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Abstract: The renormalization group (RG) method for differential equations is one of the perturba-

tion methods which provides not only approximate solutions but also approximate vector fields. Some

topological properties of an original equation, such as the existence of a normally hyperbolic invariant

manifold and its stability are shown to be inherited from those of the RG equation. This fact is applied

to the Kuramoto model and the stability of the invariant torus will be determined.

1 Introduction

The renormalization group (RG) method for differential equations is one of the perturbation methods

for obtaining solutions which approximate exact solutions for a long time interval. In their papers

[1,2], Chen, Goldenfeld, Oono have established the RG method for ordinary differential equations of

the form

ẋ =
dx
dt
= f (t, x) + εg(t, x), x ∈ Rn, (1)

where ε > 0 is a small parameter. For this equation, the method for deriving approximate solutions of

the form
x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · (2)

is called the naive expansion or the regular perturbation method, where xi(t)’s are governed by in-

homogeneous linear ODEs obtained by putting Eq.(2) into Eq.(1) and equating the coefficients of εi

of the both sides of Eq.(1). It is well known that approximate solutions constructed by the naive ex-

pansion are valid only in a time interval of O(1) in general, since secular terms diverge as t → ∞.

Many techniques for obtaining approximate solutions which are valid in a long time interval have been

developed until now, which are collectively called singular perturbation methods.

The RG method proposed by Chen et al. is one of the singular perturbation methods looking like

the variation-of-constant method, in which the secular terms included in x1(t), x2(t), · · · of Eq.(2) are

renormalized into the integral constant of x0(t). The ODE to be satisfied by the renormalized integral

constant is called the RG equation.

In their papers [1,2], it is not clear why the RG method works well. Kunihiro [9,10] revealed the

reason by characterizing the RG equation as an equation for obtaining an envelope of a family of curves
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constructed by the naive expansion. His idea gave an intuitive concept of the RG method, however, the

problems below remained to be solved.

(i) An explicit definition of the RG equation was not given.

(ii) It was not clear whether we can detect the existence of an invariant manifold and its stability.

The problem (i) was solved by Ziane [11], DeVille et al. [7], and Chiba [3]. Ziane and DeVille et al.

gave the definition of the first order RG equation by using the averaging operator. Further, Chiba gave

the formula for the m-th order RG equation by calculating the envelope of naive expansion solutions

up to arbitrary order of ε. With these formulas, one can obtain a higher order RG equation by using a

computer software like Mathematica.

While the problem (i) is a computational issue, the problem (ii) is more essential. It was shown

by Ziane [11], DeVille et al. [7], and Chiba [3] that an approximate solution constructed by the RG

method is close to an exact solution in a time interval −T/ε < t < T/ε, where T is some positive

constant (see Thm.10 for the exact statement). Now consider the following situation : Suppose that an

approximate solution obtained by the RG method is a periodic solution. However, the original equation

may not have a periodic orbit because of the error of the approximate solution (see the figure below).

In general, since approximate solutions have small errors, it is not obvious that the RG method can

show the existence of an invariant manifold. Further, we can not understand an asymptotic behavior of

an exact solution because the time interval −T/ε < t < T/ε is finite in general. In particular, we may

not understand the stability of an invariant manifold.

approximate solution exact solution

This problem was solved by Chiba [3]. He considered constructing an approximate vector field in-

stead of an approximate solution. It was considered that whether there exists an approximate differen-

tial equation satisfied by a family of approximate solutions. It is not obvious because two approximate

solutions may intersect with each other and the uniqueness of solutions is violated. However, under

appropriate assumptions, Chiba [3] proved that a family of approximate solutions defines a vector field

which is sufficiently close to the original vector field associated with the original equation (Thm.9).

Once we obtain the approximate vector field, we can use powerful tools of dynamical systems theory.

In particular, by using the invariant manifold theory, we can prove that if the RG equation has a

normally hyperbolic invariant manifold N, then the original equation also has an invariant manifold

Nε, which is diffeomorphic to N. Further the stability of Nε coincides with that of N (Thm.11).

For the reason above, we hope that the RG equation is easier to solve than the original equation. In
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fact, it is shown that symmetries of the original equation (group invariance) are inherited to those of

the RG equation. Furthermore, the RG equation is invariant under the action of the 1-parameter group

defined by the flow of the unperturbed vector field of the original equation (Thm.12). It means that

the RG equation has more symmetries than the original equation has, and it is easier to solve than the

original equation.

original
equation

RG equation
inv. mfd.

symmetries

topological
conjugate

approximation

approximate
vector field

The fact that the RG method unifies the traditional singular perturbation methods was already sug-

gested by Chen, Goldenfeld, Oono [1,2] (without mathematical proofs). Ei, Fujii, Kunihiro [8] sug-

gested that the RG method provides an approximate center manifold, and this fact was proved by Chiba

[5] by using invariant manifold theory. The equivalence of the normal forms of vector fields and the

RG equations was proved by DeVille et al. [7] for the case of the first order RG equation. This result

was extended to the higher order RG equation by Chiba [4]. Further, by focusing the nonuniqueness of

the higher order RG equation, Chiba [4] showed that we can construct the higher order RG equation so

that it is equivalent to the hyper-normal form. In addition, it is known that the RG method unifies the

averaging method, the multi-scale method, the geometric singular perturbation, and the Lie symmetry

method [1,2,6].

Unified method

center manifold
reduction

multi-scale method

normal forms
hyper-normal forms

averaging method

Lie symmetry

geometic singular
perturbation
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2 Definitions

Let f be a time independent Cr vector field on a Cr manifold M and ϕ : R × M → M its flow.

We denote by ϕt(x0) ≡ x(t), t ∈ R, a solution to the ODE ẋ = f (x) through x0 ∈ M, which satisfies

ϕt ◦ ϕs = ϕt+s, ϕ0 = idM , where idM denotes the identity map of M. For a fixed t ∈ R, ϕt : M → M

defines a diffeomorphism of M. We assume ϕt is defined for all t ∈ R.

For a time-dependent vector field, let x(t, τ, ξ) denote a solution to an ODE ẋ(t) = f (t, x) through ξ at

t = τ, which defines a flow ϕ : R×R×M → M by ϕt,τ(ξ) = x(t, τ, ξ). For fixed t, τ ∈ R, ϕt,τ : M → M

is a diffeomorphism of M satisfying

ϕt,t′ ◦ ϕt′,τ = ϕt,τ, ϕt,t = idM . (3)

Conversely, a family of diffeomorphisms ϕt,τ of M, which are C1 with respect to t and τ, satisfying

the above equality for any t, τ ∈ R defines a time-dependent vector field on M through

f (t, x) =
d
dτ

∣∣∣∣
τ=t
ϕτ,t(x). (4)

Definition 1. Let f be a vector field on M, and ϕt its flow. A submanifold N of M is called f -

invariant if ϕt(N) = N for ∀t ∈ R. An f -invariant manifold N is called hyperbolic, if there are vector

bundles Es, Eu over N s.t.

(i) T M|N = Es ⊕ Eu ⊕ T N,

(ii) both Es ⊕ T N and Eu ⊕ T N are Dϕt-invariant,

(iii) there exist constants C ≥ 1, α, β > 0 s.t. for ∀p ∈ N,

v ∈ Es
p ⇒ ||πs ◦ (Dϕt)pv|| ≤ Ce−αt, t ≥ 0, (5)

v ∈ Eu
p ⇒ ||πu ◦ (Dϕ−t)pv|| ≤ Ce−βt, t ≥ 0, (6)

where πs, πu are projections from T M|N to Es, Eu, respectively.

Definition 2. A hyperbolic invariant manifold N is called r-normally hyperbolic, if there exist an

integer r ≥ 1 and constants C ≥ 1, γ > 0, such that for ∀p ∈ N, v ∈ Es
p, w ∈ Eu

p, u ∈ TpN, the

following inequalities hold.

||(Dϕt)pu||k ||πs ◦ (Dϕt)pv|| ≤ Ce−γt ||u||k ||v||, k = 0, 1, · · · , r, t ≥ 0, (7)

||(Dϕ−t)pu||k ||πu ◦ (Dϕ−t)pw|| ≤ Ce−γt ||u||k ||w||, k = 0, 1, · · · , r, t ≥ 0. (8)

Next theorem is one of the fundamental theorem of the invariant manifold theory.

Theorem 3. (Fenichel, 1971)

Let M be a Cr manifold (r ≥ 1), and Xr(M) the set of Cr vector fields on M with C1 topology. Let

f be a Cr vector field on M and suppose that N ⊂ M is a compact connected r-normally hyperbolic
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f -invariant manifold. Then, the following holds:

(i) There is a neighborhoodU ⊂ Xr(M) of f s.t. there exists an r-normally hyperbolic g-invariant Cr

manifold Ng ⊂ M for ∀g ∈ U.

(ii) Ng is diffeomorphic to N and the diffeomorphism h : Ng → N is close to the identity id : N → N

in the C1 topology. In particular, Ng lies within an O(ε) neighborhood of N if || f − g|| ∼ O(ε).

3 RG method

In this section, we give the definition of the RG equation and fundamental theorems of the RG

method. All proofs are given in Chiba [3].

Consider an ODE on Rn of the form

ẋ = Fx + εg(t, x, ε)

= Fx + εg1(t, x) + ε2g2(t, x) + · · · , x ∈ Rn, (9)

where ε ∈ R is a small parameter. For this system, we suppose that

(A1) the matrix F is a diagonalizable n×n constant matrix all of whose eigenvalues lie on the imaginary

axis.

(A2) the function g(t, x, ε) is of C∞ class with respect to t, x and ε. The formal power series expansion

of g(t, x, ε) in ε is given as above.

(A3) each gi(t, x) is periodic in t ∈ R and polynomial in x.

Remark 4. These assumptions can be weakened in various ways. For example, if F has eigenvalues

on the left half plane, our method provides the center manifold reduction (see Sec.5.3). The case that

the unperturbed term is nonlinear is treated in Sec.5.4. The assumption (A3) can be replaced as :

(A3’) each gi(t, x) is almost periodic functions such that the set of whose Fourier exponents does not

have accumulation points.

If the set of Fourier exponents of gi(t, x) has accumulation points, the RG transformation defined below

may diverge as t → ∞ (see Chiba [3]).

At first, let us attempt the naive expansion. Replacing x in (9) by x = x0 + εx1 + ε
2x2 + · · · , we

rewrite (9) as

ẋ0 + εẋ1 + ε
2 ẋ2 + · · · = F(x0 + εx1 + ε

2x2 + · · · ) +
∞∑

i=1

εigi(t, x0 + εx1 + ε
2x2 + · · · ). (10)

Expanding the right hand side of the above equation with respect to ε and equating the coefficients of
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each εi of the both sides, we obtain ODEs of x0, x1, x2, · · · as

ẋ0 = Fx0, (11)

ẋ1 = Fx1 +G1(t, x0), (12)
...

ẋi = Fxi +Gi(t, x0, x1, · · · , xi−1), (13)
...

where the inhomogeneous term Gi is a smooth function of t, x0, x1, · · · , xi−1. For instance, G1,G2,G3

and G4 are given by

G1(t, x0) = g1(t, x0), (14)

G2(t, x0, x1) =
∂g1

∂x
(t, x0)x1 + g2(t, x0), (15)

G3(t, x0, x1, x2) =
1
2
∂2g1

∂x2
(t, x0)x2

1 +
∂g1

∂x
(t, x0)x2 +

∂g2

∂x
(t, x0)x1 + g3(t, x0), (16)

G4(t, x0, x1, x2, x3) =
1
6
∂3g1

∂x3
(t, x0)x3

1 +
∂2g1

∂x2
(t, x0)x1x2 +

∂g1

∂x
(t, x0)x3

+
1
2
∂2g2

∂x2
(t, x0)x2

1 +
∂g2

∂x
(t, x0)x2 +

∂g3

∂x
(t, x0)x1 + g4(t, x0), (17)

respectively. We can verify the equality (see Lemma A.2 of Chiba [3] for the proof)

∂Gi

∂x j
=
∂Gi−1

∂x j−1
= · · · = ∂Gi− j

∂x0
, i > j ≥ 0, (18)

and it may help in deriving Gi and proving Prop.5 below.

Solving the system above and constructing the curve x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · is called

the naive expansion as is mentioned in Sec.1. According to the Kunihiro’s idea, the RG equation is

given as an equation for obtaining an envelope of a family of the naive expansion solutions. Now let

us derive the naive expansion solutions.

In what follows, we denote the fundamental matrix eFt as X(t). Define the functions Ri, h
(i)
t , i =

1, 2, · · · on Rn by

R1(y) := lim
t→∞

1
t

∫ t

X(s)−1G1(s, X(s)y)ds, (19)

h(1)
t (y) := X(t)

∫ t(
X(s)−1G1(s, X(s)y) − R1(y)

)
ds, (20)

Ri(y) := lim
t→∞

1
t

∫ t(
X(s)−1Gi(s, X(s)y, h(1)

s (y), · · · , h(i−1)
s (y))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )yRi−k(y)

)
ds, i = 2, 3, · · · , (21)

h(i)
t (y) := X(t)

∫ t(
X(s)−1Gi(s, X(s)y, h(1)

s (y), · · · , h(i−1)
s (y))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )yRi−k(y) − Ri(y)

)
ds, i = 2, 3, · · · , (22)
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respectively. Then, the following statement holds.

Proposition 5. (Chiba [3]) Let x0(t) = X(t)y be the solution to Eq.(11) whose initial value is y ∈ Rn.

Then, for arbitrary τ ∈ R and i = 1, 2, · · · , the curve

xi := xi(t, τ; y) = h(i)
t (y) + p(i)

1 (t, y)(t − τ) + p(i)
2 (t, y)(t − τ)2 + · · · + p(i)

i (t, y)(t − τ)i (23)

gives a solution to Eq.(13), where the functions p(i)
1 , · · · , p(i)

i are given by

p(i)
1 (t, y) = X(t)Ri(y) +

i−1∑
k=1

(Dh(k)
t )yRi−k(y), (24)

p(i)
j (t, y) =

1
j

i−1∑
k=1

∂p(k)
j−1

∂y
(t, y)Ri−k(y), ( j = 2, 3, · · · , i − 1), (25)

p(i)
i (t, y) =

1
i

i−1∑
k=1

∂p(k)
i−1

∂y
(t, y)Ri−k(y) =

1
i

∂p(i−1)
i−1

∂y
(t, y)R1(y), (26)

p(i)
j (t, y) = 0, ( j > i). (27)

Further, the functions h(i)
t (y) are bounded uniformly in t.

Remark 6. Note that we gave the solution to Eq.(13) so that it is split into the bounded term h(i)
t

and the divergence terms. In particular, the linearly increasing term p(i)
1 (t, y)(t− τ) is called the secular

term.

To see what we did, let us derive the functions R1 and h(1)
t . With the 0-th order solution x0(t) = X(t)y,

the first order equation (12) is written as

ẋ1 = Fx1 +G1(t, X(t)y). (28)

The solution to this equation is given by

x1 = X(t)X(τ)−1h + X(t)
∫ t

τ

X(s)−1G1(s, X(t)y)ds, (29)

where h is an initial value and τ is an initial time. The integrand in the right hand side is a almost

periodic function because of the assumptions (A1) to (A3). In particular, it is written as ”constant

term” + ”almost periodic term” by virtue of the Fourier expansion. The linearly increasing term,

namely secular term, arises from the integral of ”the constant”. On the other hand, the integral of the

”almost periodic term” is almost periodic yet. Our purpose is to rewrite Eq.(29) so that the right hand

side is split explicitly into the secular term and the bounded term. Since the integral in the right hand

side is ”secular term” + ”almost periodic term”, if we divide the integral by t and take the limit t → ∞,

the almost periodic part vanishes and the coefficient of the secular term remains. This coefficient of

the secular term is just the function R1 defined by Eq.(19). To obtain the bounded term, we subtract

the secular part R1 from the integrand of Eq.(29) as

x1 = X(t)X(τ)−1h + X(t)
∫ t

τ

(X(s)−1G1(s, X(t)y) − R1(y))ds + X(t)R1(y)(t − τ). (30)
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Now we define h(1)
t by Eq.(20) and put h = h(1)

τ (y) in the above. Then we obtain

x1 = h(1)
t (y) + X(t)R1(y)(t − τ) (31)

and this proves Eq.(23) for i = 1.

Now that we know the naive expansion solutions up to the first order x(t, τ, y) = X(t)y + ε(h(1)
t (y) +

X(t)R1(y)(t − τ)), let us calculate the envelope of the family of these curves parameterized by τ. We

vary the parameter y, which is an initial value of the 0-th order equation, along an exact solution when

we vary the initial time τ (see the figure below).

exact solution

naive expansion solution

Then, it seems that the envelope gives a good approximate solution. To do this, put y = y(τ), and the

envelope is given as follows: At first, we differentiate the family by τ at t and determine y(τ) so that

the derivative is equal to zero.

d
dτ

∣∣∣∣
τ=t

x(t, τ, y(τ)) = X(t)
dy
dt

(t) + ε

∂h(1)
t

∂y
dy
dt

(t) − X(t)R1(y)

 = 0. (32)

It is easy to verify that if we put
dy
dt
= εR1(y) + O(ε2), (33)

then the equality (32) is satisfied. Let y(t) be an solution to this equation. Then, the envelope for the

family of the naive expansion solutions is given by

x(t, t, y(t)) = X(t)y(t) + εh(1)
t (y(t)). (34)

Calculating the higher order case in a similar manner, we find the definition of the RG equation.

Definition 7. Along with R1(y), · · · ,Rm(y) defined in Eqs.(19), (21), we define the m-th order RG

equation for Eq.(9) to be

ẏ = εR1(y) + ε2R2(y) + · · · + εmRm(y), y ∈ Rn. (35)

Using h(1)
t (y), · · · , h(m)

t (y) defined in Eqs.(20), (22), we define the m-th order RG transformation αt :

Rn → Rn to be
αt(y) = X(t)y + εh(1)

t (y) + · · · + εmh(m)
t (y). (36)

Remark 8. Since X(t) is nonsingular and h(1)
t (y), · · · , h(m)

t (y) are bounded uniformly in t ∈ R, for
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sufficiently small |ε|, there exists an open set U = U(ε) such that U is compact and the restriction of αt

to U is diffeomorphism from U into Rn.

An approximate solution is constructed as above, however, we want to construct an approximate

vector field to investigate topological properties of the original equation as discussed in Sec.1. Funda-

mental theorems of the RG method are listed below.

Theorem 9. (Approximation of Vector Fields)

Let ϕRG
t be the flow of the m-th order RG equation for Eq.(9) and αt the m-th order RG transforma-

tion. Then, there exists a positive constant ε0 such that the following holds for ∀|ε| < ε0:

(i) The map
Φt,t0 := αt ◦ ϕRG

t−t0 ◦ α−1
t0 : αt0 (U)→ Rn (37)

defines a local flow on αt0 (U) for each t0 ∈ R, where U = U(ε) is an open set on which αt0 is a

diffeomorphism (see Rem.8). This Φt,t0 induces a time-dependent vector field Fε through

Fε(t, x) :=
d

da

∣∣∣∣
a=t
Φa,t(x), x ∈ αt(U). (38)

(ii) There exists a time-dependent vector field F̃ε(t, x) such that

Fε(t, x) = Fx + εg1(t, x) + · · · + εmgm(t, x) + εm+1F̃ε(t, x), (39)

where F̃ε(t, x) is a C∞ function with respect to ε, x, t and bounded uniformly in t ∈ R with its deriva-

tives. In particular, the vector field Fε(t, x) is close to the original vector field Fx+εg1(t, x)+ · · · within

of O(εm+1).

Theorem 10. (Error Estimate)

(i) Let y(t) be a solution to the m-th order RG equation for Eq.(9) and αt the m-th order RG transfor-

mation. Then, integral curves of the approximate vector field Fε(t, x) are given by

x̃(t) = αt(y(t)) = X(t)y(t) + εh(1)
t (y(t)) + · · · + εmh(m)

t (y(t)). (40)

(ii) There exist positive constants ε0,C,T , and a compact subset V = V(ε) ⊂ Rn including the origin

such that for ∀|ε| < ε0, every solution x(t) of Eq.(9) and x̃(t) defined by Eq.(40) with x(0) = x̃(0) ∈ V

satisfy the inequality
||x(t) − x̃(t)|| < Cεm, for 0 ≤ t ≤ T/ε. (41)

The following two theorems are concerned with an autonomous equation

ẋ = Fx + εg1(x) + ε2g2(x) + · · · , (42)

where ε ∈ R is a small parameter, F is a diagonalizable n × n matrix all of whose eigenvalues lie on

the imaginary axis, and gi(x) are C∞ vector fields on Rn.

Theorem 11. (Existence of Invariant Manifolds)
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Let εkRk(y) be a first non zero term in the RG equation (35). If the vector field εkRk(y) has a normally

hyperbolic invariant manifold N, then the original equation (9) also has a normally hyperbolic invariant

manifold Nε, which is diffeomorphic to N, for sufficiently small |ε|. In particular, the stability of Nε

coincides with that of N.

Theorem 12. (Inheritance of the Symmetries)

(i) If vector fields Fx and g1(x), g2(x), · · · are invariant under the action of a Lie group G, then the m-th

order RG equation is also invariant under the action of G.

(ii) The m-th order RG equation commutes with the linear vector field Fx with respect to Lie bracket

product. Equivalently, each Ri(y), i = 1, 2, · · · , satisfies

X(t)Ri(y) = Ri(X(t)y), y ∈ Rn. (43)

Theorem 9 means that the family of approximate solutions (40) defines the vector field Fε(t, x) and

it approximates to the original vector field well. In other words, the curves (40) are solutions to the

”approximate differential equation”
dx̃
dt
= Fε(t, x̃). (44)

Once we obtain the approximate differential equation, subtracting the above equation from the original

equation (9) and using the Gronwall’s inequality, we can prove the Theorem 10. Since the approximate

vector field Fε(t, x) is close to the original vector field, by virtue of the Fenichel’s theorem (Thm.3), it is

expected that an invariant manifold of the original vector field is inherited from that of the approximate

vector field Fε(t, x). In fact, we can show that it is inherited from an invariant manifold of the RG

equation (Thm.11). It is because Eqs.(37,38) show that the flow of the RG equation is topological

conjugate to that of the approximate vector field. Thus, we hope that the RG equation is easier to

analyze than the original equation. Theorem 12 assures it. Actually, it means that if the original

equation is autonomous and invariant under the action of a k dimensional Lie group, then its RG

equation is invariant under the action of a k + 1 dimensional Lie group. It is worth pointing out that

Thm.12 (i) holds even if for non-autonomous equations, while Thm.12 (ii) holds only for autonomous

equations. However, since the RG equation is an autonomous equation even if the original equation is

non-autonomous, the RG equation has simpler structure than the original equation yet.

Remark 13. The infinite order RG equation and the infinite order RG transformation do not converge

as power series of ε in general. However, the necessary and sufficient condition for the convergence is

obtained by Chiba [6]. Roughly speaking, the infinite order RG equation converges if and only if the

original equation is invariant under the action of some Lie group which is diffeomorphic to S 1. This

fact is understood as follows : By Thm.12 (ii), the RG equation is invariant under the action of the

fundamental matrix eFt, which is diffeomorphic to S 1. Since the approximate vector field Fε(t, x) is

given as transforming the RG equation by the RG transformation (see Eqs.(37,38)), it is invariant under
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the S 1 action, which is obtained by transforming the eFt by the RG transformation. If the infinite order

RG equation and the infinite order RG transformation converge, then the left hand side of Eq.(39) is

well-defined as m→ ∞ and it is invariant under the action of S 1. Therefore the right hand side, which

corresponds to the original equation as m→ ∞, is also invariant under the action of S 1.

4 Examples

In this section, we give two simple examples.

Example 14. consider the system on R2

{
ẋ = y − x3 + εx,
ẏ = −x.

(45)

To bring the nonlinear term x3 into the first order term with respect to ε, put (x, y) = (ε1/2X, ε1/2Y).

Then we obtain {
Ẋ = Y + ε(X − X3),
Ẏ = −X.

(46)

Introduce the complex variable z by X = z + z, Y = i(z − z) to diagonalize the unperturbed term as
ż = iz +

ε

2
(z + z) − ε

2
(z + z)3,

ż = −iz +
ε

2
(z + z) − ε

2
(z + z)3.

(47)

For this system, the first order RG equation is given by

ż =
ε

2
(z − 3|z|2z). (48)

Putting z = reiθ yields  ṙ =
εr
2

(1 − 3r2),

θ̇ = 0.
(49)

Now Thm.12 (ii) means that the RG equation is invariant under the flow eFt, F =

(
i 0
0 −i

)
defined by

the harmonic oscillator (rotation invariance). Thus, written in the polar coordinate, the RG equation is

split into the equation of r direction and the equation of θ direction. Generally, the RG equation for a

perturbed harmonic oscillator is easily solved in the polar coordinate.

It is easy to show that this RG equation has a stable periodic orbit r =
√

1/3 if ε > 0. Now Thm.11

proves that the system (46) also has a stable periodic orbit, whose radius is of O(1). By transforming

it into the original (x, y) coordinate, it is shown that the system (45) has a stable periodic orbit whose

radius is of O(ε1/2). This result coincides with the classical Hopf theorem.

Example 15. Consider the system on R2

{
ẋ = y + y2,
ẏ = −x + ε2y − xy + y2.

(50)
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Changing the coordinates by (x, y) = (εX, εY) yields{
Ẋ = Y + εY2,
Ẏ = −X + ε(Y2 − XY) + ε2Y.

(51)

We introduce a complex variable z by X = z + z, Y = i(z − z). Then, the above system is rewritten as
ż = iz +

ε

2

(
i(z − z)2 − 2z2 + 2zz

)
+
ε2

2
(z − z),

ż = −iz +
ε

2

(
−i(z − z)2 − 2z2

+ 2zz
)
− ε

2

2
(z − z).

(52)

For this system, the second order RG equation is given by

ż =
1
2
ε2(z − 3|z|2z − 16i

3
|z|2z). (53)

Note that the first order term R1(y) vanishes. Putting z = reiθ results in
ṙ =

1
2
ε2r(1 − 3r2),

θ̇ = −8
3
ε2r2.

(54)

It is easy to verify that this RG equation has a stable periodic orbit r =
√

1/3. Since R1(y) = 0, Thm.11

for k = 2 implies that the original system (50) also has a stable periodic orbit, whose radius is of O(ε),

for small ε. Such a case is known as the degenerate Hopf bifurcation.

5 Relation to the traditional singular perturbation methods

It is shown in [1,2,6] that the RG method unifies the traditional singular perturbation methods. In

this section, we give a brief review of this fact.

5.1 Multi-scale method [18]

The multi-scale method is one of the most famous perturbation methods which is widely used. This

method is based on ideas of introducing various time scales and removing secular terms. Consider the

system on Rn

dx
dt
= ẋ = Fx + εg1(x) + ε2g2(x) + · · · , (55)

where the matrix F is a diagonalizable n × n constant matrix all of whose eigenvalues lie on the

imaginary axis and where the functions gi(x)’s are polynomial in x. Assume that there exist many time

scales t0, t1, · · · , tm satisfying
t0 = t, t1 = εt, · · · , tm = εmt. (56)

Then, d/dt is rewritten as
d
dt
=
∂

∂t0
+ ε
∂

∂t1
+ · · · + εm ∂

∂tm
. (57)

12



Further we suppose that the dependent variable x is expanded in ε as

x(t) = x0(t0, t1, · · · , tm) + εx1(t0, t1, · · · , tm) + ε2x2(t0, t1, · · · , tm) + · · · . (58)

Substituting Eqs.(57, 58) into Eq.(55) yields

∂x0

∂t0
= Fx0, (59)

∂x1

∂t0
+
∂x0

∂t1
= Fx1 + g1(x0). (60)

The solution to the former is given by x0 = eFt0 y, where the initial value y = y(t1, · · · , tm) depends on

t1, · · · , tm. Substituting the x0 into Eq.(60), we obtain the general solution of x1 as

x1(t0, · · · , tm) = eF(t0−τ)h + eFt0

∫ t0

τ

e−Fs

(
g1(eFsy) − eFs ∂y

∂t1

)
ds.

Since the secular term arising from the integral in the right hand side is given by

lim
t0→∞

1
t0

∫ t0

τ

e−Fs

(
g1(eFsy) − eFs ∂y

∂t1

)
ds = lim

t0→∞
1
t0

∫ t0

τ

e−Fsg1(eFsy)ds − ∂y
∂t1
, (61)

if we determine y so that the secular term vanishes, we obtain the first order RG equation ∂y/∂t1 =

R1(y)⇒ ∂y/∂t = εR1(y). We can obtain the higher order RG equation in a similar manner.

5.2 Normal forms [15],[16]

For Eq.(55), if there exists a time independent (local) coordinate transformation x �→ z such that

Eq.(55) is brought into {
ż = Fz + εg̃1(z) + ε2g̃2(z) + · · ·
s.t. g̃i(eFtz) = eFtg̃i(z), for i = 1, 2, · · · , (62)

then Eq.(62) is called the normal form of Eq.(55). Since a purpose of normal forms is not obtaining

approximate solutions but transforming vector fields by coordinate transformations, it answers our

purpose of investigating topological properties of a given vector field.

By Thm.9, if we apply the RG transformation x = αt(y) to Eq.(55), we obtain the RG equation (35).

Further, because of Thm.12 (ii), changing the coordinates by y = e−Ftz yields the system

ż = Fz + εR1(z) + ε2R2(z) + · · · . (63)

Since Ri commutes with eFt, this system seems to be the normal form of Eq.(55). However, we have

to show that the coordinate transformation x = αt(e−Ftz) from Eq.(55) to Eq.(63) is independent of t.

In fact, it immediately follows from the next lemma.

Lemma 16. The RG transformation αt satisfies the equality αt(eFt′y) = αt+t′(y).

Since this lemma shows that αt(e−Ftz) = α0(z) is independent of t, Eq.(63) is proved to be the normal

form of Eq.(55) and the RG equation is equivalent to the normal form. Note that the RG method
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is applicable to non-autonomous equations while the normal forms are defined only for autonomous

equations.

Remark 17. It is known that for a given equation (55), its normal forms are not unique in general.

Thus, the RG equations are also not unique. The non-uniqueness results from undetermined integral

constants in Eqs.(20, 22) (note that integral constants in Eqs.(19, 21) vanish as the limit t → ∞). Since

the integrating variable is s, we can choose arbitrary functions of y as integral constants in Eqs.(20,

22). An integral constant in the definition of h(i)
t affects the definitions of Ri+1,Ri+2, · · · . If we choose

integral constants appropriately so that R2,R3, · · · take the simplest forms in some sense, the resultant

RG equation is proved to be equivalent to the hyper-normal forms [4].

5.3 Center manifold reduction [14]

For Eq.(55), we suppose that

(C1) all eigenvalues of the matrix F are on the imaginary axis or the left half plane. The Jordan block

corresponding to eigenvalues on the imaginary axis is diagonalizable.

(C2) each gi(x) is polynomial in x.

If all eigenvalues of F are on the left half plane, the origin is stable and the flow near the origin is trivial.

In what follows, we suppose that at least one eigenvalue is on the imaginary axis. In this case, Eq.(55)

has a center manifold which is tangent to the center subspace at the origin. Since nontrivial phenomena

such as bifurcations occur on a center manifold and orbits out of the center manifold approach to the

center manifold as t → ∞, it is important to investigate the flow on the center manifold. The purpose

of this section is to construct a center manifold and a flow on it by the RG method.

Let N0 be the center subspace of F, which is spanned by the eigenvectors associated with the eigen-

values on the imaginary axis. For Eq.(55), we define the functions Ri : N0 → Rn and h(i)
t : N0 →

Rn, i = 1, 2, · · · to be

R1(y) := lim
t→−∞

1
t

∫ t

X(s)−1g1(s, X(s)y)ds, (64)

h(1)
t (y) := X(t)

∫ t(
X(s)−1g1(s, X(s)y) − R1(y)

)
ds, (65)

and

Ri(y) := lim
t→−∞

1
t

∫ t(
X(s)−1Gi(s, X(s)y, h(1)

s (y), · · · , h(i−1)
s (y))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )yRi−k(y)

)
ds, (66)

h(i)
t (y) := X(t)

∫ t(
X(s)−1Gi(s, X(s)y, h(1)

s (y), · · · , h(i−1)
s (y))

−X(s)−1
i−1∑
k=1

(Dh(k)
s )yRi−k(y) − Ri(y)

)
ds, (67)
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for i = 2, 3, · · · , respectively. They are the same as Eqs.(19,20,21,22), except that the domain is

restricted to the center subspace N0. In the above definitions, the integral constants are assumed to be

zero. We can prove the next lemma.

Lemma 18. The functions R1(y),R2(y), · · · are well-defined (namely, the limits converge) and the

following holds.

(i) Ri(y) ∈ N0 for all y ∈ N0, i = 1, 2, · · · .
(ii) h(i)

t (y) is bounded uniformly in t ∈ R for all y ∈ N0, i = 1, 2, · · · .

With these Ri, h
(i)
t , we define the m-th order RG equation on N0 to be

ẏ = εR1(y) + ε2R2(y) + · · · + εmRm(y), y ∈ N0, (68)

and define the m-th order RG transformation on N0 αt : N0 → Rn by

αt(y) = X(t)y + εh(1)
t (y) + · · · + εmh(m)

t (y). (69)

They are the same as Eqs.(35,36), except that the domain is restricted to the center subspace N0 as be-

fore. Since Lem.18 shows that the domain and the range of Ri(y) are N0, Eq.(68) defines the differential

equations on N0. It means that the system (68) has dim N0 linearly independent equations.

In this situation, Thm.9 to Thm.12 hold on N0. Further, we can prove the next theorem.

Theorem 19. (Approximation of Center Manifolds, [5])

Let αt be the m-th order RG transformation on N0 and W a compact neighborhood of the origin such

that αt is diffeomorphism on W ∩ N0 (see Rem.8). Then, the set αt(W ∩ N0) lies within an O(εm+1)

neighborhood of the center manifold of Eq.(55).

5.4 Averaging method [17]

Consider the system on a manifold M

ẋ = εg1(t, x) + ε2g2(t, x) + · · · , (70)

where each gi is a time-dependent smooth vector field on M, which is almost periodic in t, the set

of whose Fourier exponents has no accumulation points on R. For this system, we define the maps

Ri, u
(i)
t : M → M to be

R1(y) = lim
t→∞

1
t

∫ t

g1(s, y)ds, (71)

u(1)
t (y) =

∫ t

(g1(s, y) − R1(y)) ds, (72)

and

Ri(y) = lim
t→∞

1
t

∫ t(
Gi(s, y, u(1)

s (y), · · · , u(i−1)
s (y)) −

i−1∑
k=1

(Du(k)
s )yRi−k(y)

)
ds, (73)

u(i)
t (y) =

∫ t(
Gi(s, y, u(1)

s (y), · · · , u(i−1)
s (y)) −

i−1∑
k=1

(Du(k)
s )yRi−k(y) − Ri(y)

)
ds, (74)
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for i = 2, 3, · · · , respectively. Define the m-th order RG equation by Eq.(35) and the m-th order RG

transformation by
αt(y) = y + εu(1)

t (y) + · · · + εmu(m)
t (y). (75)

In this situation, we can prove Thm.9 to Thm.12(i).

Remark 20. Consider the system of the form

ẋ = f (x) + εg1(t, x) + ε2g2(t, x) + · · · . (76)

Let ϕt be the flow of the vector field f and suppose that it is almost periodic in t. Then, if we change

the coordinates as x = ϕt(X), the above system is brought into the system

Ẋ = ε(Dϕt)
−1
X g1(t, ϕt(X)) + ε2(Dϕt)

−1
X g2(t, ϕt(X)) + · · · , (77)

which is of the form of Eq.(70). Thus, the RG method in the present section gives extension of those

in the cases of the previous sections. The RG equation in this section is proved to be equivalent to the

averaging equation in the averaging method.

6 Analysis of the Kuramoto model

The Kuramoto model of coupled phase oscillators

θ̇i = ωi +
ε

N

N∑
j=1

sin(θ j − θi), i = 1, · · · ,N (78)

is one of the most studied models of nonlinear phenomena of globally coupled limit-cycle oscillators

[19], where θi ∈ S 1 is a particle on a circle, ωi is a constant called the natural frequency, N is a

number of particles, and ε is the coupling strength. It is known numerically that if ε is larger than the

threshold ε0, then < θ̇i > − < θ̇ j > tends to zero as t → ∞ for all i, j, where < > denotes averaging

over time. Such a phenomenon is called the synchronization. However, mechanism of the transition

from the coupled harmonic oscillators, namely ε = 0 (uncoupled system), to the synchronization state

is not well understood [20]. Most recently, bifurcation diagrams of the Kuramoto model for small N

and small ε were investigated by Maistrenko et al. [21,22] and Popovych et al. [23], in which natural

frequencies are assumed to be distributed symmetrically around a mean frequency Ω :

ωi −Ω = −(ωN−i+1 −Ω), i = 1, 2, · · · ,N. (79)

Note that we can put Ω = 0 without loss of generality because the Kuramoto model is invariant under

the rotation θi �→ θi+Ω. In this case, it is easy to show that the Kuramoto model has the invariant torus

M defined by
M = {θi = −θN−i+1, i = 1, · · · ,N}. (80)

It is important to determine the stability of M because the synchronization solutions are always re-

stricted to the torus [22]. Since M is neutrally stable when ε = 0, the (in)stability of M is quite weak
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when ε is small and in this case it is difficult to determine the stability by numerical simulation. In this

article, we apply the RG method to the Kuramoto model to determine the stability of M for small ε.

We can prove the following results.

Theorem 21. Suppose that N = 2M − 1 is an odd number. Suppose the natural frequencies satisfy

the symmetric condition (79) (we put Ω = 0) and the following nonresonance condition :

ωi � ω j for all i, j,

ωk + ω j = 2ωi if and only if i = k = j or j = 2M − k, i = M,

ωi + ω j = ωk + ωl if and only if i = j = k = l or j = 2M − i, l = 2M − k,

3ωi = ω j + ωk + ωl if and only if i = j = k = l,

ωi + 2ωk = ω j + 2ωl if and only if i = j, k = l or j = 2M − i, k = M, l = i.

Then there exists positive constant ε0, which depends on the natural frequencies, such that if 0 < ε <

ε0, the invariant torus M is stable and the transverse Lyapunov exponents of M is of O(ε3).

When N = 3, the nonresonance condition is violated if and only if ω1 = ω2 = ω3 = 0. However, in

this case, the phase portrait of the Kuramoto model is independent of ε because we can divide the right

hand side of Eq.(78) by ε by changing the time scale so that the system is independent of ε. Similarly,

if ωi = 0 for all i, the phase portrait of the Kuramoto model is independent of ε. Otherwise, for N = 5,

the nonresonance condition is violated if and only if

ω1 = 0, ω2, 3ω2/2, 2ω2, 3ω2, 4ω2, 5ω2. (81)

In these cases, the RG equations take different forms from Eq.(83), which is the RG equation for the

nonresonance case. To determine the stability of M for the above cases, deriving the RG equations for

individual resonance cases and investigating them, we can prove the next theorem.

Theorem 22. Suppose that N = 5 and the natural frequencies satisfy the symmetric condition

(79). Then the invariant torus M is stable for sufficiently small ε. In particular, if all of the natural

frequencies are not identical, the transverse Lyapunov exponents of M is of O(ε3).

In this article, we give the proof of Thm.21. The proof of Thm.22 needs more hard analysis and it is

omitted here.

Proof of Thm.21 To write down the system (78) in the Cartesian coordinate, put xi = cos θi, yi =

sin θi. Further putting xi = zi + zi, yi = i(zi − zi), we obtain the system of the form
żi = −iωizi +

2ε
N

N∑
j=1

zi(ziz j − ziz j),

żi = iωizi +
2ε
N

N∑
j=1

zi(ziz j − ziz j).

(82)

Since this system is the perturbed harmonic oscillators whose unperturbed term has eigenvalues

±iω1, · · · ,±iωN , we can apply the RG method to this system. After deriving the 3-rd order RG
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equation for Eq.(82), we put zi = eiθi to change to the polar coordinate (For the RG equation, we use

the same notations zi, θi with those of the original system). Then we obtain the RG equation of the

form

θ̇M = −16ε2

N3

∑
k�M

1

ω2
k

sin(2θM − θk − θ2M−k),

θ̇i =
8ε2

N2

2 ∑
k�i

1
ωi − ωk

− 1
ωi

cos(θi − 2θM + θ2M−i)


+

16ε3

N3

( ∑
k�i,2M−i

1

ω2
i −ω2

k

sin(θi − θk − θ2M−k + θ2M−i) − 2
∑

k�i,2M−i

1
ωi(ωi−ωk)

sin(θi − θk − θ2M−k + θ2M−i)

+2
∑

k�i,M

1
ωk(ωi − ωk)

sin(2θM − θk − θ2M−k) −
∑

k�M,i,2M−i

1
ωk(ωi + ωk)

sin(θi − θk − θ2M−k + θ2M−i)

−2
∑

k�M,2M−i

1
ωi(ωi + ωk)

sin(θi − 2θM + θ2M−i)

)
, (i � M).

(83)

Note that the first order term vanishes. Since the invariant torus M corresponds to the solution θi +

θ2M−i = 0, we put φi = θi + θ2M−i and φM = 2θM . Then we obtain the system of φi

φ̇M = −64ε3

N3

M−1∑
k=1

1

ω2
k

sin(φM − φk),

φ̇i =
32ε3

N3

(
− 1

ω2
i

sin(φi − φM) − 4
M−1∑
k�i

1

ω2
i − ω2

k

sin(φi − φM)

+4
M−1∑
k�i

1

ω2
i − ω2

k

sin(φM − φk)

)
, (i = 1, · · · ,M − 1).

(84)

Now that the second order term vanishes, Thm.11 for k = 3 is applicable to this system. We can prove

that the eigenvalues of the Jacobian matrix at the fixed point φi = 0 (i = 1, · · · ,M) of the right hand

side of Eq.(84) have negative real parts except to a zero eigenvalue, which results from the rotation

invariance of Eq.(78). Thus, the solution φi = θi + θ2M−i = 0 (i = 1, · · · ,M) of the RG equation is

stable and this proves that the invariant torus M is stable for small ε > 0.
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