ω − y)
(x2 + (ω − y)2)2

G(ω)dω

=

∫ δ

0

2xω
(x2 + ω2)2

(G(y + ω) −G(y − ω))dω

= (G(y + 0) −G(y − 0))
∫ ξ

0

2xω
(x2 + ω2)2

dω + (G(y + δ) −G(y − δ))
∫ δ

ξ

2xω
(x2 + ω2)2

dω.

(3.16)

Since G is continuous, the above is calculated as

(G(y + δ) −G(y − δ))
(

x
x2 + ξ2

− x
x2 + δ2

)
.

If ξ � 0, this is bounded for any x, y ∈ R. If ξ = 0, Eq.(3.16) yields∫ δ

0

2xω
(x2 + ω2)2

(G(y + ω) −G(y − ω))dω = (G(y + δ) −G(y − δ))
∫ δ

0

2xω
(x2 + ω2)2

dω.

Since G(ω) is monotonically increasing, we obtain

G(y + ω) −G(y − ω) = G(y + δ) −G(y − δ)
for 0 ≤ ω ≤ δ. In particular, putting ω = 0 gives G(y + δ) − G(y − δ) = 0. Thus
G(y + ω) −G(y − ω) = 0 for 0 ≤ ω ≤ δ. This proves that the quantity (3.16) is zero. Now
we have proved that the left hand side of the first equation of Eq.(3.15) is bounded for any
x, y ∈ R, although the right hand side diverges as K → +0. Thus Eq.(3.12) has no roots if
K > 0 is sufficiently small. �

Lemma 3.3 shows that if K > 0 is sufficiently large, the trivial solution Z1 = 0 of the
equation dZ1/dt = T1Z1 is unstable because of eigenvalues with positive real parts. Our
purpose in this section is to determine the bifurcation point Kc such that if K < Kc, the
operator T1 has no eigenvalues, while if K exceeds Kc, eigenvalues appear on the right
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Fig. 3: A schematic view of behavior of roots λ of Eq.(3.12) when K decreases. Thick
lines denote the continuous spectrum. As K decreases, eigenvalues λ1, λ2, · · · converge to√−1y1,

√−1y2, · · · and disappear at some K = K1,K2, · · · , respectively.

half plane (Kc should be positive because of Lemma 3.3 (iii)). To calculate eigenvalues
λ = λ(K) explicitly is difficult in general. However, since zeros of the holomorphic
function D(λ) − 2/K do not vanish because of the argument principle, λ(K) disappears
if and only if it is absorbed into the continuous spectrum σ(

√−1M), on which D(λ) is
not holomorphic, as K decreases. This fact suggests that to determine Kc, it is sufficient
to investigate Eq.(3.12) or Eq.(3.15) near the imaginary axis. Thus consider the limit
x→ +0 in Eq.(3.15): 

lim
x→+0

∫
R

x
x2 + (ω − y)2

g(ω)dω =
2
K
,

lim
x→+0

∫
R

ω − y
x2 + (ω − y)2

g(ω)dω = 0.
(3.17)

These equations determine Kj and y j such that one of the eigenvalues λ = λ j(K) converges
to
√−1y j as K → Kj + 0 (see Fig.3). To calculate them, we need the next lemma.

Lemma 3.4. If g(ω) is continuous at ω = y, then

lim
x→+0

∫
R

x
x2 + (ω − y)2

g(ω)dω = πg(y). (3.18)

Proof. This formula is famous and given in Ahlfors [3]. �

In what follows, we suppose that g(ω) is continuous. Recall that the second equation
of Eq.(3.17) determines an imaginary part to which λ(K) converges as Re(λ(K)) → +0.
Suppose that the number of roots y1, y2, · · · of the second equation of Eq.(3.17) is at most
countable for simplicity. Substituting it into the first equation of Eq.(3.17) yields

Kj =
2

πg(y j)
, j = 1, 2, · · · , (3.19)
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which gives the value such that Re(λ(K)) → 0 as K → Kj + 0. Now we obtain the next
theorem.

Theorem 3.5. Suppose that g is continuous and the number of roots y1, y2, · · · of the
second equation of Eq.(3.17) is at most countable. Put

Kc := inf
j

K j =
2

π sup j g(y j)
. (3.20)

If 0 < K ≤ Kc, the operator T1 has no eigenvalues, while if K exceeds Kc, eigenvalues of
T1 appear on the right half plane. In this case, the trivial solution Z1 = 0 of Eq.(3.4) is
unstable.

In general, there exists K(2)
c such that T1 has eigenvalues when Kc < K < K(2)

c but
they disappear again at K = K(2)

c ; i.e. the stability of the trivial solution Z1 = 0 may
change many times. Such K(2)

c is one of the values Kj’s. However, if g(ω) is an even and
unimodal function, it is easy to prove that T1 has an eigenvalue on the right half plane for
any K > Kc, and it is real as is shown in Mirollo and Strogatz [33]. Indeed, the second
equation of Eq.(3.15) is calculated as

0 =
∫

R

ω − y
x2 + (ω − y)2

g(ω)dω =
∫ ∞

0

ω

x2 + ω2
(g(y + ω) − g(y − ω))dω.

If g is even, y = 0 is a root of this equation. If g is unimodal, g(y+ω)−g(y−ω) > 0 when
y < 0, ω > 0 and g(y + ω) − g(y − ω) < 0 when y > 0, ω > 0. Hence, y = 0 is a unique
root. This implies that an eigenvalue should be on the real axis, and (K, y) = (Kc, 0) is a
unique solution of Eq.(3.17). As a corollary, we obtain the transition point (bifurcation
point to the synchronous state) conjectured by Kuramoto [27]:

Corollary 3.6 (Kuramoto’s transition point). Suppose that the probability density func-
tion g(ω) is even, unimodal and continuous. Then, Kc defined as above is given by

Kc =
2

πg(0)
. (3.21)

When K > Kc, the solution Z1 = 0 of Eq.(3.4) is unstable. In particular, the order
parameter η(t) = (Z1, P0) is linearly unstable.

4 Linear stability theory

Theorem 3.5 shows that Kc is the least bifurcation point and the trivial solution Z1 = 0 of
Eq.(3.4) is unstable if K is larger than Kc. If 0 < K ≤ Kc, there are no eigenvalues and
the continuous spectrum of T1 lies on the imaginary axis: σ(T1) = σ(

√−1M). In this
section, we investigate the dynamics of Eq.(3.4) for 0 < K < Kc. We will see that the
order parameter η(t) may decay exponentially even if the spectrum lies on the imaginary
axis because of the existence of resonance poles.
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4.1 Resonance poles

Since
√−1M has the semigroup e

√−1Mt and since P is bounded, the operator T1 =√−1M + K
2
P also generates the semigroup eT1t (Kato [23]) on L2(R, g(ω)dω). A so-

lution of Eq.(3.4) with an initial value φ(ω) ∈ L2(R, g(ω)dω) is given by eT1tφ(ω). The
semigroup eT1t is calculated by using the Laplace inversion formula

eT1t = lim
y→∞

1

2π
√−1

∫ x+
√−1y

x−√−1y
eλt(λ − T1)−1dλ, (4.1)

for t > 0, where x > 0 is chosen so that the contour (see Fig.5 (a)) is to the right of the
spectrum of T1 (Hille and Phillips [22], Yosida [50]). The resolvent (λ − T1)−1 is given as
follows.

Lemma 4.1. For any φ(ω), ψ(ω) ∈ L2(R, g(ω)dω), the equality

((λ − T1)−1φ, ψ)

= ((λ − √−1M)−1φ, ψ) +
K/2

1 − KD(λ)/2
((λ − √−1M)−1φ, P0)((λ − √−1M)−1P0, ψ)(4.2)

holds.

Proof. Put

R(λ)φ := (λ − T1)−1φ = (λ − √−1M− K
2
P)−1φ,

which yields

(λ − √−1M)R(λ)φ = φ +
K
2
PR(λ)φ = φ +

K
2

(R(λ)φ, P0)P0.

This is rearranged as

R(λ)φ = (λ − √−1M)−1φ +
K
2

(R(λ)φ, P0)(λ − √−1M)−1P0. (4.3)

By taking the inner product with P0, we obtain

(R(λ)φ, P0) = ((λ − √−1M)−1φ, P0) +
K
2

(R(λ)φ, P0)D(λ).

This provides

(R(λ)φ, P0) =
1

1 − KD(λ)/2
((λ − √−1M)−1φ, P0).

Substituting it into Eq.(4.3), we obtain Lemma 4.1. �
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Eq.(4.1) and Lemma 4.1 show that (eT1tφ, ψ) is given by

(eT1tφ, ψ) = lim
y→∞

1

2π
√−1

∫ x+
√−1y

x−√−1y
eλt
(
(λ − √−1M)−1φ, ψ)

+
K/2

1 − KD(λ)/2
((λ − √−1M)−1φ, P0)((λ − √−1M)−1P0, ψ)

)
dλ. (4.4)

In particular, the order parameter η(t) = (Z1, P0) for the linearized system (3.4) with the
initial condition Z1(0, ω) = φ(ω) is given by η(t) = (eT1tφ, P0).

One of the effective ways to calculate the integral above is to use the residue theorem.
Recall that the resolvent (λ − T1)−1 is holomorphic on C\σ(T1). When 0 < K ≤ Kc,
T1 has no eigenvalues and the continuous spectrum lies on the imaginary axis : σ(T1) =
σ(
√−1M) =

√−1 · supp(g). Thus the integrand eλt((λ − T1)−1φ, ψ) in Eq.(4.1) is holo-
morphic on the right half plane and may not be holomorphic on σ(T1). However, under
assumptions below, we can show that the integrand has an analytic continuation through
the line σ(T1) from the right to the left. Then, the analytic continuation may have poles
on the left half plane (on the second Riemann sheet of the resolvent), which are called
resonance poles [39]. The resonance pole λ affects the integral in Eq.(4.4) through the
residue theorem (see Fig.5 (b)). In this manner, the order parameter η(t) can decay with
the exponential rate eRe(λ)t. Such an exponential decay caused by resonance poles is well
known in the theory of Schrödinger operators [39], and for the Kuramoto model, it is
investigated numerically by Strogatz et al. [45] and Balmforth et al. [4].

For an analytic function ψ(z), the function ψ∗(z) is defined by ψ∗(z) = ψ(z). At first, we
construct an analytic continuation of the function F0(λ) := ((λ − T1)−1φ, ψ∗) (the function
ψ∗ instead of ψ is used to avoid the complex conjugate in the inner product).

Lemma 4.2. Suppose that the probability density function g(ω) and functions φ(ω), ψ(ω)
are real analytic on R and they have meromorphic continuations to the upper half plane.
Then the function F0(λ) := ((λ − T1)−1φ, ψ∗) defined on the right half plane has the mero-
morphic continuation F1(λ) to the left half plane, which is given by

F1(λ) = ((λ − √−1M)−1φ, ψ∗) + 2πφ(−√−1λ)ψ(−√−1λ)g(−√−1λ)

+
K/2

1 − KD(λ)/2 − πKg(−√−1λ)
Q[λ, φ]Q[λ, ψ], (4.5)

where Q[λ, φ] is defined to be

Q[λ, φ] = ((λ − √−1M)−1φ, P0) + 2πg(−√−1λ)φ(−√−1λ). (4.6)

Note that Q[λ, · ] defines a linear functional for each λ ∈ C. Actually, we will define
a suitable function space in Sec.5 so that Q[λ, · ] becomes a continuous linear functional
(generalized function).

Proof. Define a function F̃(λ) to be

F̃(λ) =


((λ − √−1M)−1φ, ψ∗) (Re(λ) > 0),
limRe(λ)→+0((λ − √−1M)−1φ, ψ∗) (Re(λ) = 0),
((λ − √−1M)−1φ, ψ∗) + 2πφ(−√−1λ)ψ(−√−1λ)g(−√−1λ) (Re(λ) < 0).

(4.7)
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By the formula (3.18), we obtain

lim
Re(λ)→+0

((λ − √−1M)−1φ, ψ∗) − lim
Re(λ)→−0

((λ − √−1M)−1φ, ψ∗)

= 2πφ(Im(λ)) · ψ(Im(λ)) · g(Im(λ)), (4.8)

which proves that limRe(λ)→+0 F̃(λ) = limRe(λ)→−0 F̃(λ). Therefore, if we show that F̃(λ) is
continuous on the imaginary axis, then F̃(λ) is meromorphic on C by Schwarz’s principle
of reflection. To see this, put φ(ω)ψ(ω)g(ω) = q(ω). By the formula (3.18),

lim
x→+0

∫ ∞
−∞

1

λ − √−1ω
q(ω)dω

= lim
x→+0

∫ ∞
−∞

x
x2 + (ω − y)2

q(ω)dω +
√−1 lim

x→+0

∫ ∞
−∞

ω − y
x2 + (ω − y)2

q(ω)dω

= πq(y) − π√−1V(y),

where λ = x +
√−1y and V(y) is the Hilbert transform of q defined by

V(y) = p.v.
1
π

∫ ∞
−∞

1
t
q(y − t)dt, (4.9)

see Chap.VI of Stein and Weiss [42]. Since q(y) is Lipschitz continuous, so is V(y)
(Thm.106 of Titchmarsh [46]). This proves that limx→+0

∫ ∞
−∞(λ −

√−1ω)−1q(ω)dω is con-

tinuous in y. Therefore, F̃(λ) is meromorphic on C. Now we have obtained the mero-
morphic continuation of ((λ − √−1M)−1φ, ψ∗) from the right to the left. Applying this to
Eq.(4.2), we obtain the meromorphic continuation of F0(λ) as Eq.(4.5). �

Eq.(4.5) is rewritten as

F1(λ) =
K/2

1 − KD(λ)/2 − πKg(−√−1λ)

(
(2/K − D(λ))((λ − √−1M)−1φ, ψ∗) + ((λ − √−1M)−1φ, P0) · ((λ − √−1M)−1ψ, P0)

+ 2πg(−√−1λ)
( 2
K
φ(−√−1λ)ψ(−√−1λ) − D(λ)φ(−√−1λ)ψ(−√−1λ)

−((λ − √−1M)−1φ, ψ∗) + ((λ − √−1M)−1φ, P0) · ψ(−√−1λ)

+((λ − √−1M)−1ψ, P0) · φ(−√−1λ)
))
. (4.10)

This expression shows that poles of g are removable. Therefore, poles of F1(λ) on the left
half plane and the imaginary axis are given as roots of the equation

D(λ) + 2πg(−√−1λ) =
2
K
, Re(λ) < 0,

lim
Re(λ)→+0

D(λ) = lim
Re(λ)→−0

(
D(λ) + 2πg(−√−1λ)

)
=

2
K
, Re(λ) = 0,

(4.11)
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Fig. 4: As is discussed in Sec.3, an eigenvalue λ(K) disappears from the original complex
plane at K = Kc. But it still exists as a resonance pole on the second Riemann sheet of the
resolvent.

and poles of the functions φ(−√−1λ) and ψ(−√−1λ). To avoid dynamics caused by a
special choice of φ and ψ, in what follows, we will assume that continuations of φ and ψ
have no poles.

Definition 4.3. Roots of Eq.(4.11) on the left half plane and the imaginary axis are called
resonance poles of the operator T1.

Since the left hand side of Eq.(4.11) is an analytic continuation of that of Eq.(3.12),
at least one of the resonance poles is obtained as a continuation of an eigenvalue λ(K)
coming from the right half plane when K decreases from Kc (see Fig. 4). However, if g(λ)
has an essential singularity, there exist infinitely many resonance poles in general, which
are not obtained as continuations of eigenvalues.

We want to calculate the Laplace inversion formula (4.4) by deforming the contour as
Fig.5 (b), and pick up the residues at resonance poles. We should show that the integral
along the arc C4 converges to zero as the radius tends to infinity. For this purpose, we have
to make some assumptions for growth rates of φ(λ) and ψ(λ) as |λ| → ∞. Since suitable
assumptions depend on the growth rate of g(λ), we calculate the Laplace inversion formula
by dividing into two cases: In Sec.4.2, g(ω) is assumed to be the Gaussian distribution. In
Sec.4.3, we consider the case that g(ω) is a rational function.

4.2 Gaussian case

In this subsection, we suppose that g(ω) = e−ω
2/2/
√

2π, although the results are true for
a certain class of density functions. In this case, the transition point is given by Kc =

2
√

2/π. When K > Kc, there exists a unique eigenvalue of T1 on the positive real axis.
When 0 < K ≤ Kc, there are no eigenvalues, while resonance poles exist. The equation
(4.11) for obtaining the resonance poles is reduced to∫

R

1

λ − √−1ω
g(ω)dω + 2πg(−√−1λ) = eλ

2/2

(√
π

2
−
∫ λ

0
e−x2/2dx

)
=

2
K
. (4.12)

Let λ0, λ1, · · · be roots of this equation with 0 ≥ Re(λ0) ≥ Re(λ1) ≥ · · · . The following
properties are easily obtained.
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(i) If λn is a resonance pole, so is its complex conjugate λn.
(ii) There exist infinitely many resonance poles. As n → ∞, Re(λn) → −∞ and they
approach to the rays arg(z) = 3π/4, 5π/4.
(iii) When K = Kc, there exists a unique resonance pole λ0 = 0 on the imaginary axis.
When 0 < K < Kc, all resonance poles lie on the left half plane.
(iv) All roots of Eq.(4.12) are simple roots.

To make assumptions for φ and ψ, we prepare a certain function space. Let Exp+(β, n)
be the set of holomorphic functions on the region Cn := {z ∈ C | Im(z) ≥ −1/n} such that
the norm

||φ||β,n := sup
Im(z)≥−1/n

e−β|z||φ(z)| (4.13)

is finite. With this norm, Exp+(β, n) is a Banach space. Let Exp+(β) be their inductive
limit with respect to n = 1, 2, · · ·

Exp+(β) = lim−−→
n≥1

Exp+(β, n) =
⋃
n≥1

Exp+(β, n). (4.14)

Thus Exp+(β) is the set of holomorphic functions near the upper half plane that can grow
at most the rate eβ|z|. Next, define Exp+ to be their inductive limit with respect to β =
0, 1, 2, · · ·

Exp+ = lim−−→
β≥0

Exp+(β) =
⋃
β≥0

Exp+(β). (4.15)

Thus Exp+ is the set of holomorphic functions near the upper half plane that can grow at
most exponentially ; φ(z) in Exp+ satisfies ||φ||β,n < ∞ for some β, n, and such β and n can
depend on φ. Topological properties of Exp+ will be discussed in Sec.5.2. In this section,
the topology on Exp+ is not used. Note that when φ ∈ Exp+, φ

∗(z) = φ(z) is holomorphic
near the lower half plane and φ(−√−1z) is holomorphic near the left half plane. The main
theorem in this section is stated as follows.

Theorem 4.4. For any φ, ψ ∈ Exp+, there exists a positive number t0 such that the
semigroup eT1t satisfies the equality

(eT1tφ, ψ∗) = S 0[φ, ψ]eξ0t +

∞∑
n=0

Rn[φ, ψ]eλnt, (4.16)

for t > t0, where ξ0 is the eigenvalue of T1 on the right half plane (which exists only
when K > Kc), S 0[φ, ψ]eξ0t is a corresponding residue of F0(λ)eλt, and where λ0, λ1, · · ·
are resonance poles of T1 such that |λ0| ≤ |λ1| ≤ · · · , and Rn[φ, ψ]eλnt are corresponding
residues of F1(λ)eλt. When 0 < K < Kc, it is written as

(eT1tφ, ψ∗) =
∞∑

n=0

Rn[φ, ψ]eλnt, Re(λn) < 0. (4.17)

In particular, the order parameter η(t) = (eT1tφ, P0) for the linearized system (3.4) decays
to zero exponentially as t → ∞.
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Fig. 5: The contour for the Laplace inversion formula.

Proof. Let δ > 0 be a sufficiently small number. There exist a positive constant A and a
sequence {rn}∞n=0 of positive numbers with rn → ∞ such that∣∣∣∣∣1 − πKg(−√−1λ) − K

2
D(λ)
∣∣∣∣∣ ≥ A, (4.18)

for λ = rne
√−1θ, π/2+ δ < θ < 3π/2− δ. Take a positive number d > 0 so that Re(ξ0) < d.

With these d and rn, take paths C1 to C6 as are shown in Fig.5 (b):

C1 = {d +
√−1y | − rn ≤ y ≤ rn},

C2 = {x +
√−1rn | 0 ≤ x ≤ d},

C3 = {rne
√−1θ | π/2 ≤ θ ≤ π/2 + δ},

C4 = {rne
√−1θ | π/2 + δ ≤ θ ≤ 3π/2 − δ},

and C5 and C6 are defined in a similar way to C3 and C2, respectively. We put C(n) =∑6
j=1 C j.

Let λ0, λ1, · · · , λ#(n) be resonance poles inside the closed curve C(n). By the definition
of rn, there are no resonance poles on the curve C(n). By the residue theorem, we have

2π
√−1

S 0[φ, ψ]eξ0t +

#(n)∑
j=0

Rj[φ, ψ]eλ jt

 =∫
C6+C1+C2

eλtF0(λ)dλ +
∫

C3+C4+C5

eλtF1(λ)dλ,

when rn is sufficiently large so that C(n) encloses the eigenvalue ξ0. Since the eigenvalue
and resonance poles are simple roots of Eq.(3.12) and Eq.(4.11) when g is the Gaussian,
S 0 and Rj are independent of t (otherwise, they are polynomials in t). Since the integral
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∫
C1

eλtF0(λ)dλ/(2π
√−1) converges to (eT1tφ, ψ∗) as n→ ∞, we obtain

(eT1tφ, ψ∗) = S 0[φ, ψ]eξ0t + lim
n→∞

#(n)∑
j=0

Rj[φ, ψ]eλ jt

− 1

2π
√−1

lim
n→∞

∫
C6+C2

eλtF0(λ)dλ − 1

2π
√−1

lim
n→∞

∫
C3+C4+C5

eλtF1(λ)dλ. (4.19)

It is easy to verify that the integrals along C2,C3,C5,C6 tend to zero as n → ∞. For
example, the integral along C2 is estimated as∣∣∣∣∫

C2

eλtF0(λ)dλ
∣∣∣∣ = ∣∣∣∣∫ 0

d
e(x+

√−1rn)tF0(x +
√−1rn)dx

∣∣∣∣
≤ edt

∫ d

0
|F0(x +

√−1rn)|dx,

where F0 is given as (4.2). Since |(λ − √−1M)−1| → 0 as |λ| → ∞, the integral along C2

proves to be zero as n → ∞ (rn → ∞). The integrals along C3,C5,C6 are estimated in a
similar manner. The integral along C4 is estimated as∣∣∣∣∣∣

∫
C4

eλtF1(λ)dλ

∣∣∣∣∣∣ ≤
∫ 3π/2−δ

π/2+δ
rnernt cos θ |F1(rne

√−1θ)|dθ

≤ max
π/2+δ≤θ≤3π/2−δ

|F1(rne
√−1θ)|
∫ π/2

δ

2rne−rnt sin θdθ

≤ max
π/2+δ≤θ≤3π/2−δ

|F1(rne
√−1θ)|
∫ π/2

δ

2rne−2rntθ/πdθ

≤ max
π/2+δ≤θ≤3π/2−δ

|F1(rne
√−1θ)| · π

t

(
e−2rntδ/π − e−rnt

)
. (4.20)

Since |(λ − √−1M)−1| → 0 as |λ| → ∞, F1(λ) given by Eq.(4.10) is estimated as

|F1(λ)| ≤ D0 + |g(−√−1λ)| · |D1 +D2φ(−√−1λ) +D3ψ(−√−1λ) +D4φ(−√−1λ)ψ(−√−1λ)|
|1 − πKg(−√−1λ) − K

2 D(λ)| ,

where D0 to D4 are some positive constants. Since φ, ψ ∈ Exp+, there exist C1,C2, β1, β2 ≥
0 such that |φ(z)| ≤ C1eβ1 |z|, |ψ(z)| ≤ C2eβ2 |z|:

|F1(λ)| ≤
D0 +
(
D1 + D2C1eβ1 |λ| + D3C2eβ2 |λ| + D4C1C2e(β1+β2)|λ|) · |g(−√−1λ)|

|1 − πKg(−√−1λ) − K
2 D(λ)| .

Suppose that g(−√−1rne
√−1θ) diverges as n → ∞ (rn → ∞). Then, there exists D5 > 0,

which has an upper bound determined by constants C1,C2, β1 and β2, such that |F1(rne
√−1θ)|

is estimated as
|F1(rne

√−1θ)| ≤ D5e(β1+β2)rn . (4.21)
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If g(−√−1rne
√−1θ) is bounded, Eq.(4.18) shows that there exists D6 > 0 , which has an

upper bound determined by constants C1,C2, β1 and β2, such that

|F1(rne
√−1θ)| ≤ D6

A
e(β1+β2)rn · |g(−√−1rne

√−1θ)|. (4.22)

Therefore, we obtain∣∣∣∣∣∣
∫

C4

eλtF1(λ)dλ

∣∣∣∣∣∣ ≤ D7

t

(
e(β1+β2−2δt/π)rn − e(β1+β2−t)rn

)
, (4.23)

with some D7 > 0. Thus if t > t0 := π(β1 + β2)/(2δ), this integral tends to zero as n→ ∞,
which proves Eq.(4.16).

In particular when 0 < K < Kc, there are no eigenvalues on the right half plane
(Thm.3.5). Thus Eq.(4.16) is reduced to Eq.(4.17). �

Note that Exp+(0) is the set of bounded holomorphic functions near the upper half
plane. From the proof above, we immediately obtain the following.

Corollary 4.5. If φ, ψ ∈ Exp+(0), then Eq.(4.16) is true for any t > 0.

4.3 Rational case

In this subsection, we suppose that g(ω) is a rational function. Since g(ω) does not decay
so fast as |ω| → ∞, we should choose moderate functions for φ and ψ. Let C+ = {z ∈
C | Im(z) ≥ 0} be the real axis and the upper half plane. Let H+ be the set of bounded
holomorphic functions on C+. With the norm

||φ|| := sup
Im(z)≥0

|φ(z)|, (4.24)

H+ is a Banach space.
It is remarkable that if g(ω) is a rational function, Eq.(4.11) is reduced to an algebraic

equation. Thus the number of resonance poles is finite. The proof of the following theo-
rem is similar to that of Thm.4.4 and omitted here.

Theorem 4.6. Suppose that 0 < K ≤ Kc and g(ω) is a rational function. For any
φ, ψ ∈ H+, the semigroup eT1t satisfies the equality

(eT1tφ, ψ∗) =
M∑

n=0

Rn[t, φ, ψ]eλnt, (4.25)

for t > 0, where λ0, · · · , λM are resonance poles of T1 and R0[t, φ, ψ]eλ0t, · · · ,RM[t, φ, ψ]eλMt

are corresponding residues of F1(λ)eλt. In particular, when 0 < K < Kc, λ0, · · · , λM are
on the left half plane and the order parameter η(t) = (eT1tφ, P0) for the linearized system
(3.4) decays to zero exponentially as t → ∞.

Since the right hand side of Eq.(4.25) is a finite sum, the semigroup eT1t looks like an
exponential of a matrix. The reason of this fact will be revealed in Sec.5.3 by means of
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the theory of rigged Hilbert spaces.

Example 4.7. If g(ω) = 1/(π(1 + ω2)) is the Lorentzian distribution, a resonance pole
is given by λ = K/2 − 1 (a root of Eq.(4.11)). Therefore η(t) decays with the exponential
rates e(K/2−1)t. Note that the transition point is Kc = 2/π/g(0) = 2.

5 Spectral theory

We have proved that when K > Kc, the de-synchronous state (η(t) ≡ 0) is linearly unstable
because of eigenvalues on the right half plane, while when 0 < K < Kc, it is linearly
stable because of resonance poles on the left half plane. Next, we want to investigate
bifurcations at K = Kc. However, a center manifold in the usual sense is of infinite
dimensional because the continuous spectrum lies on the imaginary axis. To handle this
difficulty, we develop a spectral theory of resonance poles based on a rigged Hilbert space.

5.1 Rigged Hilbert space

Let X be a locally convex Hausdorff topological vector space over C and X′ its dual
space. X′ is a set of continuous anti-linear functionals on X. For µ ∈ X′ and φ ∈ X, µ(φ)
is denoted by 〈µ | φ〉. For any a, b ∈ C, φ, ψ ∈ X and µ, ξ ∈ X′, the equalities

〈µ | aφ + bψ〉 = a〈µ | φ〉 + b〈µ |ψ〉, (5.1)

〈aµ + bξ | φ〉 = a〈µ | φ〉 + b〈ξ | φ〉, (5.2)

hold. Several topologies can be defined on the dual space X′. Two of the most usual
topologies are the weak dual topology (weak * topology) and the strong dual topology
(strong * topology). A sequence {µ j} ⊂ X′ is said to be weakly convergent to µ ∈ X′ if
〈µ j | φ〉 → 〈µ | φ〉 for each φ ∈ X; a sequence {µ j} ⊂ X′ is said to be strongly convergent to
µ ∈ X′ if 〈µ j | φ〉 → 〈µ | φ〉 uniformly on any bounded subset of X.

LetH be a Hilbert space with the inner product (· , ·) such that X is a dense subspace
of H . Since a Hilbert space is isomorphic to its dual space, we obtain H ⊂ X′ through
H � H′.
Definition 5.1. If a locally convex Hausdorff topological vector space X is a dense sub-
space of a Hilbert spaceH and a topology of X is stronger than that ofH , the triplet

X ⊂ H ⊂ X′ (5.3)

is called the rigged Hilbert space or the Gelfand triplet. The canonical inclusion i : H →
X′ is defined as follows; for ψ ∈ H , we denote i(ψ) by 〈ψ|, which is defined to be

i(ψ)(φ) = 〈ψ | φ〉 = (ψ, φ), (5.4)

for any φ ∈ X. Thus ifH = L2(R, g(ω)dω), then

i(ψ)(φ) =
∫

R
φ(ω)ψ(ω)g(ω)dω.
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We will usually substitute φ∗ instead of φ to avoid the complex conjugate in the right hand
side.

Let A : X → X be a linear operator on X. The (Hilbert) adjoint A∗ of A is defined
through (Aφ, ψ) = (φ, A∗ψ) as usual. If A∗ is continuous on X, the dual operator A× : X′ →
X′ of A∗ defined through

〈A×µ | φ〉 = 〈µ | A∗φ〉, φ ∈ X, µ ∈ X′ (5.5)

is also continuous on X′ for both of the weak dual topology and the strong dual topology.
We can show the equality

A×i(ψ) = i(Aψ), (5.6)

for any ψ ∈ X, which implies that A× is an extension of A.
It is easy to show that the canonical inclusion is injective if and only if X is a dense

subspace of H, and the canonical inclusion is continuous (for both of the weak dual topol-
ogy and the strong dual topology) if and only if a topology of X is stronger than that of H
(see Tréves [47]). If X is not dense in H, two functionals on H may not be distinguished
as functionals on X. As a result, H′ � X′ in general.

Definition 5.2. When X ⊂ H is not a dense subspace of H, the triplet (X,H, X′) is called
the degenerate rigged Hilbert space.

For applications to the Kuramoto model, we investigate two triplets, Exp− ⊂ L2(R, g(ω)dω) ⊂
Exp′−, and a degenerate one (H−, L2(R, g(ω)dω),H′−).

5.2 Spectral theory on Exp− ⊂ L2(R, g(ω)dω) ⊂ Exp′−
In this subsection, we suppose that g(ω) is the Gaussian. Since g decays faster than any
exponential functions e−β|ω|, we have Exp+ ⊂ L2(R, g(ω)dω), and indeed, Exp+ is dense
in L2(R, g(ω)dω) and the topology of Exp+ is stronger than that of L2(R, g(ω)dω) (see
Prop.5.3 below). Thus the rigged Hilbert space Exp+ ⊂ L2(R, g(ω)dω) ⊂ Exp′+ is well
defined. Recall that Exp+(β, n) is a Banach space of holomorphic functions on Cn =

{z | Im(z) ≥ −1/n} with the norm || · ||β,n, and Exp+(β) is their inductive limit with respect
to n ≥ 1. By the definition of the inductive limit, the topology of Exp+(β) is defined as
follows: a set U ⊂ Exp+(β) is open if and only if U ∩ Exp+(β, n) is open for every n ≥ 1.
This implies that the inclusions Exp+(β, n) → Exp+(β) are continuous for every n ≥ 1.
Similarly, Exp+ is an inductive limit of Exp+(β), and its topology is induced from that of
Exp+(β): a set U ⊂ Exp+ is open if and only if U ∩Exp+(β) is open for every β = 0, 1, · · · .
The inclusions Exp+(β)→ Exp+ are continuous for every β = 0, 1, · · · . On the dual space
Exp′+, both of the weak dual topology and the strong dual topology can be introduced
as was explained. The space Exp− is defined by Exp− = {φ∗ | φ ∈ Exp+}, on which the
topology of Exp+ is introduced by the mapping φ 
→ φ∗ (recall that φ∗(z) := φ(z)). Then,
Exp− is an inductive limit of Banach spaces Exp−(β, n), which are defined in a similar
manner to Exp+(β, n). A Gelfand triplet

Exp− ⊂ L2(R, g(ω)dω) ⊂ Exp′− (5.7)
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has the same topological properties as Exp+ ⊂ L2(R, g(ω)dω) ⊂ Exp′+. We will use the
triplet Exp− ⊂ L2(R, g(ω)dω) ⊂ Exp′−, however, functions in Exp+ also play an important
role.

A topological vector space X is called Montel if every bounded set of X is relatively
compact. A Montel space has a convenient property that on a bounded set A of a dual
space of a Montel space, the weak dual topology coincides with the strong dual topology.
In particular, a weakly convergent series in a dual of a Montel space also converges with
respect to the strong dual topology (see Tréves [47]). This property is very important to
develop a theory of generalized functions.

The topology of Exp+ has following properties. Obviously the space Exp− has the
same properties.

Proposition 5.3. Exp+ is a topological vector space satisfying

(i) Exp+ is a complete Montel space.
(ii) if {φ j}∞j=1 is a convergent series in Exp+, there exist n ≥ 1 and β ≥ 0 such that {φ j}∞j=1 ⊂
Exp+(β, n) and {φ j}∞j=1 converges with respect to the norm || · ||β,n.
(iii) Exp+ is a dense subspace of L2(R, g(ω)dω).
(iv) the topology of Exp+ is stronger than that of L2(R, g(ω)dω).

Proof. (i) At first, we prove that Exp+(β) is Montel. To do so, it is sufficient to show
that the inclusion Exp+(β, n) → Exp+(β, n + 1) is a compact operator for every n (see
Grothendieck [21], Chap.4.3.3). To prove it, let A be a bounded set of Exp+(β, n). There
exists a constant C such that ||φ||β,n = supz∈Cn

e−β|z||φ(z)| < C for any φ ∈ A. This means that
the set A is locally bounded in the interior of Cn. Therefore, for any sequence {φ j}∞j=1 ⊂
A, there exists a subsequence converging to some holomorphic function ψ uniformly on
compact subsets in Cn (Montel’s theorem). In particular, the subsequence converges to ψ
on Cn+1, and it satisfies ||ψ||β,n+1 < C and ψ ∈ Exp+(β, n+1). This proves that the inclusion
Exp+(β, n)→ Exp+(β, n + 1) is compact and thus Exp+(β) is Montel. In a similar manner,
we can prove by using Montel’s theorem that the inclusion Exp+(β) → Exp+(β + 1) is a
compact operator for every β = 0, 1, · · · , which proves that Exp+ is also Montel. Next,
we show that Exp+ is complete. Since Exp+(β, n) is a Banach space, in particular it is a
DF space, their inductive limit Exp+(β) is a DF space by virtue of Prop.5 in Chap.4.3.3 of
[21], in which it is shown that an inductive limit of DF spaces is DF. The same proposition
also shows that the inductive limit Exp+ of DF spaces Exp+(β) is a DF space. Since Exp+
is Montel and DF, it is complete because of Cor.2 in Chap.4.3.3 of [21].

(ii) It is known that if the inclusion Exp+(β) → Exp+(β + 1) is a compact operator
for every β = 0, 1, · · · , then, for any bounded set A ⊂ Exp+, there exists β such that
A ⊂ Exp+(β) and A is bounded on Exp+(β) (see Komatsu [24] and references therein). By
using the same fact again, it turns out that for any bounded set A ⊂ Exp+, there exist β
and n such that A ⊂ Exp+(β, n). In particular, since a convergent series {φ j}∞j=1 is bounded,
there exists β and n such that {φ j}∞j=1 ⊂ Exp+(β, n) and it converges with respect to the
topology of Exp+(β, n).

To prove (iii), note that L2(R, g(ω)dω) is obtained by the completion of the set of poly-
nomials because the Gaussian has all moments. Obviously Exp+ includes all polynomials,
and thus Exp+ is dense in L2(R, g(ω)dω).

For (iv), note that Exp+ satisfies the first axiom of countability because it is defined
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through the inductive limits of Banach spaces. Therefore, to prove (iv), it is sufficient to
show that the inclusion Exp+ → L2(R, g(ω)dω) is sequentially continuous. Let {φ j}∞j=1 be
a sequence in Exp+ which converges to zero. By (ii), there exist β and n such that {φ j}∞j=1
converges in the topology of Exp+(β, n): ||φ j||β,n → 0. Then,

||φ j||2L2(R,g(ω)dω) =

∫ ∞
−∞
|φ j(ω)|2g(ω)dω

≤ sup
ω∈R

e−2β|ω||φ j(ω)|2
∫ ∞
−∞

e2β|ω|g(ω)dω

≤ ||φ j||2β,n
∫ ∞
−∞

e2β|ω|g(ω)dω.

The right hand side exists and tends to zero as j → ∞. This means that the inclusion
Exp+ → L2(R, g(ω)dω) is continuous. �

The topology of the dual space Exp′+ has following properties, and so is Exp′−
Proposition 5.4.

(i) Exp′+ is a complete Montel space with respect to the strong dual topology.
(ii) Exp′+ is sequentially complete with respect to the weak dual topology; that is, for a
sequence {µ j}∞j=1, if 〈µ j | φ〉 converges to some complex number Cφ for every φ ∈ Exp+ as
j → ∞, then there exists µ ∈ Exp′+ such that Cφ = 〈µ | φ〉 and µ j → µ with respect to the
strong dual topology.

Proof. (i) It is known that the strong dual of a Montel space is Montel and complete, see
Tréves [47]. (ii) Suppose that 〈µ j | φ〉 converges to some complex number Cφ for every φ ∈
Exp+. This means that the set {µ j}∞j=1 is weakly bounded and is a Cauchy sequence with
respect to the weak dual topology. As was explained before, on a bounded set of a dual
space of a Montel space, the weak dual topology and the strong dual topology coincide
with one another. Thus {µ j}∞j=1 is a Cauchy sequence with respect to the strong dual
topology. Since Exp′+ is complete with respect to the strong dual topology, µ j converges
to some element µ ∈ Exp′+. In particular, 〈µ j | φ〉 converges to 〈µ | φ〉 = Cφ. �

Next, we restrict the domain of the operator T1 =
√−1M + K

2P to Exp+. We simply
denote T1|Exp+ by T1. We will see that T1 is quite moderate if restricted to Exp+. The next
proposition also holds for Exp−.

Proposition 5.5.
(i) The operator T1 : Exp+ → Exp+ is continuous (note that it is not continuous on
L2(R, g(ω)dω)).
(ii) The operator T1 : Exp+ → Exp+ generates a holomorphic semigroup eT1t : Exp+ →
Exp+ on the positive t axis (note that it is not holomorphic on L2(R, g(ω)dω)).

Proof. (i) It is easy to see by the definition that if φ ∈ Exp+, then T1φ ∈ Exp+. Let {φ j}∞j=1
be a sequence in Exp+ converging to zero. By Prop.5.3 (ii), there exist β ≥ 0 and n ≥ 1
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such that ||φ j||β,n → 0. For any ε > 0, ||T1φ j||β+ε,n is estimated as

||T1φ j||β+ε,n ≤ || √−1ωφ j||β+ε,n + K
2
|(φ j, P0)| · ||P0||β+ε,n

≤ sup
ω∈Cn

e−(β+ε)|ω||ωφ j(ω)| + K
2
||φ j||L2(R,g(ω)dω)

≤ ||φ j||β,n · sup
ω∈Cn

e−ε|ω||ω| + K
2
||φ j||L2(R,g(ω)dω),

which tends to zero as j→ ∞. This proves that T1φ j tends to zero as j→ ∞ with respect
to the topology of Exp+, and thus T1 : Exp+ → Exp+ is continuous.
(ii) We know that the operator T1 generates the semigroup eT1t as an operator on L2(R, g(ω)dω)
(see Sec.4.1). In other words, the differential equation

d
dt

x(t, ω) = T1x(t, ω) =
√−1ωx1(t, ω) +

K
2

(x(t, ·), P0) (5.8)

has a unique solution x(t, ω) = eT1tφ(ω) in L2(R, g(ω)dω) if an initial condition φ is in
L2(R, g(ω)dω). We have to prove that if φ ∈ Exp+, then x(t, ·) ∈ Exp+. For this purpose,
we integrate the above equation as

eT1tφ(ω) = e
√−1ωtφ(ω) +

K
2

∫ t

0
e
√−1ω(t−s)(eT1 sφ, P0)ds. (5.9)

From this expression, it is obvious that if φ ∈ Exp+(β, n), then eT1tφ(ω) ∈ Exp+. By the
same way as the standard proof of the existence of holomorphic semigroups [23], we can
show that eT1t is a holomorphic semigroup near the positive real axis. �

Eigenvalues of T1 are given as roots of the equation D(λ) = 2/K, Re(λ) > 0, and
corresponding eigenvectors are

vλ(ω) =
1

λ − √−1ω
∈ L2(R, g(ω)dω). (5.10)

If we regard it as a functional on Exp− through the canonical inclusion i : L2(R, g(ω)dω)→
Exp′−, it acts on Exp− as

i(vλ)(φ
∗) = 〈vλ | φ∗〉 = (vλ, φ

∗) =
∫

R
φ(ω)vλ(ω)g(ω)dω =

∫
R

1

λ − √−1ω
φ(ω)g(ω)dω,

(5.11)
for φ ∈ Exp+ (i.e. for φ∗ ∈ Exp−). Due to Eq.(4.7), the analytic continuation of this value
from the right to the left is given as∫

R

1

λ − √−1ω
φ(ω)g(ω)dω + 2πφ(−√−1λ)g(−√−1λ). (5.12)

Motivated by this observation, let us define a linear functional µ(λ) ∈ Exp′− to be

〈µ(λ) | φ∗〉 =
∫

R

1

λ − √−1ω
φ(ω)g(ω)dω + 2πφ(−√−1λ)g(−√−1λ), (5.13)
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when Re(λ) < 0, and

〈µ(λ) | φ∗〉 = lim
x→+0

∫
R

1

(x +
√−1y) − √−1ω

φ(ω)g(ω)dω, (5.14)

when λ =
√−1y, y ∈ R. It is easy to verify that µ(λ) is continuous and thus an element of

Exp′−. We expect that µ(λ) plays a similar role to eigenvectors. Indeed, we can prove the
following theorem.

Theorem 5.6. Let λ0, λ1, · · · be resonance poles of the operator T1 and T×1 the dual
operator of T1 defined through

〈T×1 ξ | φ∗〉 = 〈ξ |T ∗1φ∗〉, φ ∈ Exp+, ξ ∈ Exp′−. (5.15)

Then, the equality
T×1 µ(λn) = λnµ(λn) (5.16)

holds for n = 0, 1, 2, · · · . In this sense, λn is an eigenvalue of T×1 , and µ(λn) is an eigenvec-
tor. In what follows, µ(λn) is denoted by µn and we call it the generalized eigenfunction
associated with the resonance pole λn.

Proof. The proof is straightforward. Suppose that Re(λn) < 0. For any φ ∈ Exp+,

〈T×1 µn | φ∗〉 = 〈µn |T ∗1φ∗〉
=

∫
R

1

λn −
√−1ω

(T1φ)(ω)g(ω)dω + 2π(T1φ)(−√−1λn)g(−√−1λn)

=

∫
R

√−1ω

λn −
√−1ω

φ(ω)g(ω)dω +
K
2

∫
R

1

λn −
√−1ω

g(ω)dω ·
∫

R
φ(ω)g(ω)dω

+2π

(
λnφ(−√−1λn) +

K
2

∫
R
φ(ω)g(ω)dω

)
g(−√−1λn)

= λn

(∫
R

1

λn −
√−1ω

φ(ω)g(ω)dω + 2πφ(−√−1λn)g(−√−1λn)

)
+

K
2

∫
R
φ(ω)g(ω)dω

(
D(λn) + 2πg(−√−1λn) − 2

K

)
= λn〈µn | φ∗〉 + K

2

∫
R
φ(ω)g(ω)dω

(
D(λn) + 2πg(−√−1λn) − 2

K

)
. (5.17)

Since λn is a resonance pole, it is a root of Eq.(4.11). Thus we obtain

〈T×1 µ | φ∗〉 = λn〈µn | φ∗〉 = 〈λnµn | φ∗〉,
which proves the theorem. The proof for the case Re(λn) = 0 is done in the same way. �

Define a dual semigroup (eT1t)× through

〈(eT1t)×µ | φ∗〉 = 〈µ | (eT1t)∗φ∗〉. (5.18)
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for any φ ∈ Exp+ and µ ∈ Exp′−, where (eT1t)∗ is the (Hilbert) adjoint of eT1t.

Proposition 5.7. (i) A solution of the initial value problem

d
dt
ξ = T×1 ξ, ξ(0) = µ ∈ Exp′− (5.19)

in Exp′− is uniquely given by ξ(t) = (eT1t)×µ.
(ii) (eT1t)× has eigenvalues eλ0t, eλ1t, · · · , where λ0, λ1, · · · are resonance poles of T1.

Proof. This follows from the standard (dual) semigroup theory [50]. �

If we define a semigroup eT×1 t generated by T×1 to be the flow of (5.19), then Prop.5.7
(i) means eT×1 t = (eT1t)×. Prop.5.7 (i) also implies that a solution of the inhomogeneous
equation

d
dt
ξ = T×1 ξ + f (t), f (t) ∈ Exp′−, (5.20)

is uniquely given by

ξ(t) = (eT1t)×µ +
∫ t

0
(eT1(t−s))× f (s)ds. (5.21)

This formula will be used so often when analyzing the nonlinear system (3.2),(3.3).
In what follows, we suppose that 0 < K ≤ Kc so that Eq.(4.17) is applicable. Since

Rn[φ, ψ] is the residue of F1(λ) given as Eq.(4.5), it is calculated as

Rn[φ, ψ] =
K

2Dn
〈µn | φ∗〉〈µn |ψ∗〉, (5.22)

where

Dn := lim
λ→λn

1
λ − λn

(
1 − K

2
D(λ) − πKg(−√−1λ)

)
(5.23)

is a constant which is independent of φ, ψ. Note that Q[λ, φ] given by Eq.(4.6) is just the
definition of the functional µ(λ). Thus Eq.(4.17) is rewritten as

(eT1tψ, φ∗) =
∞∑

n=0

K
2Dn

eλnt〈µn | φ∗〉〈µn |ψ∗〉, (5.24)

for t > t0. Let i : L2(R, g(ω)dω) → Exp′− be the canonical inclusion with respect to the
triplet (5.7). Since Exp+ ⊂ L2(R, g(ω)dω), i(ψ) ∈ Exp′− is well defined for ψ ∈ Exp+.
Sometimes we will denote i(ψ) by ψ for simplicity. Thus the left hand side above is
rewritten as

(eT1tψ, φ∗) = i(eT1tψ)(φ∗) = (eT1t)×i(ψ)(φ∗) = 〈(eT1t)×ψ | φ∗〉. (5.25)

Therefore, we obtain

(eT1t)×ψ =
∞∑

n=0

K
2Dn

eλnt〈µn |ψ∗〉µn, (5.26)

for t > t0 and ψ ∈ Exp+. Since Eq.(5.26) comes from Eq.(5.24), the infinite series in the
right hand side of Eq.(5.26) converges with respect to the weak dual topology on Exp′−.
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However, since Exp− is Montel, it also converges with respect to the strong dual topology.
We divide the infinite sum in Eq.(5.24) into two parts as

(eT1tψ, φ∗) =
M∑

n=0

K
2Dn

eλnt〈µn | φ∗〉〈µn |ψ∗〉 +
∞∑

n=M+1

K
2Dn

eλnt〈µn | φ∗〉〈µn |ψ∗〉, (5.27)

where M ∈ N is any natural number. The second part
∑∞

n=M+1[· · · ] does not converge
when 0 < t < t0 in general. However, since (eT1tψ, φ∗) is holomorphic in t > 0 and
continuous at t = 0, we obtain

(ψ, φ∗) =
M∑

n=0

K
2Dn
〈µn | φ∗〉〈µn |ψ∗〉 + lim

t→+0

∞∑
n=M+1

K
2Dn

eλnt〈µn | φ∗〉〈µn |ψ∗〉, (5.28)

where the second term has a meaning in the sense of an analytic continuation in t. Through
the canonical inclusion, the above yields

i(ψ) =
M∑

n=0

K
2Dn
〈µn |ψ∗〉 · µn + RM[ψ], (5.29)

RM[ψ] := lim
t→+0

∞∑
n=M+1

K
2Dn

eλnt〈µn |ψ∗〉 · µn,

which gives the spectral decomposition of i(ψ) ∈ i(Exp+) in Exp′−.

Theorem 5.8 (Spectral decomposition). Suppose that 0 < K ≤ Kc.
(i) A system of generalized eigenfunctions {µn}∞n=0 is complete in the sense that if 〈µn |ψ∗〉 =
0 for n = 0, 1, · · · , then ψ = 0.
(ii) µ0, µ1, · · · are linearly independent of each other: if

∑∞
n=0 anµn = 0 with an ∈ C, then

an = 0 for every n.
(iii) Let VM be a complementary subspace of span{µ0, · · · , µM} in Exp′−, which includes
µ j for every j = M+1,M+2, · · · . Then, any i(ψ) ∈ i(Exp+) is uniquely decomposed with
respect to the direct sum span{µ0, · · · , µM} ⊕ VM as Eq.(5.29), and this decomposition is
independent of the choice of the complementary subspace VM including µM+1, µM+2, · · · .
Proof. (i) If 〈µn |ψ∗〉 = 0 for all n, Eq.(5.24) provides (eT1tψ, φ∗) = 0 for any φ ∈ Exp+.
Since Exp+ is dense in L2(R, g(ω)dω), we obtain eT1tψ = 0 for t > t0. Since eT1t is holo-
morphic in t > 0 and strongly continuous at t = 0, we obtain ψ = 0 by taking the limit
t → +0.

(ii) Suppose that
∑∞

n=0 anµn = 0. Since (eT1t)× is continuous,

0 = (eT1t)×
∞∑

n=0

anµn =

∞∑
n=0

an(eT1t)×µn =

∞∑
n=0

aneλntµn.

We can assume that

0 ≥ Re(λ0) ≥ Re(λ1) ≥ Re(λ2) ≥ · · · ,
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without loss of generality. Further, on each vertical line {λ |Re(λ) = a ≤ 0}, there are
only finitely many resonance poles (see Sec.4.2). Suppose that Re(λ0) = · · · = Re(λk) and
Re(λk) > Re(λk+1). Then, the above equality provides

0 =
k∑

n=0

ane
√−1Im(λn)tµn +

∞∑
n=k+1

ane(λn−Re(λ0))tµn.

Taking the limit t → ∞ yields

0 = lim
t→∞

k∑
n=0

ane
√−1Im(λn)tµn.

Since the finite set µ0, · · · , µk of generalized eigenfunctions are linearly independent as
in a finite-dimensional case, we obtain an = 0 for n = 0, · · · , k. The same procedure is
repeated to prove an = 0 for every n.

(iii) Let VM and V ′M be two complementary subspaces of span{µ0, · · · , µM}, both of
which include µM+1, µM+2, · · · . Let

Exp′− = span{µ0, · · · , µM} ⊕ VM = span{µ0, · · · , µM} ⊕ V ′M

be two direct sums and let

i(ψ) =
M∑

n=0

anµn + v =
M∑

n=0

a′nµn + v′, v ∈ VM, v′ ∈ V ′M

be corresponding decompositions. We will use the fact that the decomposition of (eT1t)×ψ
is uniquely given by (5.26) because of part (ii) of this theorem. Then, (eT1t)×ψ is given by

(eT1t)×ψ =
M∑

n=0

aneλntµn + (eT1t)×v =
M∑

n=0

a′neλntµn + (eT1t)×v′.

They give decompositions of (eT1t)×ψ with respect to two direct sums

span{µ0, · · · , µn} ⊕ (eT1t)×VM, span{µ0, · · · , µn} ⊕ (eT1t)×V ′M,

respectively. Since (eT1t)×µn = eλntµn, the sets (eT1t)×VM and (eT1t)×V ′M also include
µM+1, µM+2, · · · . Because of part (ii) of the theorem, the decomposition of (eT1t)×ψ with
respect to above direct sums is uniquely given as Eq.(5.26) for t > t0. This implies

an = a′n (=
K

2Dn
〈µn |ψ∗〉), (eT1t)×v = (eT1t)×v′ (=

∞∑
n=M+1

K
2Dn

eλnt〈µn |ψ∗〉 · µn).

Since (eT1t)× is continuous in t ≥ 0, we obtain v = v′ by the limit t → +0. �

When K > Kc, there exists an eigenvalue of T1 in the usual sense and the spectral
decomposition involves the eigenvalue. Eq.(4.16) proves

(eT1t)×ψ =
K

2E0
eξ0t〈v0 |ψ∗〉 · v0 +

∞∑
n=0

K
2Dn

eλnt〈µn |ψ∗〉 · µn, (5.30)
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for t > t0, and

i(ψ) =
K

2E0
〈v0 |ψ∗〉 · v0 +

M∑
n=0

K
2Dn
〈µn |ψ∗〉 · µn + RM[ψ], (5.31)

where ξ0 is an eigenvalue of T1 on the right half plane, v0 is a corresponding eigenvector
defined by Eq.(5.10), and where E0 is defined to be

E0 = lim
ξ→ξ0

1
ξ − ξ0

(
1 − K

2
D(ξ)
)
. (5.32)

Theorem 5.8 suggests the expression of the projection to the generalized eigenspace.

Definition 5.9. Denote by Πn : Exp′− → span{µn} ⊂ Exp′− the projection to the general-
ized eigenspace with respect to the direct sum given in Thm.5.8. For ψ ∈ i(Exp+), it is
given as

Πnψ =
K

2Dn
〈µn |ψ∗〉 · µn. (5.33)

Unfortunately, the projection Πn is not a continuous operator. For example, put
ψm(ω) = e−

√−1mω. Then, i(ψm) converges to zero as m → ±∞ with respect to the weak
dual topology of Exp′− by virtue of the Riemann-Lebesgue lemma. However,

〈µn |ψ∗m〉 =
∫

R

1

λn −
√−1ω

e−
√−1mωg(ω)dω + 2πe−mλng(−√−1λn) (5.34)

does not tend to zero. It diverges as m → ∞ when Re(λn) < 0. This means that Πn :
Exp′− → Exp′− is not continuous with respect to the weak dual topology. To avoid such
a difficulty caused by the weakness of the topology of the domain, we will restrict the
domain of Πn. To discuss the continuity, let us introduce the projective topology on Exp′−
(see also Fig. 6 and Table 1). In the dual space Exp′−, the weak dual topology and the
strong dual topology are defined. Another topology called the projective topology is
defined as follows: Recall that Exp+(β, n) is a Banach space with the norm || · ||β,n, and
the strong dual Exp−(β, n)′ of Exp−(β, n) is a Banach space with the norm

||µ||∗β,n := sup
||φ||β,n=1

|〈µ | φ∗〉|. (5.35)

We introduce the projective topology on Exp−(β)′ =
⋂

n≥1 Exp−(β, n)′ as follows: U ⊂
Exp−(β)′ is open if and only if there exist open sets Un ⊂ Exp−(β, n)′ such that Un ∩
Exp−(β)′ = U for every n ≥ 1. It is known that the projective topology is equivalent to
that induced by the metric

dβ(µ1, µ2) :=
∞∑

n=1

1
2n

||µ1 − µ2||∗β,n
1 + ||µ1 − µ2||∗β,n

, (5.36)

see Gelfand and Shilov [18]. When the projective topology is equipped, Exp−(β)′ is called
the projective limit of Exp−(β, n)′ and denoted by Exp−(β)′ = lim←−−Exp−(β, n)′. In a similar
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Fig. 6: A diagram for the rigged Hilbert space Exp+ ⊂ L2(R, g(ω)dω) ⊂ Exp′−.

manner, the projective topology on Exp′− =
⋂

β≥0 Exp−(β)′ is introduced so that U ⊂ Exp′−
is open if and only if there exist open sets Uβ ⊂ Exp−(β)′ such that Uβ ∩ Exp′− = U for
every β ≥ 0. This topology coincides with the topology induced by the metric

d(µ1, µ2) :=
∞∑
β=0

1
2β

dβ(µ1, µ2)

1 + dβ(µ1, µ2)
. (5.37)

In this manner, Exp′− equipped with the projective topology is a complete metric vector
space. When the projective topology is equipped, Exp′− is called the projective limit of
Exp−(β)′ and denoted by Exp′− = lim←−−Exp−(β)′.

By the definition, the projective topology on Exp′− is weaker than the strong dual
topology and stronger than the weak dual topology. Since Exp− is a Montel space, the
weak dual topology coincides with the strong dual topology on any bounded set of Exp′−.
This implies that the projective topology also coincides with the weak dual topology and
the strong dual topology on any bounded set of Exp′−. In particular, a weakly convergent
series in Exp′− also converges with respect to the metric d and the strong dual topology.

Exp+(β, n) Banach space: ||φ||β,n = sup
Im(z)≥−1/n

|φ(z)|e−β|z|

Exp−(β, n)′ Banach space: ||ξ||∗β,n = sup
||φ||β,n=1

|〈ξ | φ∗〉|

Exp−(β)′ = lim←−−Exp−(β, n)′ dβ(ξ, ζ) =
∞∑

n=1

1
2n

||ξ − ζ ||∗β,n
1 + ||ξ − ζ ||∗β,n

Exp′− = lim←−−Exp−(β)′ d(ξ, ζ) =
∞∑
β=0

1
2β

dβ(ξ, ζ)

1 + dβ(ξ, ζ)

Table 1: Metric vector spaces used in Section 5.

For constants C ≥ 1, α ≥ 0 and 0 < p ≤ ∞, define a subset VC,α,p ⊂ Exp+ to be

VC,α,p = {φ ∈ Exp+ | |φ(z)|e−α|z| ≤ C when 0 ≤ Im(z) ≤ 2p}. (5.38)
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When the choice of a number 0 < p ≤ ∞ is not important, we denote it as VC,α for
simplicity. Note that the set {e−

√−1mω}∞m=0 above is not included in VC,α for any C and α.
Let i(VC,α) be an inclusion into Exp′−.
Theorem 5.10. For any C ≥ 1, α ≥ 0 and p > 0, the following holds.
(i) On i(VC,α) ⊂ Exp′−, the weak dual topology, the projective topology and the strong dual
topology coincide with one another.
(ii) The closure i(VC,α) of i(VC,α) is a connected, compact metric space.
(iii) For the system (2.1), give an initial condition ρ0(θ, ω) = h(θ), where h is an arbitrary
probability measure on S 1. Then, corresponding solutions of (3.2),(3.3) satisfy Zj(t, · ) ∈
V1,0 for any t ≥ 0 and j = 1, 2, · · · (In particular, Zj(t, · ) ∈ V1,0,∞).

Proof. (i) At first, we show that the set i(VC,α) ⊂ Exp′− is equicontinuous. For any small
ε > 0, we define a neighborhood U = U(ε) ⊂ Exp+ of the origin so that if φ ∈ U∩Exp+(γ),
then

sup
Im(z)≥0

e−γ|z||φ(z)| < εD(α, γ),

where D(α, γ) is a positive number to be determined. Then, for any φ ∈ U ∩ Exp+(γ) and
ψ ∈ i(VC,α),

|〈ψ | φ∗〉| ≤
∫

R
|φ(ω)| · |ψ(ω)|g(ω)dω

≤
∫

R
e−γ|ω||φ(ω)| · e−α|ω||ψ(ω)| · e(α+γ)|ω|g(ω)dω

≤ εCD(α, γ)
∫

R
e(α+γ)|ω|g(ω)dω.

Since g(ω) is the Gaussian, the integral E(α, γ) :=
∫

R
e(α+γ)|ω|g(ω)dω exists. If we put

D(α, γ) = 1/CE(α, γ), we obtain |〈φ |ψ〉| < ε for any φ ∈ U and ψ ∈ i(VC,α). This proves
that i(VC,α) is an equicontinuous set. In particular, i(VC,α) is a bounded set of Exp′− for
both of the weak dual topology and the strong dual topology due to the Banach-Steinhaus
theorem (see Prop.32.5 of Tréves [47]). Since Exp− is Montel, the weak dual topology,
the projective topology and the strong dual topology coincide on the bounded set i(VC,α).
Thus it is sufficient to prove (ii) for one of these topologies.

(ii) Obviously VC,α ⊂ Exp+ is connected (actually it is a convex set). Since the canon-
ical inclusion i is continuous, i(VC,α) and i(VC,α) are connected. Since the strong dual
Exp′− is Montel (Prop.5.4), every bounded set of Exp′− is relatively compact, which proves
that i(VC,α) is compact. By the projective topology, i(VC,α) is a metrizable space with the
metric (5.37).

(iii) To prove Zj ∈ V1,0, recall that Zj is defined by Eq.(3.1). We want to estimate the
analytic continuation of Zj(t, ω) with respect to ω. Put X(t) = e

√−1x(t,0;θ,ω). From Eq.(2.3),
it turns out that X satisfies the equation

dX
dt
=
√−1ωX +

K
2
η(t) − K

2
η(t)X2,

X(0) = e
√−1θ.

37



Put X(t) = ξ(t)e
√−1p(t), η(t) = ζ(t)e

√−1q(t) with ξ, ζ, p, q ∈ R. Then, the above equation is
rewritten as

dξ
dt
+
√−1

dp
dt
ξ = (

√−1Re(ω) − Im(ω))ξ +
K
2
ζe
√−1(q−p) − K

2
ζξ2e−

√−1(q−p),

which yields

dξ
dt
= −Im(ω)ξ +

K
2
ζ(1 − ξ2) cos(q − p). (5.39)

This equation shows that if Im(ω) ≥ 0 and |ξ| = 1, then dξ/dt ≤ 0. Therefore, if the
initial condition satisfies |X(0)| ≤ 1, then |X(t)| ≤ 1 for any t > 0 and any Im(ω) ≥ 0.
Thus Eq.(3.1) shows that the analytic continuation of Zj(t, ω) to the upper half plane is
estimated as

|Zj(t, ω)| ≤
∫ 2π

0
|X(t)| jh(θ)dθ ≤ 1, j = 1, 2, · · · , (5.40)

which means that Zj(t, ω) ∈ V1,0 for every t ≥ 0. �

Although solutions of the system (3.2),(3.3) are included in the set V1,0, this set is
inconvenient because it is not closed under the multiplication by a scalar. Let us introduce
a new set WC,α. For C ≥ 1, α ≥ 0 and p > 0, we define a subset WC,α of Exp+ to be

WC,α := {ψ ∈ Exp+ | |ψ(z +
√−1p)/ψ(z)|e−α|z| ≤ C, when 0 ≤ Im(z) ≤ p}. (5.41)

The choice of a number p > 0 is not important. If ξ ∈ i(WC,α), then kξ ∈ i(WC,α) for any
k ∈ C. For elements in i(WC,α), let us estimate the norm of the projection Π j.

Lemma 5.11. (i) For each ξ ∈ i(Exp+), ||ξ||∗β,n is bounded as n→ ∞.
(ii) For every β = 0, 1, · · · and n = 1, 2, · · · , there exists a positive number Q(β) such that
the inequalities

||ξ||∗0,1 ≤ ||ξ||∗β,n, ||ξ||∗β,n ≤ Q(β)||ξ||∗0,1 (5.42)

hold for ξ ∈ i(Exp+) (this means that norms || · ||∗β,n are comparable [18]).
(iii) For µ(λ) defined by Eq.(5.13), the linear mapping i(ψ) 
→ 〈µ(λ) |ψ∗〉 from i(WC,α)
into C is continuous with respect to the projective topology when −p < Re(λ) ≤ 0. In
particular, if a resonance pole λ j satisfies −p < Re(λ j) ≤ 0, the corresponding projection
Π j is continuous on i(WC,α).
(iv) For every β = 0, 1, · · · and n = 1, 2, · · · , there exists a positive number DC,α,β, j such
that the inequality

||Π jξ||∗β,n ≤ DC,α,β, j||ξ||∗β,n (5.43)

holds for ξ ∈ i(WC,α).

Proof. (i) ||ξ||∗β,n has an upper bound

||ξ||∗β,n := sup
||φ||β,n=1

∣∣∣∣∣∫
R
φ(ω)ξ(ω)g(ω)dω

∣∣∣∣∣ ≤ ∫
R

eβ|ω||ξ(ω)|g(ω)dω,
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which is independent of n = 1, 2, · · · .
(ii) The inequality ||ξ||∗0,1 ≤ ||ξ||∗β,n follows from the definition. It is easy to verify

that the inclusion Exp−(0, 1) → Exp−(β, n) is continuous. Thus its dual operator from
Exp−(β, n)′ into Exp−(0, 1)′ is continuous. This shows that there exists a positive number
Q(β) such that ||ξ||∗β,n ≤ Q(β)||ξ||∗0,1. Since the norm || · ||∗β,n is bounded as n → ∞, we can
take Q(β) not to depend on n = 1, 2, · · · .

(iii) Let {ψm}∞m=1 ⊂ i(WC,α) be a sequence converging to zero as m→ ∞ with respect to
the projective topology. By the definition of the projective topology, we have ||ψm||∗β,n → 0
for every β and n. This means that 〈ψm | f ∗〉 → 0 uniformly in f ∈ Exp+(β, n) satisfying
|| f ||β,n ≤ C for each C > 0 and β ≥ 0. Due to the part (i) of the lemma, ||ψm||∗β,n → 0
uniformly in n = 1, 2, · · · , which shows that 〈ψm | f ∗〉 → 0 uniformly in f ∈ VC,β for each
C > 0 and β ≥ 0. For a positive number p > 0 satisfying −p < Re(λ), 〈µ(λ) |ψ∗m〉 is given
by

〈µ(λ) |ψ∗m〉 =
∫

R

1

λ − √−1ω
ψm(ω)g(ω)dω + 2πψm(−√−1λ)g(−√−1λ)

=

∫
R

1

λ − √−1(ω +
√−1p)

ψm(ω +
√−1p)g(ω +

√−1p)dω

=

∫
R

1

λ − √−1(ω +
√−1p)

ψm(ω +
√−1p)g(ω +

√−1p)
ψm(ω)g(ω)

ψm(ω)g(ω)dω,

where we used the residue theorem. Putting

fm(ω) :=
1

λ − √−1(ω +
√−1p)

ψm(ω +
√−1p)g(ω +

√−1p)
ψm(ω)g(ω)

provides 〈µ(λ) |ψ∗m〉 = 〈ψm | f ∗m〉. Since ψm ∈ WC,α, there exist C′ ≥ 1 and α′ ≥ 0 such
that fm ∈ VC′,α′ for every m. Therefore, 〈µ(λ) |ψ∗m〉 → 0 as m → 0. Since the projective
topology is metrizable, this implies that the mapping i(ψ) 
→ 〈µ(λ) |ψ∗〉 is continuous.

(iv) Since Π j is continuous on i(WC,α) with respect to the metric d, for any ε > 0, there
exists a number δC,α, j > 0 such that if d(ξ, 0) ≤ δC,α, j, then d(Π jξ, 0) ≤ ε for ξ ∈ i(WC,α).
For ε > 0, take η ∈ i(WC,α) and numbers δ̂C,α,β, j such that ||η||∗β,n ≤ δ̂C,α,β, j. We can take
δ̂C,α,β, j sufficiently small so that d(η, 0) ≤ δC,α, j holds, which implies d(Π jη, 0) ≤ ε. By the
definition of d, this yields

||Π jη||∗β,n ≤
2nκ

1 − 2nκ
, κ :=

2βε
1 − 2βε

.

If ξ ∈ i(WC,α), then η := δ̂C,α,β, jξ/||ξ||∗β,n is included in i(WC,α) and satisfies ||η||∗β,n ≤ δ̂C,α,β, j.
Thus we obtain ∣∣∣∣∣∣∣∣Π j

δ̂C,α,β, jξ

||ξ||∗β,n
∣∣∣∣∣∣∣∣∗
β,n
≤ 2nκ

1 − 2nκ
, (5.44)

for ξ ∈ i(WC,α), which yields Eq.(5.43) by putting DC,α,β, j = 2nκ/(1 − 2nκ)/δ̂C,α,β, j. Since
the norm || · ||∗β,n is bounded as n→ ∞, we can take DC,α,β, j not to depend on n = 1, 2, · · · .
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Define the generalized center subspace of T1 to be

Ec = span{ µn | λn ∈
√−1R} ⊂ Exp′−. (5.45)

When g is the Gaussian distribution and K = Kc, Ec is a one dimensional vector space
because Eq.(4.11) has a unique root λ0 = 0 on the imaginary axis when K = Kc. Let
µ0 be the corresponding generalized eigenfunction; that is, Ec = span{µ0}. Let E⊥c be
a complementary subspace of Ec in Exp′− including µ1, µ2, · · · . Let Πc : Exp′− → Ec

be the projection to Ec with respect to the direct sum Exp′− = Ec ⊕ E⊥c . Although E⊥c
may not be unique, Πcψ is uniquely determined for ψ ∈ i(Exp+) because of Thm.5.8
(iii). The complementary subspace E⊥c including µ1, µ2, · · · is called the stable subspace.
Eq.(5.26) shows that Πs(eT1t)×ψ decays exponentially as t → ∞, because Re(λ j) < 0 for
j = 1, 2, · · · , where Πs = id − Πc is the projection to E⊥c .

Theorem 5.12. For any ψ ∈ i(Exp+), the projection to the center subspace Πc satisfies

Πcψ = Π0ψ =
Kc

2D0
〈µ0 |ψ∗〉 · µ0. (5.46)

ΠcT
×
1 ψ = T×1Πcψ, (5.47)

Πc(e
T1t)×ψ = (eT1t)×Πcψ. (5.48)

Proof. The first equality follows from the definition. The second one is verified by using
Eq.(5.6) and T×1 µn = λnµn as

ΠcT
×
1 ψ = ΠcT

×
1 i(ψ) = Πci(T1ψ)

=
Kc

2D0
〈µ0 |T ∗1ψ∗〉µ0 =

Kc

2D0
〈T×1 µ0 |ψ∗〉µ0 =

Kc

2D0
〈λ0µ0 |ψ∗〉µ0,

T×1Πcψ =
Kc

2D0
〈µ0 |ψ∗〉T×1 µ0 =

Kc

2D0
〈µ0 |ψ∗〉λ0µ0.

The third one is proved in the same way. �

Let i(WC,α) ⊂ Exp′− be a closure of i(WC,α) with respect to the projective topology. The
next proposition shows that solutions of the system (3.2),(3.3) are included in the closure
of the set W3,0.

Proposition 5.13. (i) For any C ≥ 1, i(VC,0) ⊂ i(W3,0).
(ii) Put V =

⋃
C≥1 VC,0. Then, the generalized center subspace Ec is included in i(V);

Ec ⊂ i(V) ⊂ i(W3,0) ⊂ Exp′−. (5.49)

(iii) Πc : i(W3,0) → Exp′− is continuous with respect to the projective topology. The
continuous extension Π̃c : i(W3,0)→ Exp′− satisfies Π̃c ◦ Π̃c = Π̃c.

Proof. (i) If a function ψ ∈ VC,0 has zeros on the region 0 ≤ Im(z) ≤ p, ψ � WC,α
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for any C and α. To prove that i(ψ) ∈ i(W3,0), let us perturb the function ψ ∈ VC,0. For
n = 1, 2, · · · , put

ψ̃(ω) = ψ(ω) + 2Ce
√−1nω+np. (5.50)

For 0 ≤ Im(ω) ≤ p, we have∣∣∣∣∣∣ ψ̃(ω +
√−1p)

ψ̃(ω)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣ψ(ω +

√−1p) + 2Ce
√−1nω

ψ(ω) + 2Ce
√−1nω+np

∣∣∣∣∣∣∣ ≤ C + 2Ce−nIm(ω)

2Cen(p−Im(ω)) −C
≤ 3,

which implies ψ̃ ∈ W3,0. It is easy to verify that 2Ce
√−1nω+np → 0 as n → ∞ with respect

to the weak dual topology. Therefore, i(ψ̃)→ i(ψ) ∈ i(W3,0) as n→ ∞ for any C ≥ 1.
(ii) Put vλ(ω) = 1/(λ− √−1ω). Let λ0 = 0 be a resonance pole on the imaginary axis.

By the definition, the corresponding generalized eigenfunction µ0 is given by

µ0 = lim
x→+0

i(vx(ω)), (5.51)

where the limit is taken with respect to the weak dual topology. It is easy to verify that
vλ(ω) ∈ V for Re(λ) > 0. This implies that µ0 ∈ i(V) and thus the generalized center
subspace Ec is included in i(V).

(iii) The continuity was proved in Lemma 5.11. Since Ec = span{µ0}, it is sufficient to
prove that Π̃cµ0 = µ0. Since

Π̃cµ0 = lim
x→+0
Πci(vx) = lim

x→+0

Kc

2D0
〈µ0 | v∗x〉µ0,

let us show that

lim
x→+0

Kc

2D0
〈µ0 | v∗x〉 = 1.

By the definition of µ0 given in Eq.(5.14), we have

lim
x→+0
〈µ0 | v∗x〉 = lim

x→+0
lim

x′→+0

∫
R

1

x′ − √−1ω

1

x − √−1ω
g(ω)dω.

By the definition of D0 given in Eq.(5.23), we obtain

2D0

Kc
=

2
Kc

lim
x→−0

1
x

(
1 − Kc

2
D(λ) − πKcg(−√−1λ)

)
=

2
Kc

lim
x→+0

1
x

(
1 − Kc

2
D(λ)
)

=
2
Kc

lim
x→+0

1
x

(
1 − Kc

2

∫
R

1

x − √−1ω
g(ω)dω

)
.

Since Kc = 2/πg(0) (Cor.3.6),

2D0

Kc
= lim

x→+0

1
x

(
πg(0) −

∫
R

1

x − √−1ω
g(ω)dω

)
.
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Lemma 3.4 yields

2D0

Kc
= lim

x→+0

1
x

(
lim

x′→+0

∫
R

x′

(x′)2 + ω2
g(ω)dω −

∫
R

1

x − √−1ω
g(ω)dω

)
.

Since g is an even function, the above is rearranged as

2D0

Kc
= lim

x→+0
lim

x′→+0

1
x

(∫
R

1

x′ − √−1ω
g(ω)dω −

∫
R

1

x − √−1ω
g(ω)dω

)
= lim

x→+0
lim

x′→+0

1
x

∫
R

x − x′

(x′ − √−1ω)(x − √−1ω)
g(ω)dω

= lim
x→+0

lim
x′→+0

∫
R

1

(x′ − √−1ω)(x − √−1ω)
g(ω)dω.

This completes the proof. �

In what follows, the extension Π̃c of Πc|i(W3,0) is denoted by Πc for simplicity. Next
purpose is to estimate norms of semigroups. At first, we suppose that K < Kc. In this
case, there are no resonance poles on the imaginary axis and thus Πc = 0.

Proposition 5.14. Suppose that 0 < K < Kc. For every β = 0, 1, · · · and n = 1, 2, · · · ,
there exist positive numbers MC,α,β and a such that the inequality

||(eT jt)×ξ||∗β,n ≤ MC,α,βe
− jat||ξ||∗β,n, j = 1, 2, · · · (5.52)

holds for ξ ∈ i(WC,α).

Proof. At first, we show the proposition for j = 1. When g is the Gaussian, there exists a
positive constant a = a(K) such that all resonance poles satisfy Re(λn) < −a. Then,

||(eT1t)×ξ||∗β,n
||ξ||∗β,n

= e−at
||(e(T1+a)t)×ξ||∗β,n
||ξ||∗β,n

,

and (e(T1+a)t)×ξ/||ξ||∗β,n is given by

(e(T1+a)t)×
ξ

||ξ||∗β,n
=

∞∑
n=0

e(λn+a)tΠn

 ξ

||ξ||∗β,n

 .
for ξ ∈ i(Exp+). Due to Lemma 5.11 (iv), the right hand side above is bounded with
respect to the norm || · ||∗β,n uniformly in ξ ∈ i(WC,α) and t > 0. This proves that there exists
a positive constant LC,α,β such that ||(eT1t)×ξ||∗β,n ≤ e−atLC,α,β||ξ||∗β,n for ξ ∈ i(WC,α). Since the
norm || · ||∗β,n is bounded as n → ∞, we can take LC,α,β not to depend on n = 1, 2, · · · . The

result is continuously extended to the closure i(WC,α).

42



Next, let us consider T j for j = 2, 3, · · · . Cauchy’s theorem proves that

〈(eT jt)×φ |ψ∗〉 = (e j
√−1ωtφ, ψ∗) =

∫
R

e j
√−1ωtφ(ω)ψ(ω)g(ω)dω

=

∫ √−1a+∞
√−1a−∞

e j
√−1ωtφ(ω)ψ(ω)g(ω)dω

= e− jat

∫ ∞
−∞

e j
√−1ωtφ(ω +

√−1a)ψ(ω +
√−1a)g(ω +

√−1a)dω,

for any φ, ψ ∈ Exp+. Hence, we obtain

e jat||(eT jt)×φ||∗β,n = e jat sup
||ψ||β,n=1

|〈(eT jt)×φ |ψ∗〉|

= sup
||ψ||β,n=1

∣∣∣∣∣∫
R

fψ(ω)φ(ω)g(ω)dω
∣∣∣∣∣ = sup

||ψ||β,n=1
|〈φ | f ∗ψ〉|,

where

fψ(ω) := e j
√−1ωtψ(ω +

√−1a)
φ(ω +

√−1a)g(ω +
√−1a)

φ(ω)g(ω)
.

If β′ is sufficiently large and φ ∈ i(WC,α), || fψ||β′,n exists and

e jat||(eT jt)×φ||∗β,n = sup
||ψ||β,n=1

|〈φ | f ∗ψ〉|
|| fψ||β′,n || fψ||β′,n ≤ sup

||ψ||β,n=1
|| fψ||β′,n · ||φ||∗β′,n.

Due to Lemma 5.11(ii), it turns out that there exists a positive number NC,α,β such that
e jat||(eT jt)×φ||∗β,n ≤ NC,α,β||φ||∗β,n for φ ∈ i(WC,α). The result is continuously extended to the

closure i(WC,α). Then, putting MC,α,β = max{LC,α,β,NC,α,β} yields the desired result. �

Next, we suppose that K = Kc. In this case, there exists a resonance pole on the
imaginary axis and Πc � 0. Then, we can prove the following proposition.
Proposition 5.15. Suppose that K = Kc. Then, for every β = 0, 1, · · · and n = 1, 2, · · · ,
there exist positive constants LC,α,β,MC,α,β,NC,α,β and a such that the inequalities

||(eT1t)×Πcξ||∗β,n ≤ LC,α,β||ξ||∗β,n, (5.53)

||(eT1t)×Πsξ||∗β,n ≤ MC,α,βe
−at||ξ||∗β,n, (5.54)

hold for ξ ∈ i(WC,α), and the inequality

||(eT jt)×ξ||∗β,n ≤ NC,α,βe
− jat||ξ||∗β,n, j = 2, 3, · · · , (5.55)

holds for ξ ∈ i(WC,α).

Proof. Let λ0(= 0) be the resonance pole on the imaginary axis. For ξ ∈ i(WC,α),
(eT1t)×Πcξ is calculated as

(eT1t)×Πcξ =
K

2D0
〈µ0 | ξ∗〉 · (eT1t)×µ0 =

K
2D0
〈µ0 | ξ∗〉 · eλ0tµ0.
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Since λ0 = 0, we obtain

|| (eT1t)×Πcξ ||∗β,n ≤ ||
K

2D0
〈µ0 | ξ∗〉 · µ0 ||∗β,n = ||Π0ξ ||∗β,n ≤ DC,α,β,0||ξ||∗β,n.

This provides Eq.(5.53) for ξ ∈ i(WC,α) with LC,α,β = DC,α,β,0. The result is continuously
extended for ξ ∈ i(WC,α). The proofs of Eq.(5.54) and (5.55) are the same as that of Prop
5.14 with the aid of the fact that Πs = id − Πc is continuous on i(WC,α). �

Note that i(V) is a closed subspace of Exp′−. If ξ ∈ V , i(ξ) satisfies inequalities
(5.52),(5.53),(5.54),(5.55), in which the constants depend only on β because i(V) ⊂ i(W3,0).
Since Ec ⊂ i(V), the generalized eigenfunctions in Ec also satisfy the inequalities with the
same constants. The space i(V) has all properties for developing a bifurcation theory: it
is a metric space including all solutions of the Kuramoto model and the generalized cen-
ter subspace. The projection Πc is continuous on i(V). The semigroup (eT1t)× admits the
spectral decomposition on it, and norms of the semigroups (eT jt)× satisfy the appropriate
inequalities. By using these properties, we will prove the existence of center manifolds in
Section 7.

5.3 Spectral theory on (H−, L2(R, g(ω)dω),H′−)
In this subsection, we suppose that g(ω) is a rational function. Let H+ be a Banach space
of bounded holomorphic functions on the real axis and the upper half plane (see Sec.4.3)
and H− = {φ∗ | φ ∈ H+}. In this case, H− is not a dense subspace of L2(R, g(ω)dω), and
thus the triplet (H−, L2(R, g(ω)dω),H′−) is a degenerate rigged Hilbert space.

Proposition 5.16. The canonical inclusion i : H+ → H′− is a finite dimensional operator
; that is, i(H+) ⊂ H′− is a finite dimensional vector space.

Proof. By the definition,

i(ψ)(φ∗) = 〈ψ | φ∗〉 = (ψ, φ∗) =
∫

R
φ(ω)ψ(ω)g(ω)dω,

for φ, ψ ∈ H+. Let z1, · · · , zn be poles of g(ω) on the upper half plane. By the residue
theorem, we obtain∫

R
φ(ω)ψ(ω)g(ω)dω + lim

r→∞

∫ π

0
φ(re

√−1θ)ψ(re
√−1θ)g(re

√−1θ)
√−1re

√−1θdθ

= 2π
√−1

n∑
j=1

Res(z j),

where, Res(z j) denotes the residue of φ(ω)ψ(ω)g(ω) at z j. Since g(ω) is a rational function
which is integrable on the real axis, the degree of the denominator is at least two greater
than the degree of the numerator : g(ω) ∼ O(1/|ω|2) as |ω| → ∞. Since φ, ψ ∈ H+ is
bounded on the upper half plane, we obtain

〈ψ | φ∗〉 = 2π
√−1

n∑
j=1

Res(z j), (5.56)
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as r → ∞. This means that the action of i(ψ) ∈ i(H+) on H− is determined by the values
of ψ(ω) and its derivatives at z1, · · · , zn. In particular, if the denominator of g is of degree
M, then i(H+) � CM. �

Since i(H+) is of finite dimensional, the semigroup (eT1t)× restricted to i(H+) is a finite
dimensional operator. This is the reason that Eq.(4.25) consists of a finite sum. In what
follows, we suppose that all resonance poles are simple roots of Eq.(4.11). Then Eq.(4.25)
is rewritten as

(eT1tφ, ψ∗) = 〈(eT1t)×φ |ψ∗〉 =
M∑

n=0

K
2Dn

eλnt〈µn | φ∗〉〈µn |ψ∗〉, (5.57)

where definitions of Dn and µn are the same as those in previous sections. Now we have
obtained the following theorem.

Theorem 5.17. For any ψ ∈ H+, the equalities

(eT1t)×ψ =

M∑
n=0

K
2Dn

eλnt〈µn |ψ∗〉 · µn, (5.58)

i(ψ) =
M∑

n=0

K
2Dn
〈µn |ψ∗〉 · µn, (5.59)

hold. In particular, a system of generalized eigenfunctions {µn}Mn=0 forms a base of i(H+).

The projection Πn : i(H+)→ span{µn} ⊂ H′− is defined to be

Πnψ =
K

2Dn
〈µn |ψ∗〉 · µn, n = 0, · · · ,M (5.60)

as before. Since i(H+) is a finite dimensional vector space, Πn is continuous on the whole
space. Note that solutions Z1,Z2, · · · of the Kuramoto model are included in H+ (we have
proved that Zj ∈ V1,0,∞ in Thm.5.10 (iii)). Thus the bifurcation problem of the Kuramoto
model is reduced to the bifurcation theory on a finite dimensional space, and the usual
center manifold theory is applicable.

6 Nonlinear stability

Before going to the bifurcation theory, let us consider the nonlinear stability of the de-
synchronous state. In Sec.4 and Sec.5, we proved that the order parameter η(t) ≡ 0 is
linearly stable when 0 < K < Kc; that is, the asymptotic stability of η(t) ≡ 0 is proved for
the linearized system (3.4). For a system on an infinite dimensional space, in general, the
linear stability does not imply the nonlinear stability. Infinitesimally small nonlinear terms
may change the stability of fixed points. In this section, we show that the de-synchronous
state Zj(t) ≡ 0 ( j = 1, 2, · · · ) (which corresponds to ρt ≡ 1/2π) is locally stable with
respect to a suitable topology when 0 < K < Kc. In particular, the order parameter proves
to decay to zero as t → ∞ without neglecting the nonlinear terms.

45



Recall that the continuous model (2.1) is rewritten as Eqs.(3.2),(3.3) by putting Zj(t, ω) =∫ 2π

0
e
√−1 jθρt(θ, ω)dθ with the initial condition

Zj(0, ω) =
∫ 2π

0
e
√−1 jθh(θ)dθ := hj ∈ C. (6.1)

We need not suppose that h(θ) is a usual function. It may be a probability measure on S 1.
We have proved that solutions Zj(t, ·) are included in the set V1,0 ⊂ Exp+. By using the
canonical inclusion i : L2(R, g(ω)dω)→ Exp′−, , Eqs.(3.2),(3.3) are rewritten as a system
of evolution equations on

∏∞
j=1 Exp′− of the form

d
dt

Z1 = T×1 Z1 − K
2
〈Z1 | P0〉Z2,

d
dt

Z j = T×j Z j +
jK
2

(
〈Z1 | P0〉Zj−1 − 〈Z1 | P0〉Zj+1

)
, j = 2, 3, · · · ,

Zj(0, · ) = hjP0,

(6.2)

where Zj is an abbreviation for i(Zj) ∈ i(Exp+) ⊂ Exp′−. Linear operators T j are defined
to be

T1φ(ω) = (
√−1M + K

2
P)φ(ω) =

√−1ωφ(ω) +
K
2
〈φ | P0〉P0(ω), (6.3)

and
T jφ(ω) =

√−1 jMφ(ω) =
√−1 jωφ(ω), (6.4)

for j = 2, 3, · · · , and T×j are their dual operators. The main theorem in this section is stated
as follows.

Theorem 6.1 (local stability of the de-synchronous state). Suppose that g(ω) is the
Gaussian and 0 < K < Kc. Then, there exists a positive constant δβ such that if the initial
condition h(θ) of the initial value problem (2.1) satisfies

|hj| =
∣∣∣∣∣∣
∫ 2π

0
e j
√−1θh(θ)dθ

∣∣∣∣∣∣ ≤ δβ, j = 1, 2, · · · , (6.5)

then the quantities

(Zj, φ) =
∫ 2π

0

∫
R

e
√−1 jθφ(ω)ρt(θ, ω)dωdθ

tend to zero as t → ∞ for every φ ∈ Exp+(β) uniformly in j = 1, 2, · · · . In particular, the
order parameter η(t) = (Z1, P0) tends to zero as t → ∞.

This theorem means that the trivial solution Zj ≡ 0 of (6.2) is locally stable with
respect to the weak dual topology on Exp′−. In general, δβ → 0 as β → ∞. One of the
reasons is that the norm || · ||∗β,n goes to infinity as β → ∞. For the case g(ω) is a rational
function, we can show the same statement : (Zj, φ) tends to zero as t → ∞ for every
φ ∈ H+ if the initial condition satisfies (6.5), in which δβ is independent of β.
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Proof of Thm.6.1. Since we have Prop.5.14, the proof is done in a similar manner to the
proof of the local stability of fixed points of finite dimensional systems. Eq.(6.2) provides

Z1(t, ·) = (eT1(t−t0))×Z1(t0, ·) − K
2

∫ t

t0

〈Z1(s, ·) | P0〉(eT1(t−s))×Z2(s, ·)ds,

Zj(t, ·) = (eT j(t−t0))×Zj(t0, ·) + jK
2

∫ t

t0

(
〈Z1(s, ·) | P0〉(eT j(t−s))×Z∗j−1(s, ·)
−〈Z1(s, ·) | P0〉(eT j(t−s))×Zj+1(s, ·)

)
ds,

(6.6)

for 0 ≤ t0 < t. Since Zj ∈ i(V1,0) ⊂ i(W3,0) for every t > 0 and j = 1, 2, · · · , Prop.5.14 is
applied to show that there exists M3,0,β = Mβ > 0 such that
||Z1(t, ·)||∗β,n ≤ Mβe

−a(t−t0)||Z1(t0, ·)||∗β,n +
K
2

∫ t

t0

Mβe
−a(t−s)||Z1(s, ·)||∗β,n · ||Z2(s, ·)||∗β,nds,

||Zj(t, ·)||∗β,n ≤ Mβe
− ja(t−t0)||Zj(t0, ·)||∗β,n +

jK
2

∫ t

t0

Mβe
− ja(t−s)||Z1(s, ·)||∗β,n·(

||Zj−1(s, ·)||∗β,n + ||Zj+1(s, ·)||∗β,n
)
ds.

(6.7)
Take a small constant δβ > 0 such that hj =

∫ 2π

0
e j
√−1θh(θ)dθ satisfies Eq.(6.5). Let us

show that there exists Nβ > 0 such that

||Zj(t, ·)||∗β,n ≤ δβNβ (6.8)

holds for any t > t0 and j = 1, 2, · · · . Indeed, Eq.(5.40) shows that |Zj(t, ω)| ≤ δβ holds
for any t, ω and j. Hence,

||Zj||∗β,n = sup
||ψ||β,n=1

|〈Zj |ψ∗〉| = sup
||ψ||β,n=1

∣∣∣∣∣∫
R

Zj(t, ω)ψ(ω)g(ω)dω
∣∣∣∣∣

≤ δβ

∫
R

eβ|ω|g(ω)dω.

Therefore, putting Nβ :=
∫

R
eβ|ω|g(ω)dω proves Eq.(6.8). Then, the first equation of (6.7)

gives

||Z1(t, ·)||∗β,n ≤ δβMβNβe
−a(t−t0) +

δβKMβNβ

2

∫ t

t0

e−a(t−s)||Z1(s, ·)||∗β,nds, (6.9)

for t > t0. Now the Gronwall inequality proves

||Z1(t, ·)||∗β,n ≤ δβMβNβe
(δβKMβNβ/2−a)(t−t0). (6.10)

Since Mβ and Nβ are independent of the choice of δβ, by taking δβ sufficiently small, this
quantity proves to tend to zero as t → ∞. Substituting it into the second equation of (6.7),
we obtain

||Zj(t, ·)||∗β,n ≤ δβMβNβe
− ja(t−t0) + jK(δβMβNβ)

2

∫ t

t0

e− ja(t−s)e(δβKMβNβ/2−a)(s−t0)ds (6.11)
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for j = 2, 3, · · · . It is easy to verify that the right hand side tends to zero as t → ∞
uniformly in j.

Now we have proved that if the initial condition satisfies (6.5) for each β, then ||Zj(t, ·)||∗β,n
decays to zero as t → ∞ for every j and n. By the definition of the norm || · ||∗β,n, this means
that (Zj(t, ·), φ)→ 0 as t → ∞ for every φ ∈ Exp+(β). �

7 Bifurcation theory

Now we are in a position to investigate bifurcation of the Kuramoto model by using the
center manifold reduction. Our strategy to detect bifurcation is that we use the space
of functionals Exp′− instead of the spaces of usual functions Exp+ or L2(R, g(ω)dω) be-
cause the linear operator T1 admits the spectral decomposition on Exp′− consisting of a
countable number of eigenfunctions, while the spectral decomposition on L2(R, g(ω)dω)
involves the continuous spectrum on the imaginary axis; that is, a center manifold on
L2(R, g(ω)dω) is an infinite dimensional manifold. To avoid such a difficulty, we will
seek a center manifold on Exp′−. At first, we have to prove the existence of center man-
ifolds. Standard results of the existence of center manifolds (see [5, 9, 25, 48]) are not
applicable to our system because the space Exp′− is not a Banach space and the projection
Πc to the center subspace is continuous only on a subspace of Exp′−. Thus in Sec.7.1,
the existence theorem of center manifolds for our system and a strategy for proving it
are given. The proof of the theorem is given in Sec.7.2 to 7.4. In Sec.7.5, the dynamics
on the center manifold is derived and the Kuramoto’s conjecture is solved. Readers who
are interested in a practical method for obtaining a bifurcation structure can skip Sec.7.1
to 7.4 and go to Sec.7.5. Throughout this section, we suppose that g(ω) is the Gaussian.
Existence of center manifolds for the case that g(ω) is a rational function is trivial because
the phase space i(H+) is a finite dimensional vector space.

7.1 Center manifold theorem

Let i(F ) be a certain metric subspace of the product space
∏∞

k=1 Exp′− with a distance d∞,
and i(F ) its closure. These spaces and the metric d∞ will be introduced in Sec.7.2 and
Sec.7.3. LetΦt be the semiflow on i(F ) generated by the system (6.2). For the generalized
center subspace Ec of T1 defined by (5.45), put

Êc = Ec × {0} × {0} × · · · ⊂
∞∏

k=1

Exp′−. (7.1)

Let Ê⊥c = E⊥c × Exp′− × Exp′− × · · · be the complement of Êc. The existence theorem of
center manifolds is stated as follows.

Theorem 7.1. There exist a positive number ε0 and an open set U of the origin in i(F ) ⊂∏∞
k=1 Exp′− such that when |K − Kc| < ε0, the following holds:

(I) (center manifold). There exists a C1 mapping q̂ : Êc → Ê⊥c ∩ i(F ) such that the one
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dimensional C1 manifold defined to be

Wc
loc = {y + q̂(y) | y ∈ Êc} ∩ U (7.2)

is Φt-invariant (that is, Φt(Wc
loc)∩U ⊂ Wc

loc). This is called the local center manifold. The
mapping q̂ is also C1 with respect to the parameter ε := K − Kc, and q̂(y) ∼ O(y2, εy, ε2)
as y, ε→ 0

(II) (negative semi-orbit). For every ξ0 ∈ Wc
loc, there exists a function u : (−∞, 0] → i(F )

such that u(0) = ξ0 and Φt(u(s)) = u(t + s) when t ≥ 0, s ≤ −t. Such a u(t) is called a
negative semi-orbit of (6.2). As long as u(t) ∈ U, u(t) ∈ Wc

loc. In this case, there exist
C1 > 0 and a small number b > 0 such that

d∞(u(t), 0) ≤ C1ebt. (7.3)

(III) (invariant foliation). There exists a family of manifolds {Mξ}ξ∈Wc
loc
⊂ U, parameter-

ized by ξ ∈ Wc
loc, satisfying that

(i) Mξ ∩Wc
loc = {ξ},

⋃
ξ∈Wc

loc
Mξ = U, and Mξ ∩ Mξ′ = ∅ if ξ � ξ′.

(ii) when Φt(ξ) ∈ U, Φt(Mξ) ∩ U ⊂ MΦt(ξ).
(iii)

Mξ = {u ∈ i(F ) ∩ U
∣∣∣∣

there exist a > b and C2 > 0 such that d∞(Φt(u),Φt(ξ)) ≤ C2e−at}.
Part (III) of the theorem means that Wc

loc is attracting with the decay rate e−at, where
the constant a is the same as that in Prop.5.15. Further, (III)-(iii) means that the semiflow
near Wc

loc is eventually well approximated by the semiflow on Wc
loc if t > 0 is large. In

particular, if (6.2) has an attractor N near the origin, N is included in Wc
loc. Since the

topology induced by the metric coincides with the strong and the weak dual topologies on
any bounded set, N is attracting for both of the strong and the weak dual topologies. Due
to the spectral decomposition, any element Z1 ∈ i(Exp+) is decomposed as

Z1 = αµ0 + Y1, α ∈ C, Y1 ∈ E⊥c , (7.4)

where µ0 ∈ Ec is a generalized eigenfunction associated with the resonance pole λ0 = 0.
Then, part (I) of the theorem means that if (Z1,Z2, · · · ) ∈ Wc

loc,

Y1 ∼ O(α2, εα, ε2), Zk ∼ O(α2, εα, ε2), k = 2, 3, · · · , (7.5)

as ε, α → 0. Substituting Eq.(7.4) into the system (6.2) with the condition (7.5), we can
obtain the expression of q̂(y) as a function of ε, α. The dynamics on Wc

loc is realized by an
ordinary differential equation of α:

dα
dt
= f (ε;α). (7.6)

If (6.2) has an attractor N near the origin, N is an attractor of the system (7.6). In this
manner, (6.2) is reduced to a finite dimensional problem. Such a technique to investi-
gate bifurcation is called the center manifold reduction. Part (II) implies that the center
manifold is characterized by the property that the dynamics on it is sufficiently slow.
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Although we prove the existence of Wc
loc in i(F ), from a physical viewpoint, especially

we are interested in an initial condition of the form Zj(0) = hjP0 (which corresponds to
the initial condition of the form ρ0(θ, ω) = h(θ) for the system (2.1)). Then Zj(t, ·) ∈ i(V1,0)
(Thm.5.10 (iii)). This means that an attractor of (6.2) which is reached from the initial
condition Zj(0) = hjP0 is included in Wc

loc ∩
∏∞

k=1 i(V1,0).
Sec.7.2 to 7.4 are devoted to prove Thm.7.1. It is well known that a global center

manifold uniquely exists only when a Lipschitz constant of nonlinear terms of a system
is sufficiently small. Thus in Sec.7.2, we consider a perturbed system of (6.2) so that its
Lipschitz constant becomes sufficiently small, while it coincides with the original system
in the vicinity of the origin. Because of the perturbation, a solution may fall out of i(V1,0)
and go into a larger space. Thus we will introduce the space F , and show that solutions
(Z1,Z2, · · · ) of the perturbed system are included in F . We will prove in Sec.7.3 that the
perturbed system generates a smooth flow to prove that the center manifold is smooth.
Once we obtain the existence of a proper phase space, a spectral decomposition of the
linear operator, estimates of norms of the semigroups and a smooth flow whose Lipschitz
constant of nonlinear terms is sufficiently small, then the existence of the center manifold
is proved in the usual way with a slight modification. We demonstrate it in Sec.7.4. In
Sec.7.5, we perform the center manifold reduction: an equation of α is obtained and
investigated. The order parameter η(t) is defined as η(t) = (Z1, P0) = 〈Z1 | P0〉. On the
center manifold, it is written as

〈Z1 | P0〉 = α(t)〈µ0 | P0〉 + 〈Y1 | P0〉 = 2
Kc
α(t) + O(α2, εα, ε2), (7.7)

where we use 〈µ0 | P0〉 = 2/Kc, which follows from the definition of resonance poles.
Therefore, if a bifurcation diagram of (7.6) is obtained, a bifurcation diagram of the order
parameter is also obtained. In this way, the Kuramoto’s conjecture will be proved in
Sec.7.5.

7.2 Phase space of the perturbed system

Recall that the trivial solution Zj(t) ≡ 0 ( j = 1, 2, · · · ) which corresponds to ρt ≡ 1/2π
is called the de-synchronous state (Sec.3). Since we are interested in bifurcations from
ρt ≡ 1/2π at K = Kc, put ρt = 1/2π + ρ̂t and K = Kc + ε. Then, Eq.(2.1) is rewritten as

∂ρ̂t

∂t
+
∂

∂θ

(
ωρ̂t +

Kc

4π
√−1

(η(t)e−
√−1θ − η(t)e

√−1θ)

+
ε

4π
√−1

(η(t)e−
√−1θ − η(t)e

√−1θ) +
K

2
√−1

(η(t)e−
√−1θ − η(t)e

√−1θ)ρ̂t

)
= 0, (7.8)

where

η(t) =
∫

R

∫ 2π

0
e
√−1θρt(θ, ω)dθdω =

∫
R

∫ 2π

0
e
√−1θρ̂t(θ, ω)dθdω.

An initial condition ρ̂0 = ĥ(θ, ω) is a real-valued measure (signed measure) on S 1 pa-
rameterized by ω ∈ R satisfying

∫ 2π

0
ĥ(θ, ω)dθ = 0. The first step to prove the existence
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of center manifolds is to localize the nonlinear term so that the Lipschitz constant of the
nonlinear term becomes sufficiently small. For this purpose, let χ̂ : [0,∞) → [0, 1] be a
C∞ function, and consider the perturbed continuous model of the form

∂ρ̂t

∂t
+
∂

∂θ

(
ωρ̂t +

Kc

4π
√−1

(η(t)e−
√−1θ − η(t)e

√−1θ)

+
ε

4π
√−1

(η(t)e−
√−1θ − η(t)e

√−1θ)χ̂(t) +
K

2
√−1

(η(t)e−
√−1θ − η(t)e

√−1θ)χ̂(t)ρ̂t

)
= 0. (7.9)

If we put

Ẑ j(t, ω) =
∫ 2π

0
e
√−1 jθρ̂t(θ, ω)dθ, (7.10)

Eq.(7.9) yields a system of equations
dẐ1

dt
=
√−1ωẐ1 +

Kc

2
η(t) +
(
ε

2
η(t) − K

2
η(t)Ẑ2

)
χ̂(t),

dẐ j

dt
= j
√−1ωẐ j +

jK
2

(
η(t)Ẑ j−1 − η(t)Ẑ j+1

)
χ̂(t), j = 2, 3, · · · .

(7.11)

If χ̂ ≡ 1, this coincides with the original system (3.2),(3.3). If χ̂(t) is sufficiently small, this
perturbation makes the Lipschitz constant of the nonlinear terms of (3.2),(3.3) sufficiently
small (Note that when proving the existence of center manifolds, the bifurcation parameter
ε is regarded as a dependent variable. Thus εη(t) = ε(Ẑ1, P0) is regarded as a nonlinear
term). A concrete definition of χ̂ will be specified in Sec.7.3. Note that Ẑ0 ≡ 0 because of∫ 2π

0
ĥ(θ, ω)dθ = 0.
Eq.(7.9) is integrated by using the characteristic curve method. The characteristic

curve x = x(t, s; θ, ω) is defined as a solution of the equation

dx
dt
= ω +

K

2
√−1

(
η(t)e−

√−1x − η(t)e
√−1x
)
χ̂(t), (7.12)

satisfying the initial condition x(s, s; θ, ω) = θ at an initial time s. Along the characteristic
curve, (7.9) is integrated to yield

ρ̂t(θ, ω) = ĥ(x(0, t; θ, ω), ω) exp
[K

2

∫ t

0

(
η(s)e−

√−1x(s,t;θ,ω) + η(s)e
√−1x(s,t;θ,ω)

)
χ̂(s)ds
]

+

∫ t

0
exp
[K

2

∫ t

s

(
η(τ)e−

√−1x(τ,t;θ,ω) + η(τ)e
√−1x(τ,t;θ,ω)

)
χ̂(τ)dτ
]
×(

Kc + εχ̂(s)
4π

) (
η(s)e−

√−1x(s,t;θ,ω) + η(s)e
√−1x(s,t;θ,ω)

)
ds. (7.13)

Once x(t, s; θ, ω) and η(t) are determined, this ρ̂t gives a weak solution of (7.9). The
existence of solutions of (7.11) follows from that of the integro-ODE (7.12) and (7.13),
which will be proved by the standard iteration method (see also Prop.7.3).

In Sec.5, we have proved that a solution of (3.2),(3.3) is included in V1,0,∞. This
property may break down because of the perturbation χ̂. Thus we define an appropriate
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phase space for (7.11) and prove the existence of the flow on it. Fix a finite number p > 0
and let V1,0,p be a set defined by Eq.(5.38). V = Vp is defined by

V =
⋃
C≥1

VC,0,p = {φ ∈ Exp+ ; |φ(z)| < ∞, when 0 ≤ Im(z) ≤ 2p}.

Recall that i(V) ⊂ i(W3,0). Define a subspace F of the product space
∏∞

j=1 Exp+ as fol-
lows. (Z1,Z2, · · · ) ∈ F if and only if

(F1) there exists a signed measure ĥ(θ, ω) on S 1 parameterized by ω ∈ R such that∫ 2π

0
ĥ(θ, ω)dθ = 0, Zj(ω) =

∫ 2π

0
e
√−1 jθĥ(θ, ω)dθ. (7.14)

(F2) Define Z−1,Z−2, · · · by Eq.(7.14). Then, there exist positive constants C1,C2 and γ
such that

sup
ω∈R
|Zj(ω)| ≤ C1, sup

0≤Im(ω)≤p
|Zj(ω)| ≤ C2e| j|γ (7.15)

for all j = ±1,±2, · · · In particular, Zj ∈ V = Vp.

Hence, F is a vector space of Fourier coefficients {Zj}∞j=1 of signed measures included in∏∞
j=1 V whose growth rate in j is not so fast. From a physical viewpoint, we are interested

in an initial condition of the form ĥ(θ, ω) = h(θ) (see Eq.(2.1)), which satisfies (F2).

The existence of solutions of Eq.(7.11) will be prove in Sec.7.3 after χ̂ is specified. In
this section, we show that if solutions exist, they are included in F .

Proposition 7.2. For a given function χ̂ : [0,∞) → [0, 1] and an initial condition in F ,
suppose that a solution of (7.11) exists and a function x(t, s; θ, ω) has an analytic continu-
ation with respect to θ and ω (these facts will be verified in Sec.7.3). Then,
(i) the solution is included in F for any t ≥ 0.
(ii) for each t ≥ 0, β = 0, 1, · · · and n = 1, 2, · · · , ||Zj(t, ·)||∗β,n is bounded uniformly in
j ∈ Z.

Proof. Note that when ω ∈ R, Ẑ j(t, ω) is bounded uniformly in j ∈ Z; |Ẑ j(t, ω)| ≤∫ 2π

0
|ρ̂t(θ, ω)|dθ, which verifies the first equality of (7.15). This also shows Part (ii); ||Zj(t, ·)||∗β,n

is bounded uniformly in j ∈ Z.
To show that Ẑ j(t, · ) ∈ V if Ẑ j(0, · ) ∈ V , we use the equality∫ 2π

0
a(θ, ω)ρ̂t(θ, ω)dθ =

∫ 2π

0
a(x(t, 0; θ, ω), ω)ĥ(θ, ω)dθ

+

∫ 2π

0

∫ t

0
a(x(t, 0; θ, ω), ω) exp

[
−K

2

∫ s

0

(
η(τ)e−

√−1x(τ,0;θ,ω) + η(τ)e
√−1x(τ,0;θ,ω)

)
χ̂(τ)dτ
]
×(

Kc + εχ̂(s)
4π

) (
η(s)e−

√−1x(s,0;θ,ω) + η(s)e
√−1x(s,0;θ,ω)

)
dsdθ, (7.16)

for any measurable function a(θ, ω), which is proved by substitution of (7.13). Note that
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if χ̂(t) ≡ 1, it is reduced to Eq.(2.5). From this, it turns out that Ẑ j is expressed as

Ẑ j(t, ω) =
∫ 2π

0
e
√−1 jx(t,0;θ,ω)ĥ(θ, ω)dθ

+

∫ 2π

0

∫ t

0
e
√−1 jx(t,0;θ,ω) exp

[
−K

2

∫ s

0

(
η(τ)e−

√−1x(τ,0;θ,ω) + η(τ)e
√−1x(τ,0;θ,ω)

)
χ̂(τ)dτ
]
×(

Kc + εχ̂(s)
4π

) (
η(s)e−

√−1x(s,0;θ,ω) + η(s)e
√−1x(s,0;θ,ω)

)
dsdθ. (7.17)

At first, let us show that e±
√−1x(t,0;θ,ω) ∈ V . This is proved in the same way as Thm.5.10

(iii). Put X(t) = e
√−1x(t,0;θ,ω). Then X satisfies the equation

dX
dt
=
√−1ωX +

K
2

(
η(t) − η(t)X2

)
χ̂(t),

X(0) = e
√−1θ.

(7.18)

Putting X = ξe
√−1p, η = ζe

√−1q with ξ, ζ, p, q ∈ R yields

dξ
dt
= −Im(ω)ξ +

K
2
ζ(1 − ξ2) cos(p − q)χ̂(t). (7.19)

This equation implies that if Im(ω) ≥ 0 and ξ = 1, then dξ/dt ≤ 0. Since |X(0)| = 1, we
obtain |X(t)| ≤ 1 for any t ≥ 0 and any Im(ω) ≥ 0. This proves that X(t) is bounded on the
real axis and the upper half plane: X(t) = e

√−1x(t,0;θ,ω) ∈ V1,0 ⊂ V .
Next thing to do is to investigate Y(t) = e−

√−1x(t,0;θ,ω), which satisfies
dY
dt
= −√−1ωY − K

2

(
η(t)Y2 − η(t)

)
χ̂(t),

Y(0) = e−
√−1θ.

(7.20)

Putting Y = ξe
√−1p, η = ζe

√−1q with ξ, ζ, p, q ∈ R yields
dξ
dt
= Im(ω)ξ +

K
2
ζ(1 − ξ2) cos(p + q)χ̂(t),

dp
dt
= −Re(ω) − K

2
ζ(ξ +

1
ξ

) sin(p + q)χ̂(t).
(7.21)

When |Re(ω)| is sufficiently large, the averaging method is applicable to construct an
approximate solution. Eq.(7.21) is averaged with respect to p to provide the averaging
equation dξ/dt = Im(ω)ξ, which is solved as ξ(t) = eIm(ω)tξ(0). Therefore, a solution of
Eq.(7.21) is given as

ξ(t) = eIm(ω)t + O
( 1
|Re(ω)|

)
, (7.22)

as |Re(ω)| → ∞. See Sanders and Verhulst [40] for the averaging method. This implies
that Y is in Exp+ for each t and is bounded as Re(ω) → ±∞ for each 0 ≤ Im(ω) ≤ p and
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t. Thus e−
√−1x(t,0;θ,ω) ∈ V . Therefore, the second term in the right hand side of Eq.(7.17)

is in V; the second term is bounded as Re(ω)→ ±∞ for each j, t and 0 ≤ Im(ω) ≤ p.
Next, we show that the first term in the right hand side of Eq.(7.17) is in V . Let

e
√−1 jx(t,0;θ,ω) =

∞∑
n=−∞

ajn(t, ω)e
√−1nθ (7.23)

be a Fourier expansion of e
√−1 jx(t,0;θ,ω). Then,∫ 2π

0
e
√−1 jx(t,0;θ,ω)ĥ(θ, ω)dθ =

∞∑
n=−∞

ajn(t, ω)
∫ 2π

0
e
√−1nθĥ(θ, ω)dθ

=

∞∑
n=−∞

ajn(t, ω)Ẑn(0, ω). (7.24)

Since the series (7.23) converges uniformly in θ, the right hand side of (7.24) exists for
each ω. Since e

√−1 jx(t,0;θ,ω) is holomorphic in ω, so is ajn(t, ω). By the assumption (F2),
Ẑn(0, ω) is also holomorphic. Therefore, the right hand side of (7.24) converges to a
holomorphic function on the region 0 ≤ Im(ω) ≤ p. By the assumption (F2), there are
positive constants C and γ such that

sup
0≤Im(ω)≤p

|Ẑn(0, ω)| ≤ Ce|n|γ. (7.25)

This provides the inequality

sup
0≤Im(ω)≤p

∣∣∣∣ ∞∑
n=−∞

ajn(t, ω)Ẑn(0, ω)
∣∣∣∣ ≤ sup

0≤Im(ω)≤p
C

∞∑
n=−∞

e|n|γ|ajn(t, ω)|. (7.26)

Let us prove that the right hand side exists. Eq.(7.12) shows that x(t, 0; θ + 2π, ω) =
x(t, 0; θ, ω)+2π. With this property, we use Cauchy’s theorem to the function e

√−1 jx(t,0;θ,ω)

along the path represented in Fig.7(a) to yield

ajn(t, ω) =
1

2π

∫
C1

e−
√−1nθe

√−1 jx(t,0;θ,ω)dθ

= − 1
2π

∫
C2

e−
√−1nθe

√−1 jx(t,0;θ,ω)dθ

=
e−nr

2π

∫ 2π

0
e−
√−1nθe

√−1 jx(t,0;θ−√−1r,ω)dθ, (7.27)

for n = 0, 1, 2, · · · and j = ±1,±2, · · · , where r > 0 can be taken arbitrarily large be-
cause e

√−1 jx(t,0;θ,ω) is analytic in θ ∈ C. By the same way as above, we can show that
e
√−1 jx(t,0;θ−√−1r,ω) is estimated as

|e
√−1 jx(t,0;θ−√−1r,ω)| = e(−Im(ω)t+r) j + O

( 1
|Re(ω)|

)
,
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as |Re(ω)| → ∞ for each t and Im(ω). This provides

|ajn(t, ω)| ≤ e−nr

(
e(−Im(ω)t+r) j + O

( 1
|Re(ω)|

))
,

for n = 0, 1, 2, · · · . When n < 0, we take a path represented as Fig.7(b), which yields

|ajn(t, ω)| ≤ enr

(
e(−Im(ω)t−r) j + O

( 1
|Re(ω)|

))
as |Re(ω)| → ∞ in the same way. Therefore, we obtain

sup
0≤Im(ω)≤p

∣∣∣∣ ∞∑
n=−∞

ajn(t, ω)Ẑn(0, ω)
∣∣∣∣

≤ sup
0≤Im(ω)≤p

C
∞∑

n=1

e|n|(γ−r)

(
e(−Im(ω)t+r) j + e(−Im(ω)t−r) j + O

( 1
|Re(ω)|

))
.

By taking r > γ, it turns out that the right hand side of Eq.(7.26) exists and bounded as
Re(ω) → ±∞ for each j, t and 0 ≤ Im(ω) ≤ p. This proves that Ẑ j(t, ω) is bounded as
Re(ω)→ ±∞ and Ẑ j(t, ω) ∈ V for each j and t.

To verify the second equality of (7.15), put

A(s, θ) = exp
[
−K

2

∫ s

0

(
η(τ)e−

√−1x(τ,0;θ,ω) + η(τ)e
√−1x(τ,0;θ,ω)

)
χ̂(τ)dτ
]
×(

Kc + εχ̂(s)
4π

) (
η(s)e−

√−1x(s,0;θ,ω) + η(s)e
√−1x(s,0;θ,ω)

)
.

Then, Ẑ j is rewritten as

Ẑ j(t, ω) =
∞∑

n=−∞
ajn(t, ω)Ẑn(0, ω) +

∫ t

0

∫ 2π

0
e
√−1 jx(t,0;θ,ω)A(s, θ)dθds. (7.28)

From the above calculation, we obtain

sup
0≤Im(ω)≤p

|Ẑ j(t, ω)| ≤ sup
0≤Im(ω)≤p

sup
0≤θ≤2π

C
∞∑

n=0

e|n|(γ−r)
(
|e
√−1x(t,0;θ−√−1r,ω)| j + |e

√−1x(t,0;θ+
√−1r,ω)| j

)
+ sup

0≤Im(ω)≤p
sup

0≤θ≤2π
2π
∫ t

0
|A(s, θ)|ds · |e

√−1x(t,0;θ,ω)| j,

which proves that Ẑ j(t, ω) satisfies (7.15) for some C and γ because e
√−1x(t,0;θ,ω) is bounded

on the region 0 ≤ Im(ω) ≤ p.
Finally, let us verify (F1). Note that Eq.(7.12) provides

∂x
∂θ

(s, 0; θ, ω) = exp
[
−K

2

∫ s

0

(
η(τ)e−

√−1x(τ,0;θ,ω) + η(τ)e
√−1x(τ,0;θ,ω)

)
χ̂(τ)dτ
]
.
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Fig. 7: The contour for obtaining Eq.(7.27).

This shows that the second term in the right hand side of Eq.(7.16) is rewritten as∫ t

0

Kc + εχ̂(s)
4π

∫ 2π

0
a(x(t, 0; θ, ω), ω)

√−1
∂

∂θ

(
η(s)e−

√−1x(s,0;θ,ω) − η(s)e
√−1x(s,0;θ,ω)

)
dθds.

In particular, when a(θ, ω) ≡ 1, this value vanishes because x(s, 0; θ, ω) is periodic in θ.
This fact and Eq.(7.16) yield∫ 2π

0
ρ̂t(θ, ω)dθ =

∫ 2π

0
ĥ(θ, ω)dθ. (7.29)

Therefore, if an initial condition satisfies (F1), so is ρ̂t(θ, ω) for any t ≥ 0. Now the proof
of Prop.7.2 (i) is completed. �

7.3 Localization of the semiflow

By using the canonical inclusion, we rewrite Eq.(7.11) as an evolution equation on R ×∏∞
k=1 Exp′− of the form

d
dt
ε = 0,

d
dt

Z1 = T×10Z1 +
1
2

(
ε〈Z1 | P0〉P0 − K〈Z1 | P0〉Z2

)
χ̂(t),

d
dt

Z j = T×j Z j +
jK
2

(
〈Z1 | P0〉Zj−1 − 〈Z1 | P0〉Zj+1

)
χ̂(t), j = 2, 3, · · · ,

(7.30)

where Zj = i(Ẑ j) ∈ Exp′−. The trivial equation dε/dt = 0 is added to regard ε = K − Kc as
a dependent variable. The operator T10 is defined by (6.3), in which K is replaced by Kc.
Note that T10 has a resonance pole λ0 = 0.
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In what follows, we denote an element of the space R×∏∞k=1 Exp′− by z = (z0, z1, z2, · · · ),
where z0 ∈ R and (z1, z2, · · · ) ∈ ∏∞k=1 Exp′−. We also denote it as z = (zk)∞k=1. A metric
on this space is defined as follows: Exp+(β, n) is a Banach space with the norm || · ||β,n
as before. The dual space Exp−(β, n)′ of Exp−(β, n) is a Banach space with the norm
||ξ||∗β,n = sup||φ||β,n=1 |〈ξ | φ∗〉|. The projective limit Exp−(β)′ = lim←−−Exp−(β, n)′ is a com-
plete metric space with the metric dβ defined by Eq.(5.36). Next, for the projective limit
Exp′− = lim←−−Exp−(β)′ we introduce the metric by

d(ξ, ζ) =
∞∑
β=0

1
P(β)

dβ(ξ, ζ)

1 + dβ(ξ, ζ)
, (7.31)

where {P(β)}∞β=0 is a certain sequence of positive numbers such that
∑∞
β=0 1/P(β) con-

verges. This defines the same projective topology as that induced by the metric (5.37).
The constants P(β) will be determined in Sec.7.4 so that d(ξ, 0) plays a similar role to a
norm. Define d∞ to be

d∞(z, z′) = sup
k≥0

d(zk, z
′
k), z = (z0, z1, · · · ) ∈ R ×

∞∏
k=1

Exp′−, (7.32)

where d(zk, z′k) for k ≥ 1 is the distance on Exp′− defined as above, and d(z0, z′0) = |z0 − z′0|
for z0, z′0 ∈ R. LetG be a subspace of R×∏∞k=1 Exp′− consisting of elements z = (z0, z1, · · · )
such that supk≥0 d(zk, 0) is finite. With this metric d∞, G is a complete metric vector space.
Metric vector spaces and definitions of the metrics used in this section are listed in Table
2.

By the definition, it is easy to verify that

d∞(z,±z′) = d∞(z ∓ z′, 0) ≤ d∞(z, 0) + d∞(z′, 0). (7.33)

A sequence {z(m) = (z(m)
k )∞k=0}∞m=1 in G converges to x = (xk)∞k=0 if and only if z(m)

0 → x0 on
R and ||z(m)

k − xk||∗β,n → 0 uniformly in k ≥ 1 for every β ≥ 0 and n ≥ 1. On the other hand,
since a weakly convergent series in Exp′− also converges with respect to the metric d, a
sequence {z(m) = (z(m)

k )∞k=0}∞m=1 in G converges to x = (xk)∞k=0 if and only if z(m)
0 → x0 on R

and 〈z(m)
k | φ∗〉 → 〈xk | φ∗〉 uniformly in k ≥ 1 for every φ ∈ Exp+.

Let i(F ) be the subspace of
∏∞

k=1 Exp′− consisting of elements of the form

(i(Z1), i(Z2), · · · ), where (Z1,Z2, · · · ) ∈ F .
Due to Eq.(7.15), R × i(F ) ⊂ G. Thus with the distance d∞, R × i(F ) is a metric vector
subspace of G, and the closure R × i(F ) is a complete metric vector space.

Now we specify the function χ̂(t). Let Ec = span{µ0} be the generalized center sub-
space of T10. Put

ˆ̂Ec = R × Ec × {0} × {0} × · · · ⊂ R ×
∞∏

k=1

Exp′−. (7.34)
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Exp+(β, n) Banach space: ||φ||β,n = sup
Im(z)≥−1/n

|φ(z)|e−β|z|

Exp−(β, n)′ Banach space: ||ξ||∗β,n = sup
||φ||β,n=1

|〈ξ | φ∗〉|

Exp−(β)′ = lim←−−Exp−(β, n)′ dβ(ξ, ζ) =
∞∑

n=1

1
2n

||ξ − ζ ||∗β,n
1 + ||ξ − ζ ||∗β,n

Exp′− = lim←−−Exp−(β)′ d(ξ, ζ) =
∞∑
β=0

1
P(β)

dβ(ξ, ζ)

1 + dβ(ξ, ζ)

G ⊂ R ×
∞∏

k=1

Exp′− d∞(z, z′) = sup
k≥0

d(zk, z
′
k)

F , i(F ) F is a subspace of
∏∞

k=1 Exp+ satisfying (F1), (F2);
i(F ) is its inclusion into

∏∞
k=1 Exp′−. R × i(F ) ⊂ G.

X(−m) (= R × i(F )) Dm(z, z′) = κmd∞(z, z′)

X ⊂
∞∏

m=0

X(−m) D(u, v) = sup
m≥0

Dm(u(−m), v(−m)),

u = (u(0), u(−1), · · · ) ∈∏∞m=0 X(−m), u(−m) = (u(−m)
k )∞k=0 ∈ X(−m)

Table 2: Metric vector spaces used in Section 7. Definitions of the spaces X(−m), X and the
constant κ will be given in Section 7.4.

Let Pc : R ×∏∞k=1 Exp′− → ˆ̂Ec be the projection to ˆ̂Ec defined by

Pc = (idR, Πc, 0, 0, · · · ), (7.35)

(idR is the identity on R) and Ps = id−Pc the projection to the complement of ˆ̂Ec. Because

of Lemma 5.11 and Prop.5.13, Pc and Ps are continuous on R × i(F ) and ˆ̂Ec is included
in the closure R × i(F ). Let χ(t) be a C∞ function such that χ(t) ≡ 1 when 0 ≤ t ≤ 1,
0 ≤ χ(t) ≤ 1 when 1 ≤ t ≤ 2, and χ(t) ≡ 0 when t ≥ 2. Taking a small positive constant
δ1, we replace χ̂(t) in (7.30) by

χ̂(t) := χ

( ||Pcz||Ec

δ1

)
· χ(|η(t)|), (7.36)

where

z(t) = (ε, Z1(t, ·),Z2(t, ·), · · · ) ∈ R ×
∞∏

k=1

Exp′−, (7.37)

and || · ||Ec is a norm on ˆ̂Ec defined as follows: An element y ∈ ˆ̂Ec is denoted by y =
(y0, y1, 0, · · · ) with y1 = αµ0. Then, ||y||Ec is defined to be

||y||Ec = (|y0|2 + |α|2)1/2. (7.38)
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Thm.5.12 shows that ΠcZ1 is given as

ΠcZ1 = αµ0, α =
Kc

2D0
〈µ0 |Z∗1〉 (7.39)

With this α, ||Pcz||Ec is given by

||Pcz||Ec = (ε2 + |α|2)1/2, (7.40)

for z = (ε, Z1, · · · ) ∈ R× i(F ). Since ˆ̂Ec is a finite dimensional vector space, the topology

on ˆ̂Ec induced by || · ||Ec is equivalent to that induced by the metric d∞. With this χ̂(t), we
can prove the existence of solutions of Eq.(7.30).

Proposition 7.3. Eq.(7.30) with χ̂(t) given by (7.36) generates a C1 semiflow ϕ̃t on R ×
i(F ). That is, for a given initial condition z ∈ R × i(F ), Eq.(7.30) has a unique solution
denoted by ϕ̃t(z), which is C1 in z, on R × i(F ) for any t ≥ 0.

Proof. For a given initial condition (Ẑ1(0, · ), · · · ) ∈ F , there exists a signed measure
ĥ(θ, ω) satisfying (7.14). Such a ĥ is uniquely determined because there is a one to one
correspondence between a measure on S 1 and its Fourier coefficients (see Shohat and
Tamarkin [41]). Thus the existence of a solution of Eq.(7.11) follows from the existence
of a solution of Eq.(7.9) with the initial condition ρ̂0 = ĥ(θ, ω). Recall that Eq.(7.9) is
rewritten as the integro-ODE (7.12) and (7.13). A proof of the existence of solutions of
(7.12), (7.13) for any t ≥ 0 is done by the standard iteration method and omitted here (see
[11] for the proof for the case χ̂ ≡ 1). We can also prove that x(t, s; θ, ω) is analytic in θ
and ω by the standard method. Once a solution ρ̂t of (7.9) is obtained, a solution of (7.11)
is given through (7.10). Then, Prop.7.2 is applied to show that solutions of Eq.(7.11)
are included in F . Note that when χ̂ is given as (7.36), (7.11) becomes an autonomous
system. Therefore, solutions define a semiflow on F . This implies that the dual Eq.(7.30)
generates a semiflow ϕ̃t on R × i(F ). The proof of smoothness of ϕ̃t is also proved by the
iteration method. �

The semiflow is also denoted componentwise as

ϕ̃t(z) = (z0, ϕ̃
1
t (z), ϕ̃2

t (z), · · · ), z = (z0, z1, · · · ). (7.41)

By virtue of the variation-of-constant formula (see Eq.(5.21)), ϕ̃ j
t proves to be of the form

ϕ̃
j
t (z0, z1, · · · ) = (eT jt)×z j + g̃ j

t (z0, z1, · · · ), j = 1, 2, · · · , (7.42)

where g̃ j
t are nonlinear terms. Now we introduce another localization factor. Let δ2 > 0

be a sufficiently small positive number. By using a function χ(t) above, we multiply
the function χ(d∞(Psz, 0)/δ2) to the nonlinearity g̃ j

t , and define a perturbed map ϕt =

(z0, ϕ
1
t , ϕ

2
t , · · · ) to be

ϕ
j
t (z0, z1, · · · ) = (eT jt)×z j + g̃ j

t (z0, z1, · · · ) · χ
(d∞(Psz, 0)

δ2

)
, (7.43)
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for j = 1, 2, · · · . Put

gj
t (z0, z1, · · · ) = g̃ j

t (z0, z1, · · · ) · χ
(d∞(Psz, 0)

δ2

)
.

Fix a positive number τ > 0, and put

L = (idR, (e
T10τ)×, (eT2τ)×, · · · ), g = (0, g1

τ, g
2
τ, · · · ).

Then, the time τ map ϕτ of ϕt is denoted as

ϕτ : R × i(F )→ R × i(F ), ϕτ(z) = Lz + g(z). (7.44)

This is the desired localization of the semiflow of the original system (6.2). By Prop.7.3,
g̃ j

t is a C1 mapping on R × i(F ). Since d∞(·, 0) and Ps are continuous on R × i(F ),
g : R×i(F )→ R×i(F ) is also continuous on R×i(F ). Hence, the map ϕτ is continuously
extended to the map on the closure R × i(F ). Unfortunately, the distance d∞(z, 0) is not
C1 in z. However, on the region such that d∞(Psz, 0) ≤ δ2 or d∞(Psz, 0) ≥ 2δ2, g is a C1

mapping because χ(d∞(Psz, 0)/δ2) becomes a constant. It is easy to see that g(z) ∼ O(z2)
as z→ 0 because the nonlinearity of Eq.(7.30) is of O(z2).

When ||Pcz||Ec ≤ δ1, |η(t)| ≤ 1 and d∞(Psz, 0) ≤ δ2, then χ
(||Pcz||Ec/δ1

)
= 1, χ(|η(t)|) =

1 and χ(d∞(Psz, 0)/δ2) = 1. Thus Eq.(7.44) coincides with the time τ map of the semiflow
of the original system (6.2). When ||Pcz||Ec ≥ 2δ1 or d∞(Psz, 0) ≥ 2δ2, then χ

(||Pcz||Ec/δ1
)

·χ(d∞(Psz, 0)/δ2) = 0. In this case, g = 0 and Eq.(7.44) is reduced to the linear map.
Therefore, by taking δ1 and δ2 sufficiently small, the Lipschitz constant of g

Lip(g) := sup
z,z′∈R×i(F )

d∞(g(z), g(z′))
d∞(z, z′)

(7.45)

can be assumed to be sufficiently small.

Remark. We introduced the factors for localization in two steps. The one χ
(||Pcz||Ec/δ1

)
is multiplied to the nonlinearity of the equation (7.30), and the other χ(d∞(Psz, 0)/δ2) is
multiplied to the nonlinearity of the semiflow (7.42). The reason is that if we multiply
both of them to the equation (7.30), then the proof of the existence of solutions for (7.30)
becomes too difficult; χ

(||Pcz||Ec/δ1
)

is essentially a finite dimensional perturbation, al-
though χ(d∞(Psz, 0)/δ2) includes infinite dimensional terms Psz. On the other hand, if
we multiply both of them to the nonlinearity of the semiflow of the original system (6.2),
then a center manifold of the resultant perturbed mapping does not coincide with a center
manifold of the original system (6.2) because the perturbed mapping is not a semiflow for
any differential equations in general (i.e. the property ϕt+s = ϕt ◦ϕs is violated because of
the perturbation for the semiflow), see Krisztin [25] for details. However, if we introduce
these factors in two steps as above, a local center manifold of the original system is cor-
rectly obtained as follows: In Sec.7.4, we will prove the existence of a center manifold
for the map (7.44). We will show that if δ1 is sufficiently small, the center manifold is
included in the “strip” d∞(Psz, 0) < δ2. Since the map (7.44) is the same as (7.42), which
is a semiflow of the system (7.30), when d∞(Psz, 0) < δ2, the obtained center manifold is a
center manifold of the system (7.30). When ||Pcz||Ec < δ1, (7.30) is reduced to the original
system (6.2). Therefore, a local center manifold of (6.2) is obtained as a restriction of the
center manifold of (7.30) to the region ||Pcz||Ec < δ1, see Fig.8.
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Fig. 8: A center manifold (the black curve) for the map (7.44) coincides with that of the
semiflow (7.42). The center manifold of the semiflow (7.42) coincides with that of the
original system (6.2) in the region ||Pcz||Ec < δ1.

7.4 Proof of the center manifold theorem

Let us prove that the mapping ϕτ defined in Eq.(7.44) has a center manifold, which gives
a local center manifold for the original system (6.2). The strategy of the proof is the same
as that in Chen, Hale and Bin [9], in which the existence of center manifolds is proved for
mappings on Banach spaces. At first, we need the next lemma to treat the metric d∞ as a
norm.

Lemma 7.4. For u = (u0, u1, · · · ) ∈ R× i(F ), suppose that there exists a positive constant
δ3 such that ||uj||∗0,1 ≤ δ3 for j = 1, 2, · · · . If constants {P(β)}∞β=0 are sufficiently large, there
exist positive constants Ac and As = As(δ3) such that the inequalities

d∞(LmPcu , 0) ≤ Acd∞(u, 0), m = 0,±1,±2, · · · , (7.46)

and
d∞(LmPsu , 0) ≤ Ase

−amτd∞(u, 0), m = 0, 1, 2, · · · , (7.47)

hold, where a > 0 is the constant appeared in Prop.5.15.

Note that since Pc is a projection to the finite dimensional vector space ˆ̂Ec, the linear

operator L restricted to ˆ̂Ec has the inverse L−1 on ˆ̂Ec and L−mPc is well-defined.

Proof. For u = (u0, u1, · · · ) ∈ R × i(F ), LmPcu is given by

LmPcu = (u0 , (eT10mτ)×Πcu1 , 0 , 0 , · · · ).
Since u1 ∈ i(V) ⊂ i(W3,0), Eq.(5.53) is applied to yield

dβ((e
T10mτ)×Πcu1 , 0) =

∞∑
n=1

1
2n

||(eT10mτ)×Πcu1||∗β,n
1 + ||(eT10mτ)×Πcu1||∗β,n

≤
∞∑

n=1

1
2n

Lβ||u1||∗β,n
1 + Lβ||u1||∗β,n

,
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where Lβ = L3,0,β is independent of m due to (eT1t)×µ0 = µ0. We can assume without loss
of generality that Lβ ≥ 1. Then,

dβ((e
T10mτ)×Πcu1 , 0) ≤ Lβ

∞∑
n=1

1
2n

||u1||∗β,n
1 + ||u1||∗β,n

= Lβdβ(u1, 0).

Eq.(5.42) provides

d0(u1, 0) =
∞∑

n=1

1
2n

||u1||∗0,n
1 + ||u1||∗0,n

≤
∞∑

n=1

1
2n

||u1||∗β,n
1 + ||u1||∗β,n

= dβ(u1, 0),

and

dβ(u1, 0) =
∞∑

n=1

1
2n

||u1||∗β,n
1 + ||u1||∗β,n

≤
∞∑

n=1

1
2n

Q(β)||u1||∗0,n
1 + ||u1||∗0,n

= Q(β)d0(u1, 0).

By using them, d((eT10mτ)×Πcu1 , 0) is calculated as

d((eT10mτ)×Πcu1 , 0) =
∞∑
β=0

1
P(β)

dβ((eT10mτ)×Πcu1 , 0)

1 + dβ((eT10mτ)×Πcu1 , 0)

≤
∞∑
β=0

1
P(β)

Lβdβ(u1, 0)

1 + Lβdβ(u1, 0)

≤
∞∑
β=0

LβQ(β)

P(β)
d0(u1, 0)

1 + d0(u1, 0)
,

where we choose a sequence {P(β)}∞β=0 so that
∑∞
β=0 LβQ(β)/P(β) converges. Then,

d((eT10mτ)×Πcu1 , 0) ≤
∞∑
β=0

LβQ(β)

P(β)
·
( ∞∑
β=0

1
P(β)

)−1 ·
∞∑
β=0

1
P(β)

d0(u1, 0)
1 + d0(u1, 0)

≤
∞∑
β=0

LβQ(β)

P(β)
·
( ∞∑
β=0

1
P(β)

)−1 ·
∞∑
β=0

1
P(β)

dβ(u1, 0)

1 + dβ(u1, 0)

= Acd(u1, 0), Ac :=
∞∑
β=0

LβQ(β)

P(β)
·
( ∞∑
β=0

1
P(β)

)−1
. (7.48)

Thus we obtain

d∞(LmPcu, 0) ≤ sup{u0, Acd(u1, 0)} ≤ sup{Acu0, Acd(u1, 0)} = Acd∞(u, 0),

where we suppose that Ac ≥ 1. Note that we did not use the condition ||uj||∗0,1 ≤ δ3 for
Eq.(7.46).

Next, LmPsu is given by

LmPsu = (0, (eT10mτ)×Πsu1 , (eT2mτ)×u2 , · · · ).
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Eq.(5.54) is used to yield

dβ((e
T10mτ)×Πsu1, 0) =

∞∑
n=1

1
2n

||(eT10mτ)×Πsu1||∗β,n
1 + ||(eT10mτ)×Πsu1||∗β,n

≤
∞∑

n=1

1
2n

Mβe−amτ||u1||∗β,n
1 + Mβe−amτ||u1||∗β,n

≤ Mβe
−amτ

∞∑
n=1

1
2n

||u1||∗β,n
1 + e−amτ||u1||∗β,n

,

where Mβ := M3,0,β is assumed to be larger than 1. Note that the condition ||uj||∗0,1 ≤ δ3

yields ||uj||∗β,n ≤ Q(β)δ3. When ||uj||∗β,n ≤ Q(β)δ3, putting A′β(δ3) = (1 + Q(β)δ3) provides

1
1 + e−amτ||u1||∗β,n

≤ A′β(δ3)
1

1 + ||u1||∗β,n
,

uniformly in m = 0, 1, · · · . Therefore, we obtain

dβ((e
T10mτ)×Πsu1, 0) ≤ A′β(δ3)Mβe

−amτdβ(u1, 0).

By the same way as in Eq.(7.48), we can verify that there exists a constant As(δ3) > 0
such that

d((eT10mτ)×Πsu1, 0) ≤ As(δ3)e−amτd(u1, 0).

In this calculation, constants P(β) are chosen sufficiently large as before. Similarly,
Eq.(5.55) shows that

d((eT jmτ)×uj, 0) ≤ As(δ3)e−amτd(uj, 0),

holds for every j = 2, 3, · · · . Note that the constant As can be taken so that it is independent
of j because the constant NC,α,β in Eq.(5.55) is independent of j. Thus d∞(LmPsu, 0)
satisfies Eq.(7.47). �

If ||Pcu||Ec ≥ 2δ1 or d∞(Psu, 0) ≥ 2δ2, then g(u) = 0. Thus there exists D = D(δ1, δ2)
such that the j-th component of g satisfies d(g(u) j, 0) ≤ D for every j = 1, 2, · · · . This
shows that there exists δ3 = δ3(δ1, δ2) such that ||g(u) j||∗0,1 ≤ δ3 for all j. In what follows,
we fix δ3 in Lemma 7.4 so that g satisfies ||g(u) j||∗0,1 ≤ δ3 for all j. Then, Eq.(7.47) is

applicable to g(u). Note that Eq.(7.46) holds for any R × i(F ) without the assumption.

Lemma 7.5. For a sequence {u(−m) = (u(−m)
0 , u(−m)

1 , · · · )}∞m=0 ⊂ R × i(F ), suppose that

LqPsu
(−q) → 0 (7.49)

as q→ ∞, and that there exist constants C > 0 and a sufficiently small b > 0 such that

d∞(u(−m), 0) ≤ Cebmτ (7.50)

holds for every m = 0, 1, · · · . Then, {u(−m)}∞m=0 satisfies

u(−m) = ϕτ(u
(−m−1)) = Lu(−m−1) + g(u(−m−1)), m = 0, 1, 2, · · · , (7.51)
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if and only if it satisfies the equation

u(−m) = L−mPcu0−
m∑

k=1

Lk−m−1Pcg(u(−k))+
∞∑

k=m+1

Lk−m−1Psg(u(−k)), m = 0, 1, 2, · · · . (7.52)

Eq.(7.51) means that {u(−m)}∞m=0 = (u(0), u(−1), · · · ) is a negative semi-orbit of the mapping
ϕτ. Eq.(7.52) is called the Lyapunov-Perron equation [9].

Proof. Suppose that {u(−m)} satisfies Eq.(7.51). By iterating Eq.(7.51), we obtain

u(0) = Pcu
(0) + Psu

(0)

= Pcu
(0) + LPsu

(−1) + Psg(u(−1))

= Pcu
(0) + L2Psu

(−2) + LPsg(u(−2)) + Psg(u(−1))
...

= Pcu
(0) + LqPsu

(−q) +

q∑
k=1

Lk−1Psg(u(−k)), q = 0, 1, 2, · · · .

In a similar manner, we obtain

u(−m) = L−mPcu0 −
m∑

k=1

Lk−m−1Pcg(u(−k)) + Lq−mPsu
(−q) +

q∑
k=m+1

Lk−m−1Psg(u(−k)), (7.53)

for q = m,m + 1, · · · and m = 0, 1, 2, · · · . By the assumption, Lq−mPsu(−q) → 0 as q → 0.
Next thing to do is to show that

∑q
k=m+1 Lk−m−1Psg(u(−k)) converges as q → ∞. Eq.(7.47)

is applicable to g(u(−m)) to yield

d∞(Lk−m−1Psg(u(−k)), 0) ≤ Ase
−a(k−m−1)τd∞(g(u(−k)), 0)

≤ Lip(g)Ase
−a(k−m−1)τd∞(u(−k), 0)

≤ Lip(g)AsCe−(a−b)kτea(m+1)τ, (7.54)

which shows that Lk−m−1Psg(u(−k)) decays exponentially as k → ∞ when a > b. Thus
taking the limit q→ ∞ in Eq.(7.53) yields Eq.(7.52).

Conversely, suppose that {u(−m)} satisfies Eq.(7.52). Because of the assumption Eq.(7.50),
the series

∑∞
k=m+1 Lk−m−1Psg(u(−k)) exists. Replacing m by m+1 and using L for Eq.(7.52),

we obtain

Lu(−m−1) = L−mPcu
(0) −

m+1∑
k=1

Lk−m−1Pcg(u(−k)) +
∞∑

k=m+2

Lk−m−1Psg(u(−k)). (7.55)

Eq.(7.55) is put together with Eq.(7.52) to yield Eq.(7.51). �

Let X(−m) (m = 0, 1, · · · ) be copies of the space R× i(F ). Define a metric Dm on X(−m)

to be
Dm(z, z′) = e−bmτd∞(z, z′), z, z′ ∈ R × i(F ), (7.56)
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with a small positive constant b. Let X be a subspace of the product
∏∞

m=0 X(−m) consisting
of elements u = (u(0), u(−1), u(−2), · · · ) such that supm Dm(u(−m), 0) is finite. With the metric
defined by

D(u, v) = sup
m≥0

Dm(u(−m), v(−m)), (7.57)

X is a complete metric vector space (see Table 2). It is easy to verify the inequality

D(u,±u′) = D(u ∓ u′, 0) ≤ D(u, 0) + D(u′, 0). (7.58)

Motivated by Eq.(7.52), let us define the map J : X × ˆ̂Ec → X to be
J(u, y) = (J(0)(u, y), J(−1)(u, y), J(−2)(u, y), · · · ),
J(−m)(u, y) = L−my −

m∑
k=1

Lk−m−1Pcg(u(−k)) +
∞∑

k=m+1

Lk−m−1Psg(u(−k)). (7.59)

If the map J(· , y) has a fixed point u = q(y) = (q(0)(y), q(−1)(y), · · · ), q(y) is a solution of
the Lyapunov-Perron equation (7.52) with Pcu0 = y. If q(y) satisfies conditions (7.49) and
(7.50), Lemma 7.5 shows that q(y) is a negative semi-orbit (that is, it satisfies Eq.(7.51))

for each y ∈ ˆ̂Ec. We will see that this q(y) gives a desired center manifold. At first, let us
show that J is well-defined.

Lemma 7.6. J is a map from X × ˆ̂Ec into X.

Proof. Let us show that Dm(J(−m)(u, y), 0) is bounded uniformly in m = 0, 1, · · · . It
satisfies

Dm(J(−m)(u, y), 0) = e−bmτd∞(J(−m)(u, y), 0)

≤ e−bmτd∞(L−my, 0) + e−bmτ
m∑

k=1

d∞(Lk−m−1Pcg(u(−k)), 0) + e−bmτ
∞∑

k=m+1

d∞(Lk−m−1Psg(u(−k)), 0)

(7.60)

Eq.(7.46) shows that the first term e−bτmd∞(Lmy, 0) is bounded uniformly in m = 0, 1, · · · .
Similarly, we obtain

d∞(Lk−m−1Pcg(u(−k)), 0) ≤ Acd∞(g(u(−k)), 0) ≤ Lip(g)Acd∞(u(−k), 0).

Since u ∈ X, there is a constant C > 0 such that d∞(u(−k), 0) ≤ Cebkτ. Therefore,

e−bmτ
m∑

k=1

d∞(Lk−m−1Pcg(u(−k)), 0) ≤ Lip(g)AcCe−bmτ
m∑

k=1

ebkτ ≤ Lip(g)AcC
ebτ − ebτ(1−m)

ebτ − 1

is bounded uniformly in m = 0, 1, · · · . The last term in Eq.(7.60) obviously tends to zero
as m→ ∞. This proves that J(u, y) ∈ X. �

Proposition 7.7. If the constants δ1 and δ2 are sufficiently small, J is a contraction map

on X for each y ∈ ˆ̂Ec.
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Proof. For u, u′ ∈ X, we have

Dm(J(−m)(u, y), J(−m)(u′, y)) = e−bmτd∞(J(−m)(u, y) − J(−m)(u′, y), 0)

≤ e−bmτ
m∑

k=1

d∞(Lk−m−1Pc(g(u(−k)) − g(u′(−k))), 0) + e−bmτ
∞∑

k=m+1

d∞(Lk−m−1Ps(g(u(−k)) − g(u′(−k))), 0).

(7.61)

Eqs.(7.46) and (7.45) are used to yield

d∞(Lk−m−1Pc(g(u(−k)) − g(u′(−k))), 0) ≤ Lip(g)Acd∞(u(−k), u′(−k)).

Similarly, we obtain

d∞(Lk−m−1Ps(g(u(−k)) − g(u′(−k))), 0) ≤ Lip(g)Ase
−a(k−m−1)τd∞(u(−k), u′(−k)).

Therefore, we obtain

Dm(J(−m)(u, y), J(−m)(u′, y))

≤ e−bmτ
m∑

k=1

Lip(g)Acd∞(u(−k), u′(−k)) + e−bmτ
∞∑

k=m+1

Lip(g)Ase
−a(k−m−1)τd∞(u(−k), u′(−k))

≤ Lip(g)Ac

m∑
k=1

eb(k−m)τDk(u
(−k), u′(−k)) + Lip(g)As

∞∑
k=m+1

e−a(k−m−1)τeb(k−m)τDk(u
(−k), u′(−k))

≤ Lip(g)

Ac

m∑
k=1

eb(k−m)τ + As

∞∑
k=m+1

e−a(k−m−1)τeb(k−m)τ

 · D(u, u′).

This yields

D(J(u, y), J(u′, y)) = sup
m≥0

Dm(J(−m)(u, y), J(−m)(u′, y))

≤ Lip(g)

(
Ac

ebτ

ebτ − 1
+ As

ebτ

1 − e(b−a)τ

)
· D(u, u′).

We can take δ1 and δ2 sufficiently small so that Lip(g) becomes sufficiently small and

Lip(g)

(
Ac

ebτ

ebτ − 1
+ As

ebτ

1 − e(b−a)τ

)
< 1 (7.62)

holds. This implies that J( · , y) is a contraction map on X for each y ∈ ˆ̂Ec. �

Remark. The numbers a and b are the same as those in Thm.7.1. The reason we in-
troduced metrics Dm and D is that the center manifold is characterized by the “slow”
dynamics whose Lyapunov exponent is smaller than b, see Eq.(7.3). The above condi-
tion for Lip(g) shows that if we take b > 0 sufficiently small, Lip(g) (and thus δ1 and δ2)
should be small accordingly. Since the open set U in Thm.7.1, in which we can prove the
existence of the local center manifold, is determined by δ1 and δ2, U also becomes small
as a result.
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By the contraction principle, J( · , y) has a unique fixed point u = q(y) on X:
q(y) = (q(0)(y), q(−1)(y), q(−2)(y), · · · ), q(−m) : ˆ̂Ec → X(−m),

q(−m)(y) = L−my −
m∑

k=1

Lk−m−1Pcg(q(−k)(y)) +
∞∑

k=m+1

Lk−m−1Psg(q(−k)(y)).
(7.63)

In particular, q(0) defines a map from ˆ̂Ec into X(0) = R × i(F ) given by

q(0)(y) = y +
∞∑

k=1

Lk−1Psg(q(−k)(y)). (7.64)

Since q(y) ∈ X, there exists C > 0 such that Dm(q(−m)(y), 0) = e−bmτd∞(q(−m)(y), 0) ≤ C,
which verifies the condition (7.50). Further, Eq.(7.63) shows that

LmPsq
(−m)(y) =

∞∑
k=m+1

Lk−1Psg(q(−k)(y)).

Since this is a convergent series, LmPsq(−m)(y) → 0 as m → ∞, which verifies (7.49).
Therefore, Lemma 7.5 is applicable to conclude that {q(−m)(y)}∞m=0 is a negative semi-orbit
for each y.

Proposition 7.8. For any m = 0, 1, · · · ,
(i) q(−m)(0) = 0.

(ii) q(−m) : ˆ̂Ec → X(−m) is Lipschitz continuous.

(iii) if ||y||Ec ≥ 2δ1, then q(−m)(y) = L−my ∈ ˆ̂Ec.

(iv) q(−m) : ˆ̂Ec → X(−m) is a C1 mapping. In particular, q(0) : ˆ̂Ec → R × i(F ) is C1.

Proof. (i) Since g(0) = 0, q(−m)(0) = 0 satisfies Eq.(7.63).

(ii) For y, y′ ∈ ˆ̂Ec, we estimate Dm(q(−m)(y), q(−m)(y′)). By the same calculation as the proof
of Prop.7.7, we obtain

D(q(y), q(y′)) ≤ Ac

1 − Lip(g)

(
Ac

ebτ

ebτ − 1
+ As

ebτ

1 − e(b−a)τ

)d∞(y, y′). (7.65)

This means that q : ˆ̂Ec → X is Lipschitz continuous. In particular, we obtain

d∞(q(−m)(y), q(−m)(y′)) ≤ Acebmτ

1 − Lip(g)

(
Ac

ebτ

ebτ − 1
+ As

ebτ

1 − e(b−a)τ

)d∞(y, y′), (7.66)

which proves the proposition.
(iii) Put y = (y0, y1, 0, · · · ), and y1 = αµ0 ∈ Ec. Then, the assumption implies

||y||Ec = |y0|2 + |α|2 ≥ 2δ1.

67



On the other hand, L−my is given by L−my = (y0, (e−T10mτ)×y1, 0, · · · ), and

(e−T10mτ)×y1 = α(e−T10mτ)×µ0 = αµ0.

Hence, ||L−my||Ec = ||y||Ec ≥ 2δ1. By the construction of the nonlinearity g, g(L−my) = 0 if
||L−my||Ec ≥ 2δ1. Therefore, q(−m)(y) = L−my satisfies Eq.(7.63).

(iv) For y, y∗ ∈ ˆ̂Ec and κ ∈ R, put

q̃(−m)(y, y∗, κ) =
1
κ

(q(−m)(y + κy∗) − q(−m)(y)). (7.67)

Then, it satisfies the equation

q̃(−m)(y, y∗, κ) = L−my∗ − 1
κ

m∑
k=1

Lk−m−1Pc
(
g(q(−k)(y) + κq̃(−k)(y, y∗, κ)) − g(q(−k)(y))

)
+

1
κ

∞∑
k=m+1

Lk−m−1Ps
(
g(q(−k)(y) + κq̃(−k)(y, y∗, κ)) − g(q(−k)(y))

)
, (7.68)

for κ � 0. If q̃(−m)(y, y∗, 0) exists, it should satisfy

q̃(−m)(y, y∗, 0) = L−my∗ −
m∑

k=1

Lk−m−1Pc
dg
dx

(q(−k)(y))q̃(−k)(y, y∗, 0)

+

∞∑
k=m+1

Lk−m−1Ps
dg
dx

(q(−k)(y))q̃(−k)(y, y∗, 0). (7.69)

Motivated by these equations, we define a map J′ : X × ˆ̂Ec × ˆ̂Ec × R → X to be J′ =
(J′0, J

′
−1, J

′
−2, · · · ) and

J′−m(u, y, y∗, κ) =



L−my∗ − 1
κ

m∑
k=1

Lk−m−1Pc
(
g(q(−k)(y) + κu(−k)) − g(q(−k)(y))

)
+

1
κ

∞∑
k=m+1

Lk−m−1Ps
(
g(q(−k)(y) + κu(−k)) − g(q(−k)(y))

)
, κ � 0,

L−my∗ −
m∑

k=1

Lk−m−1Pc
dg
dx

(q(−k)(y))u(−k)

+

∞∑
k=m+1

Lk−m−1Ps
dg
dx

(q(−k)(y))u(−k), κ = 0.

(7.70)
We can prove that J′ is a contraction map on X for each y, y∗ and κ by the completely same
way as the proofs of Lemma 7.6 and Proposition 7.7. Hence, there uniquely exists u(−m) =

q̃(−m)(y, y∗, κ) satisfying Eq.(7.68) and Eq.(7.69). Taking the limit κ → 0 in Eq.(7.68)
yields

lim
κ→0

q̃(−m)(y, y∗, κ) = L−my∗ −
m∑

k=1

Lk−m−1Pc
dg
dx

(q(−k)(y)) lim
κ→0

q̃(−k)(y, y∗, κ)

+

∞∑
k=m+1

Lk−m−1Ps
dg
dx

(q(−k)(y)) lim
κ→0

q̃(−k)(y, y∗, κ). (7.71)
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This implies that limκ→0 q̃(−m)(y, y∗, κ) is a solution of Eq.(7.69). By the uniqueness of a
solution, we obtain

lim
κ→0

q̃(−m)(y, y∗, κ) = lim
κ→0

1
κ

(
q(−m)(y + κy∗) − q(−m)(y)

)
= q̃(−m)(y, y∗, 0). (7.72)

From Eq.(7.69), it turns out that q̃(−m)(y, y∗, 0) is linear in y∗. Thus we denote it as

q̃(−m)(y, y∗, 0) = dq(−m)(y)y∗. (7.73)

Then, dq(−m)(y) : ˆ̂Ec → X(−m) defines a linear operator for each y ∈ ˆ̂Ec. The remain-

ing task is to show that dq(−m) : ˆ̂Ec × ˆ̂Ec → X(−m) is continuous. This is done in the

same way as the proof of part (ii) of the proposition. For y′, y′∗ ∈ ˆ̂Ec, we estimate
d∞(q̃(−m)(y, y∗, 0), q̃(−m)(y′, y′∗, 0)). Then, we can show that q̃(−m) is Lipschitz continuous
in y and y∗. The details are left to the reader. This means that dq(−m)(y) gives the deriva-

tive of q(−m) at y ∈ ˆ̂Ec. �

Now we define the center manifold Wc of the map ϕτ by

Wc = {q(0)(y) = y + q̂(y) | y ∈ ˆ̂Ec}, (7.74)

where

q̂(y) =
∞∑

k=1

Lk−1Psg(q(−k)(y)) ∈ ˆ̂E⊥c . (7.75)

Proposition 7.9. (i) Wc is a dim- ˆ̂Ec dimensional C1 manifold, which is tangent to the

space ˆ̂Ec. In particular, q(0)(y) is expanded as q(0)(y) = y + O(y2) as y→ 0.
(ii) Wc is ϕτ invariant; that is, ϕτ(Wc) ⊂ Wc.
(iii) For any ξ0 ∈ Wc, there exists a negative semi-orbit {u(−m)}∞m=0 ⊂ Wc satisfying u0 = ξ0

and

d∞(u(−m), 0) ≤ Cebmτ,

where b > 0 as above and C is a positive constant.
(iv) if δ1 > 0 is sufficiently small, the center manifold Wc is included in the strip region
{z ∈ R × i(F ) | d∞(Psz, 0) ≤ δ2} (see Fig.8).

Proof. (i) Since q(−k)(0) = 0 and q(−k)(y) is C1, q(−k)(y) is expanded as q(−k)(y) ∼ O(y).
This shows that q̂(y) ∼ O(y2) because g(z) ∼ O(z2) as z→ 0.
(ii) Recall that {q(−m)(y)}∞m=0 is a negative semi-orbit satisfying Eqs.(7.49) and (7.50). De-
fine q(1)(y) := ϕτ(q(0)(y)). Obviously {q(−m+1)(y)}∞m=0 is also a negative semi-orbit satisfying
(7.49) and (7.50) with some C > 0. Then, Lemma 7.5 implies that {q(−m+1)(y)}∞m=0 is a so-
lution of the Lyapunov-Perron equation (7.52). By the uniqueness of a solution, there

exists y′ ∈ ˆ̂Ec such that q(−m+1)(y) = q(−m)(y′) for m = 0, 1, · · · . In particular, we obtain
ϕτ(q(0)(y)) = ϕτ(q(−1)(y′)) = q(0)(y′), which proves ϕτ(q(0)(y)) ∈ Wc.
(iii) This is obvious from the definition: if ξ0 = q(0)(y), {q(−m)(y)}∞m=0 is a negative semi-
orbit included in Wc.
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(iv) Prop.7.8 (iii) implies that Psq(0)(y) = 0 if ||y||Ec ≥ 2δ1. Thus sup
y∈ ˆ̂Ec

d∞(Psq(0)(y), 0)
becomes sufficiently small if δ1 is sufficiently small. �

If restricted to a small neighborhood of the origin, Wc gives the desired local center
manifold for Eq.(6.2).

Proof of Theorem 7.1. If δ1 > 0 is sufficiently small, Wc is included in the region
{z ∈ R × i(F ) | d∞(Psz, 0) ≤ δ2}, on which χ(d∞(Psz, 0)/δ2) = 1. Thus ϕτ-invariant
manifold Wc is also invariant under the map ϕ̃τ given by Eq.(7.42), which is a time τ
map of the semiflow of the system (7.30). Take u0 ∈ Wc. By Prop.7.9 (iii), there is a
negative semi-orbit {u(−m)}∞m=0 ⊂ Wc of ϕ̃τ satisfying Eqs.(7.49) and (7.50). Since ϕ̃τ is a
semiflow, we have

ϕ̃τ ◦ ϕ̃t(u
(−m)) = ϕ̃t(ϕ̃τ(u

(−m))) = ϕ̃t(u
(−m+1)), (7.76)

for each t > 0. This means that {ϕ̃t(u(−m))}∞m=0 is a negative semi-orbit of ϕ̃τ. Since ϕ̃t is C1

with respect to the metric d∞, there is a positive number C̃ such that

d∞(ϕ̃t(u
(−m)), 0) ≤ C̃d∞(u(−m), 0) ≤ C̃Cebmτ. (7.77)

Further, LmPsϕ̃t(u(−m)) is estimated as

LmPsϕ̃t(u
(−m)) = Lm+1Psu

(−m) + LmPsg̃t(u
(−m)).

Since u(−m) satisfies (7.49), Lm+1Psu(−m) tends to zero as m→ ∞. By the same calculation
as Eq.(7.54), we see that the second term LmPsg̃t(u(−m)) also tends to zero as m → ∞.
This shows that {ϕ̃t(u(−m))}∞m=0 satisfies the conditions (7.49) and (7.50). Therefore, it is a
solution of the Lyapunov-Perron equation (7.52). By the uniqueness of a solution, there

is y ∈ ˆ̂Ec such that ϕ̃t(u(0)) = q(0)(y) ∈ Wc, which proves that Wc is ϕ̃t-invariant.
In Eq.(7.30), since ε is a constant which is independent of t, Wc(ε) := Wc∩({ε}× i(F ))

is also ϕ̃t-invariant for each ε.
On the region Û = {z | ||Pcz||Ec ≤ δ1, |η(t)| ≤ 1}, χ(||Pcz||Ec/δ1) · χ(|η(t)|) = 1 and

Eq.(7.30) is reduced to the original system (6.2). Thus Wc(ε) ∩ Û is invariant under the
semiflow generated by (6.2), which gives a local center manifold stated in Thm.7.1 with
U = Û ∩ ({ε} × i(F )) and Wc

loc = Wc(ε) ∩ U. Parts (I) and (II) in Thm.7.1 immediately
follows from Prop.7.9. It remains to show the part (III) of Thm.7.1. This is proved in the
same way as Chen, Hale and Tan [9]. In [9], the existence of invariant foliations is proved
for dynamical systems on Banach spaces. Though our phase space i(F ) is not a Banach
space, the distance from the origin d∞(z, 0) plays the same role as a norm. Thus with the
aid of the estimates (7.46) and (7.47), we can prove the existence of invariant foliations
by the same way as [9]. The details are left to the reader. �

7.5 Reduction to the center manifold

Let us derive the dynamics on the center manifold and prove the Kuramoto’s conjec-
ture. Recall that for the continuous limit (2.1) of the Kuramoto model, Putting Zj(t, ω) =∫ 2π

0
e j
√−1θρt(θ, ω)dθ yields the system of equations (3.2) and (3.3). Since solutions are
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included in V1,0 ⊂ Exp+ (Thm.5.10 (iii)), the canonical inclusion is applied to rewrite
Eq.(3.2) and (3.3) as equations of the form (6.2) defined on Exp′−. The order parameter
η is defined as η(t) = (Z1, P0) = 〈Z1 | P0〉. For this system, we have proved that when
0 < K < Kc, the trivial solution (de-synchronous state) is asymptotically stable because
of the existence of resonance poles on the left half plane. In particular, η(t)→ 0 as t → ∞.
When K > Kc, we have proved that the trivial solution is unstable because of the existence
of eigenvalues on the right half plane. Thus a bifurcation from the trivial solution may
occur at K = Kc. In Sec.7.1 to Sec.7.4, we have proved that there exists a smooth local
center manifold near the origin in

∏∞
k=1 Exp′− if K is sufficiently close to Kc. Our pur-

pose is to obtain a differential equation describing the dynamics on the center manifold to
reveal a bifurcation structure of the Kuramoto model.

Since g(ω) is the Gaussian, there exists only one resonance pole λ0 = 0 on the imagi-
nary axis when K = Kc. Thus the center subspace Ec is of one dimensional. Let µ0 be the
generalized eigenfunction associated with λ0 = 0. By the definition, µ0 is given by

〈µ0 | φ∗〉 = lim
x→+0

∫
R

1

x − √−1ω
φ(ω)g(ω)dω. (7.78)

This is also written as

µ0 = lim
x→+0

i(
1

x − √−1ω
), (7.79)

where the limit is taken with respect to the weak dual topology on Exp′−. The main theo-
rem in this section, which confirms the Kuramoto’s conjecture, is stated as follows:

Theorem 7.10. For the continuous model (2.1) of the Kuramoto model, there exist pos-
itive constants ε0 and δ such that if Kc < K < Kc + ε0 and if the initial condition h(θ)
satisfies ∣∣∣∣∣∣

∫ 2π

0
e
√−1 jθh(θ)dθ

∣∣∣∣∣∣ < δ (7.80)

for j = 1, 2, · · · , then the order parameter η(t) tends to the constant expressed as

r(t) = |η(t)| =
√

−16
πK4

c g′′(0)

√
K − Kc + O(K − Kc), (7.81)

as t → ∞. In particular, the bifurcation diagram of the order parameter is given as Fig.2
(a).

Proof. Suppose that an initial condition h(θ) satisfies Eq.(7.80). Then, we have

||Zj(0, ·) ||∗β,n = sup
||φ||β,n=1

∣∣∣∣∫
R

Zj(0, ω)φ(ω)g(ω)dω
∣∣∣∣

= sup
||φ||β,n=1

∣∣∣∣∫
R

∫ 2π

0
e
√−1 jθh(θ)φ(ω)g(ω)dθdω

∣∣∣∣
=
∣∣∣∣∫ 2π

0
e
√−1 jθh(θ)dθ

∣∣∣∣ · sup
||φ||β,n=1

∣∣∣∣∫
R
φ(ω)g(ω)dω

∣∣∣∣
≤ δ · ||P0||∗β,n,
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for every j, β and n. Thus we can take δ sufficiently small so that the initial condition
(Z1(0, ·), Z2(0, ·), · · · ) for Eq.(6.2) is included in the neighborhood U (with respect to the
metric d∞) of the origin given in Thm.7.1. Then, the center manifold theorem is applica-
ble. Let us derive the dynamics on the center manifold.

Since we are interested in a bifurcation at K = Kc, put ε = K − Kc and divide the
operator T1 as

T1φ(ω) = T10φ(ω) +
ε

2
〈φ | P0〉P0(ω), (7.82)

where

T10φ(ω) =
√−1ωφ(ω) +

Kc

2
〈φ | P0〉P0(ω). (7.83)

Then, the operator T10 has a resonance pole at the origin and all other resonance poles are
on the left half plane. Eq.(6.2) is rewritten as

d
dt

Z1 = T×10Z1 +
ε

2
〈Z1 | P0〉P0 − K

2
〈Z1 | P0〉Z2. (7.84)

To obtain the dynamics on the center manifold, by using the spectral decomposition, we
put

Z1 =
Kc

2
α(t)µ0 + Y1, (7.85)

where µ0 is defined by Eq.(7.79), Y1 is included in the complement E⊥c of Ec, and where

α(t) =
1

D0
〈µ0 |Z∗1〉. (7.86)

We will derive the dynamics of α. Since 〈µ0 | P0〉 = 2/Kc by the definition of resonance
poles, we obtain

〈Z1 | P0〉 = α(t) + 〈Y1 | P0〉, (7.87)

and P0 is decomposed as

P0 =
1

D0
µ0 + Y0, (7.88)

where Y0 ∈ E⊥c . By Thm.7.1 (I), on the local center manifold, we can suppose that

〈Y1 | φ∗〉, 〈Zj | φ∗〉 ∼ O(α2, αε, ε2), (7.89)

for j = 2, 3, · · · and for every φ ∈ Exp+. Let us calculate the expression of the center
manifold. Substituting Eqs.(7.87),(7.85) into Eq.(6.2) for j = 2 yields

d
dt

Z2 = T×2 Z2 + K
(
(α + 〈Y1 | P0〉)

(Kc

2
αµ0 + Y1

)
− (α + 〈Y1 | P0〉)Z3

)
. (7.90)

We suppose that dα/dt ∼ O(α2, αε, ε2), which will be justified later. Then, the above
equation yields

T×2 Z2 = −KKc

2
α2µ0 + O(α3, α2ε, αε2, ε3). (7.91)
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Lemma 7.11. Define the operator (T×2 )−1 : i(Exp+)→ Exp′− to be

〈(T×2 )−1ψ | φ∗〉 = −1
2

lim
x→+0

∫
R

1

x − √−1ω
φ(ω)ψ(ω)g(ω)dω. (7.92)

Then,
(T×2 )(T×2 )−1ψ = (T×2 )−1(T×2 )ψ = ψ (7.93)

for any ψ ∈ i(Exp+), and it is continuous on i(V).

Proof. The straightforward calculation shows that

〈(T×2 )(T×2 )−1ψ | φ∗〉 = 〈(T×2 )−1ψ |T ∗2φ∗〉
= −1

2
lim
x→+0

∫
R

2
√−1ω

x − √−1ω
φ(ω)ψ(ω)g(ω)dω

=

∫
R
φ(ω)ψ(ω)g(ω)dω − lim

x→+0

∫
R

x

x − √−1ω
φ(ω)ψ(ω)g(ω)dω.

Since the limit

lim
x→+0

∫
R

1

x − √−1ω
φ(ω)ψ(ω)g(ω)dω = 〈µ0 | φ∗ · ψ∗〉

exists, the second term in the right hand side above is zero. Thus we obtain

〈(T×2 )(T×2 )−1ψ | φ∗〉 = 〈ψ | φ∗〉.
In the same way,

〈(T×2 )−1(T×2 )ψ | φ∗〉 = 〈(T×2 )−1 · 2√−1ωψ | φ∗〉
= −1

2
lim
x→+0

∫
R

2
√−1ω

x − √−1ω
φ(ω)ψ(ω)g(ω)dω

= 〈ψ | φ∗〉.
Note that the right hand side of (7.92) is also written as −〈µ0 | φ∗ · ψ∗〉/2. Thus the conti-
nuity of (T×2 )−1 on i(V) follows from Lemma 5.11 (iii). �

Since (T×2 )−1 is continuous on i(V), its domain is continuously extended to the closure
i(V). Since µ0 ∈ i(V) (see Prop.5.13) and it is given as Eq.(7.79), (T×2 )−1µ0 is calculated
as

〈(T×2 )−1µ0 | φ∗〉 = lim
x→+0

〈
(T×2 )−1 1

x − √−1ω

∣∣∣∣ φ∗〉 = −1
2

lim
x→+0

∫
R

1

(x − √−1ω)2
φ(ω)g(ω)dω.

(7.94)
Then, Eq.(7.91) provides

〈Z2 | φ∗〉 = KKc

4
α2 lim

x→+0

∫
R

1

(x − √−1ω)2
φ(ω)g(ω)dω + O(α3, α2ε, αε2, ε3), (7.95)
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which gives the expression of the center manifold to the Z2 direction. The projection of it
to the center subspace is given as

Π0Z2 =
Kc

2D0
〈µ0 |Z∗2〉 · µ0 =

Kc

2D0
lim
x→+0

〈 1

x − √−1ω

∣∣∣∣ Z∗2〉·µ0,

=
Kc

2D0
lim
x→+0

〈
Z2

∣∣∣∣ ( 1

x − √−1ω

)∗ 〉
·µ0

where

lim
x→+0

〈
Z2

∣∣∣∣ ( 1

x − √−1ω

)∗ 〉
=

KKc

4
α2 lim

x→+0

∫
R

1

(x − √−1ω)3
g(ω)dω + O(α3, α2ε, αε2, ε3)

= −KKc

8
α2 lim

x→+0

∫
R

1

x − √−1ω
g′′(ω)dω + O(α3, α2ε, αε2, ε3)

= −KKc

8
α2 · πg′′(0) + O(α3, α2ε, αε2, ε3).

Thus we obtain

Π0Z2 = − KK2
c

16D0
α2 · πg′′(0) · µ0 + O(α3, α2ε, αε2, ε3). (7.96)

Finally, the projection of Eq.(7.84) to the center subspace is given by

d
dt
Π0Z1 = T×10Π0Z1 +

ε

2
〈Z1 | P0〉Π0P0 − K

2
〈Z1 | P0〉Π0Z2.

By using Eqs.(7.85),(7.87),(7.88) and (7.96), we obtain

d
dt

Kc

2
αµ0 =

Kc

2
αT×10µ0 +

ε

2
(α + 〈Y1 | P0〉) 1

D0
µ0

−K
2

(α + 〈Y1 | P0〉) ·
(
−πg′′(0)KK2

c

16D0
α2µ0 + O(α3, α2ε, αε2, ε3)

)
,

=
ε

2D0
αµ0 +

πg′′(0)K4
c

32D0
α|α|2µ0 + O(εα2, ε2α, ε3, α4),

which yields the dynamics on the center manifold as

d
dt
α =

α

D0Kc

(
ε +

πg′′(0)K4
c

16
|α|2
)
+ O(εα2, ε2α, ε3, α4). (7.97)

Since g′′(0) < 0, this equation has a fixed point expressed as Eq.(7.81) when ε = K−Kc >
0. Note that the order parameter η(t) = (Z1, P0) is rewritten as

η(t) = (Z1, P0) = 〈Z1 | P0〉 = Kc

2
α〈µ0 | P0〉 + 〈Y1 | P0〉 = α + O(α2, αε, ε2). (7.98)

Thus the dynamics of the order parameter is also given by Eq.(7.97). To prove that the
fixed point (7.81) is asymptotically stable, it is sufficient to show the following.
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Lemma 7.12. D0 > 0.

Proof Put

f (λ) = 1 − Kc

2

∫
R

1

λ − √−1ω
g(ω)dω − πKcg(−√−1λ).

By the definition of D0,

D0 = f ′(0) = lim
λ→0

Kc

2

∫
R

1

(λ − √−1ω)2
g(ω)dω +

√−1πKcg
′(0)

=

√−1Kc

2
lim
λ→0

∫
R

1

λ − √−1ω
g′(ω)dω +

√−1πKcg
′(0).

Since g(ω) is even,

D0 = −Kc

2
lim
x→0

∫
R

ω

x2 + ω2
g′(ω)dω = −Kc lim

x→0

∫ ∞
0

ω

x2 + ω2
g′(ω)dω.

Since g(ω) is unimodal, g′(ω) ≤ 0 when ω > 0, which proves that D0 > 0. �

Since D0 > 0,Kc > 0, g′′(0) < 0, the fixed point α = 0 (de-synchronous state) is
unstable and the fixed point Eq.(7.81) (synchronous state) is asymptotically stable when
ε = K − Kc > 0. This completes the proof. �
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[12] H. Chiba, D. Pazó, Stability of an [N/2]-dimensional invariant torus in the Kuramoto
model at small coupling, Physica D, Vol.238, 1068-1081 (2009)

[13] J. D. Crawford, Amplitude expansions for instabilities in populations of globally-
coupled oscillators, J. Statist. Phys. 74 (1994), no. 5-6, 1047–1084

[14] J. D. Crawford, Scaling and Singularities in the Entrainment of Globally Coupled
Oscillators, Phys. Rev. Lett. 74, 4341 (1995)

[15] J. D. Crawford, K. T. R. Davies, Synchronization of globally coupled phase oscil-
lators: singularities and scaling for general couplings, Phys. D 125 (1999), no. 1-2,
1–46

[16] H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform
all-to-all interactions: bifurcation of the order function, Phys. D 91 (1996), no. 1-2,
24–66

[17] A. E. Eremenko, The set of asymptotic values of a finite order meromorphic func-
tion, (Russian) Mat. Zametki 24 (1978), no. 6, 779–783

[18] I. M. Gelfand, G. E. Shilov, Generalized functions. Vol. 2. Spaces of fundamental
and generalized functions, Academic Press, New York-London, 1968

[19] I. M. Gelfand, N. Ya. Vilenkin, Generalized functions. Vol. 4. Applications of har-
monic analysis, Academic Press, New York-London, 1964

[20] W. Gross, Eine ganze Funktion, fur die jede komplexe Zahl Konvergenzwert ist,
Math. Ann. 79 (1918), no. 1-2, 201–208

[21] A. Grothendieck, Topological vector spaces, Gordon and Breach Science Publishers,
New York-London-Paris, 1973

[22] E. Hille, R. S. Phillips, Functional analysis and semigroups, American Mathematical
Society, 1957

[23] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995

[24] H. Komatsu, Projective and injective limits of weakly compact sequences of locally
convex spaces, J. Math. Soc. Japan, 19, 1967 366–383

76



[25] T. Krisztin, Invariance and noninvariance of center manifolds of time-t maps with
respect to the semiflow, SIAM J. Math. Anal. 36 (2004/05), no. 3, 717–739

[26] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, In-
ternational Symposium on Mathematical Problems in Theoretical Physics, pp. 420–
422. Lecture Notes in Phys., 39. Springer, Berlin, 1975

[27] Y. Kuramoto, Chemical oscillations, waves, and turbulence, Springer Series in Syn-
ergetics, 19. Springer-Verlag, Berlin, 1984

[28] Y. Maistrenko, O. Popovych, O. Burylko, P. A. Tass, Mechanism of desynchroniza-
tion in the finite-dimensional Kuramoto model, Phys. Rev. Lett. 93 (2004) 084102

[29] Y. L. Maistrenko, O. V. Popovych, P. A. Tass, Chaotic attractor in the Kuramoto
model, Int. J. of Bif. and Chaos 15 (2005) 3457–3466

[30] K. Maurin, General eigenfunction expansions and unitary representations of topo-
logical groups, Polish Scientific Publishers, Warsaw, 1968

[31] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott ,P. So, T. M. Antonsen, Exact
results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E
79, 026204 (2009)

[32] S. A. Marvel, R. E. Mirollo, S. H. Strogatz, Identical phase oscillators with global
sinusoidal coupling evolve by Mobius group action, Chaos 19, 043104 (2009)

[33] R. E. Mirollo, S. H. Strogatz, Amplitude death in an array of limit-cycle oscillators,
J. Statist. Phys. 60 (1990), no. 1-2, 245–262

[34] R. Mirollo, S. H. Strogatz, The spectrum of the partially locked state for the Ku-
ramoto model, J. Nonlinear Sci. 17 (2007), no. 4, 309–347

[35] D. J. Newman, A simple proof of Wiener’s 1/ f theorem. Proc. Amer. Math. Soc. 48
(1975), 264–265

[36] E. Ott, T. M. Antonsen, Low dimensional behavior of large systems of globally
coupled oscillators, Chaos 18 (2008), no. 3, 037113

[37] E. Ott, T. M. Antonsen, Long time evolution of phase oscillator systems, Chaos 19
(2009), no. 2, 023117

[38] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in
Nonlinear Sciences, Cambridge University Press, Cambridge, 2001

[39] M. Reed, B. Simon, Methods of modern mathematical physics IV. Analysis of oper-
ators, Academic Press, New York-London, 1978

[40] J. A. Sanders, F. Verhulst, Averaging methods in nonlinear dynamical systems,
Springer-Verlag, New York, 1985

[41] J. A. Shohat, J. D. Tamarkin, The Problem of Moments, American Mathematical
Society, New York, 1943

[42] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Prince-
ton University Press, Princeton, 1971

77



[43] S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization
in populations of coupled oscillators, Phys. D 143 (2000), no. 1-4, 1–20

[44] S. H. Strogatz, R. E. Mirollo, Stability of incoherence in a population of coupled
oscillators, J. Statist. Phys. 63 (1991), no. 3-4, 613–635

[45] S. H. Strogatz, R. E. Mirollo, P. C. Matthews, Coupled nonlinear oscillators below
the synchronization threshold: relaxation by generalized Landau damping, Phys.
Rev. Lett. 68 (1992), no. 18, 2730–2733

[46] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Chelsea Publishing
Co., New York, 1986
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