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Abstract

A structure of families of Laurent series solutions of a quasi-homogeneous vector
field is studied, where a given vector field is assumed to have a commutable vector
field. For an m dimensional vector field, a family of Laurent series solutions is called
principle if it includesm arbitrary parameters, and called non-principle if the number
is smaller than m. Starting from a principle Laurent series solutions, a systematic
method to obtain a non-principle Laurent series solutions is given. In particular,
from the Kovalevskaya exponents of the principle Laurent series solutions, which is
one of the invariants of quasi-homogeneous vector fields, the Kovalevskaya exponents
of the non-principle Laurent series solutions are obtained by using the commutable
vector field.

1 Introduction

A differential equation defined on a complex region is said to have the Painlevé
property if any movable singularity (a singularity of a solution which depends on an
initial condition) of any solution is a pole. Among them, an important class is the
equations that all solutions are meromorphic.

Painlevé and his group classified second order ODEs having the Painlevé property
and found new six differential equations called the Painlevé equations PI, · · · ,PVI.
Nowadays, it is known that they are written in Hamiltonian forms

(PJ) :
dq

dz
=

∂HJ

∂p
,

dp

dz
= −∂HJ

∂q
, J = I, · · · ,VI.

Among six Painlevé equations, the Hamiltonian functions of the first, second and
fourth Painlevé equations are polynomials in both of the independent variable z and
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the dependent variables (q, p). They are given by

HI(q, p) =
1

2
p2 − 2q3 − zq, (1.1)

HII(q, p) =
1

2
p2 − 1

2
q4 − 1

2
zq2 − αq,

HIV(q, p) = −pq2 + p2q − 2pqz − αp+ βq,

respectively, where α, β ∈ C are arbitrary parameters. Since they satisfy Painlevé
property and the right hand sides are polynomials, any solutions are meromorphic.

In general, a polynomial H(x1, · · · , xm) is called a quasi-homogeneous polyno-
mial if there are a tuple of positive integers (a1, · · · , am), called the weight, and h,
called the weighted degree, such that

H(λa1x1, · · · , λanxm) = λhH(x1, · · · , xm) (1.2)

for any λ ∈ C. The above Hamiltonians HI, HII, HIV are quasi-homogeneous with
respect to the weights given in Table 1, if we ignore terms including parameters α, β.
In Chiba [6], possible weights arising from Hamiltonian systems are classified from
a view point of singularity theory and it is shown that they are related to Painlevé
equations.

deg(q, p, z) deg(H) κ

PI (2, 3, 4) 6 6
PII (1, 2, 2) 4 4
PIV (1, 1, 1) 3 3

Table 1: deg(H) denotes the weighted degree of the Hamiltonian function with
respect to the weight deg(q, p, z). κ denotes the Kovalevskaya exponent defined in
Section 2.

For a general vector field F (x1, · · · , xm), F = (f1, · · · , fm) on Cm, its weight
(a1, · · · , am) is defined in a similar manner as

fi(λ
a1x1, · · · , λamxm) = λai+γfi(x1, · · · , xm), i = 1, · · · ,m, γ ∈ N, (1.3)

if it exists. Once a weight is given with γ = 1, to construct a Laurent series solution
of the equation dxi/dz = fi is straightforward. It is expressed in the form

xi(z) = ci(z − α0)
−ai +

∞∑
j=1

di,j(z − α0)
−ai+j,

where coefficients ci and di,j are determined by substituting this expression into the
equation. Important features are that a position of a pole α0 can take arbitrary
number depending on an initial condition, that is called the movable singularity,
and that the order ai of the pole is the same as the weight of xi.
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From Laurent series solutions, we define the Kovalevskaya exponents as follows:
As an example, we consider the first Painlevé equation (1.1). Written in the second
order equation, it is expressed as q′′ = 6q2 + z. Its Laurent series solution is given
by

q(z) = (z − α0)
−2 − α0

10
(z − α0)

2 − 1

6
(z − α0)

3 + α1(z − α0)
4 +O((z − α0)

5), (1.4)

where α1 is an arbitrary parameter called a free parameter. Counting from the lowest
order −2, α1 is included in the 6th place and this 6 is called the Kovalevskaya
exponent. In general, for a Laurent series solution xi(z) of a quasi-homogeneous
system, if an arbitrary parameter is included in the coefficient of (z − α0)

−ai+j, j is
called the Kovalevskaya exponent.

As an another example, let us consider the autonomous limit of the fourth order
first Painlevé equation. It is a four dimensional system defined by the following
Hamiltonian

H1(q1, p1, q2, p2) = 2p1p2 + 3p22q1 + q41 − q21q2 − q22. (1.5)

The weight is given by deg(q1, p1, q2, p2) = (2, 5, 4, 3). The Hamiltonian vector field
has two types of families of Laurent series solutions. The one is starting from
q1(z) = (z−α0)

−2+ · · · , and it includes three arbitrary parameters at 2nd, 5th, 8th
coefficients. Thus the Kovalevskaya exponents are 2, 5, 8. The other family starting
from q1(z) = 3(z − α0)

−2 + · · · includes only two arbitrary parameters at 8th and
10th coefficients. Thus the Kovalevskaya exponents are 8 and 10.

In general, for a given m-dimensional vector field F , if any solution is meromor-
phic, a general solution should include m arbitrary parameters determined by an
initial condition. In the above example, they are the pole α0 and three parame-
ters in coefficients. Such a family of Laurent series solutions is called the principle
Laurent series that constructs an m dimensional manifold Mm. A boundary of the
manifold, if it exists, may be an m− 1 dimensional manifold Mm−1. It is occupied
by a different family of Laurent series solutions, that includes only m− 1 arbitrary
parameters. Such a family is called non-principle or lower. The latter family in the
above example is this case.

Then, a natural question arises: can we construct a lower Laurent series solutions
from the principle one? The purpose in this article is to consider this problem and
give a systematic way to obtain the lower one from the principle one.

For this purpose, we assume that for a given quasi-homogeneous vector field F ,
there exists a quasi-homogeneous vector field G that commutes with F . Let us
take an initial point on Mm and consider the solution x(z) of dx/dz = F . Then,
x(z) ∈ Mm for any z ∈ C. However, if we change the “route” in the sense that x(z)
is governed by the flow of G from some point, a solution may reach at Mm−1 along
the orbit of G and a principle Laurent series solutions degenerates to a lower one.
Indeed, for the above example, there is another Hamiltonian H2 that commutes with
H1 in Poisson bracket, see Example 4.13 for H2. Based on this idea, we will obtain
a lower Laurent series solutions from the principle one.
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For the list of weights, types of Laurent series solutions and their Kovalevskaya
exponents of four dimensional polynomial Painlevé equations, the reader can refer
to [6]. The method developed in this article is applicable to all of them.

2 Settings and the Kovalevskaya exponents

Let F = (f1, · · · , fm) andG = (g1, · · · , gm) be quasi-homogeneous polynomial vector
fields on Cm. We consider the following partial differential equations

∂xi

∂z1
= fi(x),

∂xi

∂z2
= gi(x), i = 1, · · · ,m, (2.1)

where x = (x1, · · · , xm) ∈ Cm and z1, z2 ∈ C. We suppose the following.

(A1) F and G are quasi-homogeneous: there exists a tuple of positive integers
(a1, · · · , am) ∈ Nm and γ ∈ N such that{

fi(λ
a1x1, · · · , λamxm) = λai+1fi(x1, · · · , xm)

gi(λ
a1x1, · · · , λamxm) = λai+γgi(x1, · · · , xm),

(2.2)

for any λ ∈ C. We call γ the degree of G with respect to the weight (a1, · · · , am).
The degree of F is assumed to be 1.

(A2) F and G commute with each other with respect to the Lie bracket: [F,G] =
0. This is equivalent to

m∑
j=1

(
fj(x)

∂gi
∂xj

(x)− gj(x)
∂fi
∂xj

(x)

)
= 0, i = 1, · · · ,m. (2.3)

(A3) F (x) = 0 only when x = 0.

In this section, we consider only the flow of F and z1 is denoted by z for simplicity.
Let us consider the formal series solution of dxi/dz = fi(x) of the form

xi(z) = ci(z − α0)
−qi +

∞∑
j=1

di,j(z − α0)
−qi+j, (2.4)

where qi ∈ N, α0 is a possible singularity and ci, di,j ∈ C are coefficients.

Theorem 2.1([3], Thm.2.9). Under the assumptions (A1) and (A3), any
formal Laurent series solution (2.4) is a convergent Laurent series solution of the
form

xi(z) = ci(z − α0)
−ai +

∞∑
j=1

di,j(z − α0)
−ai+j, (c1, · · · , cm) 6= (0, · · · , 0), (2.5)

where the exponents (a1, · · · , am) are the weight of F .
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This theorem means that there are no Laurent series solutions whose orders of
poles are larger than (a1, · · · , am). Further, we can show that if (c1, · · · , cm) =
(0, · · · , 0), then di,j = 0 for j = 1, · · · , ai − 1. This means that (2.5) is a local
holomorphic solution. To prove it, the assumption (A3) is essentially used, while
for the convergence of the series, (A1) is enough. By substituting (2.5) into the
equation dxi/dz = fi(x) and comparing the coefficients of (z−α0)

j in both sides, it
turns out that ci and di,j are given as follows.

Definition 2.2. A root c = (c1, · · · , cm) ∈ Cm, c 6= (0, · · · , 0) of the equation

−aici = fi(c1, · · · , cm), i = 1, · · · ,m (2.6)

is called the indicial locus. For a fixed indicial locus c, dj = (d1,j, · · · , dm,j) is
iteratively determined as a solution of the equation 2

(K(c)− j · I)dj = ( polynomial of c and dk for k = 1, · · · , j − 1), (2.7)

where I is the identity matrix and K(c) is defined by

K(c) =

{
∂fi
∂xj

(c1, · · · , cm) + aiδi,j

}m

i,j=1

, (2.8)

that is called the Kovalevskaya matrix (K-matrix). Its eigenvalues κ0, κ1, · · · , κm−1

are called the Kovalevskaya exponents (K-exponents) associated with c.

The following results are well known, see [1, 10].

Proposition 2.3.
(i) −1 is always a Kovalevskaya exponent. One of its eigenvectors is given by
(a1c1, · · · , amcm). In what follows, we set κ0 = −1.

(ii) κ = 0 is a Kovalevskaya exponent associated with c if and only if c is not an
isolated root of the equation (2.6).

From (2.7), it follows that if a positive integer j is not an eigenvalue of K(c),
dj is uniquely determined. If a positive integer j is an eigenvalue of K(c) and (2.7)
has a solution dj, then dj + v is also a solution for any eigenvectors v. This implies
that the Laurent series solution (2.5) includes an arbitrary parameter (called a free
parameter) in dj = (d1,j, · · · , dm,j). Therefore, if (2.5) represents a k-parameter
family of Laurent series solutions which includes k − 1 free parameters other than
α0, at least k − 1 Kovalevskaya exponents have to be nonnegative integers and we
need k − 1 independent eigenvectors associated with them. Hence, the classical
Painlevé test [10] for the necessary condition for the Painlevé property is stated as
follows;

Classical Painlevé test. If the system (2.1) satisfying (A1) and (A3) has a m-
parameter family of Laurent series solutions of the form (2.5), there exists an indicial

2In this article, a column vector is often written as a row vector.
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locus c = (c1, · · · , cm) such that all Kovalevskaya exponents except for κ0 = −1 are
nonnegative integers, and the Kovalevskaya matrix is semisimple.

In Chiba [3], the necessary and sufficient condition for the system (2.1) to have an
m-parameter family of Laurent series solutions is given, that is called the extended
Painlevé test. The gap of them is that even if the necessary condition for the classical
Painlevé test is satisfied, (2.7) may not have a solution dj. In this case, the series
solution (2.5) is modified as a combination of powers of (z − α0) and log(z − α0).

Definition 2.4. An indicial locus c = (c1, · · · , cm) is called principle if the
associated Laurent series solution (2.5) exists and includes m free parameters. If
the number of free parameters is smaller than m, the locus is called a lower indicial
locus.

In the rest of this article, we assume that there exists an isolated principle indicial
locus c of the vector field F ; that is, its all K-exponents are positive integers other
than κ0 = −1 and the series solution (2.5) includes m free parameters (one of which
is α0). In this case, for each κj (j 6= 0), we can take di,κj

as a free parameter for
some i. We denote it as di,κj

= αj. Then, all coefficients di,j of (2.5) are polynomials
of α1, · · · , αm−1 and the solution is expressed as

xi(z) = ci(z − α0)
−ai +

∞∑
j=1

di,j(z − α0)
−ai+j

= xi(z;α0, α1, · · · , αm−1).

The initial value of xi(z;α0, α1, · · · , αm−1) is denoted by

xi(0;α0, α1, · · · , αm−1) = Φi(α0, α1, · · · , αm−1) = Φi(A),

Φ(A) = (Φ1(A), · · · ,Φm(A)), A = (α0, α1, · · · , αm−1),

which is well-defined for small |α0| 6= 0 and Φ(A) is a locally biholomorphic map
into Cm. In what follows, di,j is denoted by di,j(A) as a polynomial of α0, · · · , αm−1,
though it does not depend on α0 by the construction.

Proposition 2.5. Put

λ · A := (λ−1α0, λ
κ1α1, · · · , λκm−1αm−1).

Functions di,j and Φi are quasi-homogeneous satisfying

di,j(λ · A) = λjdi,j(A), Φi(λ · A) = λaiΦi(A), λ ∈ C. (2.9)

Proof. Put z̃ = λ−1z and x̃i = λaixi. Then, x̃(z̃) satisfies the same equation as
x(z) because of (A1). Let

xi = ci(z − α0)
−ai +

∞∑
j=1

di,j(A)(z − α0)
−ai+j (2.10)
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be a Laurent series solution with free parameters α0, · · · , αm−1. Then

Φi(A) = ci(−α0)
−ai +

∞∑
j=1

di,j(A)(−α0)
−ai+j, (2.11)

Φi(λ · A) = λai

(
ci(−α0)

−ai +
∞∑
j=1

λ−jdi,j(λ · A)(−α0)
−ai+j

)
. (2.12)

Similarly, consider the Laurent series solution of x̃, whose locus c is the same as that
of (2.11):

x̃i = ci(z̃ − α̃0)
−ai +

∞∑
j=1

di,j(Ã)(z̃ − α̃0)
−ai+j, Ã = (α̃0, · · · , α̃m−1). (2.13)

Since x(z) and x̃(z̃) satisfy the same equation, di,j in (2.10) and (2.13) are the
common function of A, though we can choose different values of free parameters. If
we put α̃0 = λ−1α0, (2.13) is rewritten as

λaixi = ciλ
ai(z − α0)

−ai +
∞∑
j=1

di,j(Ã)λ
ai−j(z − α0)

−ai+j,

⇒ Φi(A) = ci(−α0)
−ai +

∞∑
j=1

di,j(Ã)λ
−j(−α0)

−ai+j. (2.14)

It follows from (2.11) and (2.14) that di,j(A) = λ−jdi,j(Ã). When κj is one of the K-
exponents, di,κj

(A) = αj for some i by the definition. Hence, we have αj = λ−κj α̃j.

This shows Ã = λ ·A and di,j(A) = λ−jdi,j(λ ·A). Therefore, (2.11) and (2.12) prove
the desired result. □

Corollary 2.6. di,j(A) 6= 0 only when there exists a tuple of integers (n1, · · · , nm−1) 6=
(0, · · · , 0) such that n1κ1 + · · ·+ nm−1κm−1 = j.

Proof. Assume that a monomial αn1
1 αn2

2 · · · · · αnm−1

m−1 is included in di,j(A).
Substituting it into (2.9) proves the desired result. □

For a quasi-homogeneous vector field dx/dz = F (x) satisfying (A1), let x =
φ(y1, · · · , ym), φ = (φ1, · · · , φm) be a (locally) holomorphic coordinate transforma-
tion satisfying

φi(λ
q1y1, · · · , λqmym) = λaiφi(y1, · · · , ym), i = 1, · · · ,m,

where (q1, · · · , qm) ∈ Zm is an arbitrary tuple of integers and (a1, · · · , am) is the
same as in (A1). Remark that (2.9) is just in this case. By the transformation,
dx/dz = F (x) is transformed into the system

dy

dz
= (Dφ)−1F (φ(y)) := F̃ (y),
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where Dφ is the Jacobi matrix.

Theorem 2.7 ([3], Thm.2.5).

F̃ (y) is quasi-homogeneous with respect to the weight (q1, · · · , qm) whose degree
is the same as that of F . If c is an indicial locus of F , c̃ = φ−1(c) is an indicial locus

of F̃ . The K-exponents of F̃ at c̃ are the same as those of F at c.

Example 2.8. Consider the 2-dim system

dx

dz
= y,

dy

dz
= 6x2.

This satisfies the assumptions (A1) and (A3) with the weight (a1, a2) = (2, 3).
The indicial locus is uniquely given by (c1, c2) = (1,−2). Thus, the Laurent series
solution starts from (x, y) = (T−2, −2T−3), T = z−α0. The K-exponent associated
with the locus is κ1 = 6. Hence, a free parameter appears in d1,6 and/or d2,6. Indeed,
we can verify that d2,6 = 4d1,6 and a solution is given by(

x
y

)
=

(
0
−2

)
T−3 +

(
1
0

)
T−2 +

(
0

4d1,6

)
T 3 +

(
d1,6
0

)
T 4

+

(
0

10d21,6/13

)
T 9 +

(
d21,6/13

0

)
T 10 + · · · . (2.15)

In this case, we put α1 := d1,6. All other coefficients are polynomials of α1 and we
can confirm Prop. 2.5.

3 Properties of the vector field G

To consider the vector field G = (g1, · · · , gm), we prepare several formulae and
notations. The derivative of (A1) at λ = 1 yields

m∑
j=1

ajxj
∂fi
∂xj

(x) = (ai + 1)fi(x),
m∑
j=1

ajxj
∂gi
∂xj

(x) = (ai + γ)gi(x). (3.1)

Putting x = c to the latter one, we obtain

−
m∑
j=1

fj(c)
∂gi
∂xj

(c) = (ai + γ)gi(c). (3.2)

The derivative of (A1) by xj gives
∂fi
∂xj

(λa1x1, · · · , λamxm) = λai+1−aj
∂fi
∂xj

(x1, · · · , xm),

∂gi
∂xj

(λa1x1, · · · , λamxm) = λai+γ−aj
∂gi
∂xj

(x1, · · · , xm).
(3.3)
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As before, we assume that c is a principle locus so that there is a Laurent series
solution

xi(z) = (z − α0)
−ai

(
ci +

∞∑
k=1

di,k(A)(z − α0)
k

)
=: (z − α0)

−aiyi(z) (3.4)

including m free parameters A = (α0, · · · , αm−1). Substituting this solution into
gi(x) gives

gi(x(z)) = (z − α0)
−ai−γgi(y1, · · · , ym)

= (z − α0)
−ai−γ

∞∑
k=0

gi,k(A)(z − α0)
k, (3.5)

where gi,k(A) is the coefficient of the Taylor expansion of gi(y1, · · · , ym) in z−α0. We
denote Gk(A) := (g1,k(A), · · · , gm,k(A)). In particular gi,0 = gi(c) and G0 = G(c).

Proposition 3.1. For a given indicial locus c, the identity (K(c) + γ)G(c) = 0
holds. In particular, if −γ is not a K-exponent, then G(c) = 0 (here, we need not
assume that c is principle).

Proof. (A2) and (3.2) provide

0 =
m∑
j=1

(
fj(c)

∂gi
∂xj

(c)− gj(c)
∂fi
∂xj

(c)

)
= −

m∑
j=1

∂fi
∂xj

(c)gj(c)− (ai + γ)gi(c),

which proves the proposition. □
Corollary 3.2. If G(c) 6= 0, then −γ is a K-exponent. In particular, when

γ 6= 1, there exists a lower indicial locus.

Corollary 3.3. Suppose c is a principle indicial locus.
(i) If γ ≥ 2, G(c) = 0.
(ii) If γ = 1, G(c) = k(a1c1, · · · , amcm) for some k ∈ C.

Proof. (i) By the assumption, there are no negative K-exponents other than
κ0 = −1. (ii) When γ = 1, G(c) = 0 or G(c) is an eigenvector of κ0 = −1. Since
κ0 = −1 is a simple eigenvalue by the assumption, the statement (ii) follows from
Prop.2.3. □

More generally, the next theorem holds.

Theorem 3.4. Let c be a principle indicial locus.

The equality (K(c) + γ − k)Gk(A) = 0 holds for k = 0, 1, · · · , γ − 1.

Corollary 3.5. When γ ≥ 2, G0 = G1 = · · · = Gγ−2 = 0 and Gγ−1 is of the form
Gγ−1 = h(A) ·(a1c1, · · · , amcm), where h(A) is a certain polynomial of α1, · · · , αm−1.

Proof. The case γ = 1 (i.e. k = 0 in the theorem) had been proved in Prop.3.1.
Thus we consider γ ≥ 2.
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Since x(z) in (3.4) is a solution of dx/dz = f(x),

fj(x(z)) = −ajcj(z − α0)
−aj−1 −

∞∑
k=1

(aj − k)dj,k(z − α0)
−aj+k−1

= −(z − α0)
−1ajxj(z) +

∞∑
k=1

kdj,k(z − α0)
−aj+k−1.

Eq.(3.3) shows

∂fi
∂xj

(x(z)) = (z − α0)
aj−ai−1 ∂fi

∂xj

(y),
∂gi
∂xj

(x(z)) = (z − α0)
aj−ai−γ ∂gi

∂xj

(y),

where y = (y1, · · · , ym) is defined in (3.4). Substituting them into (A2) with (3.1)
and (3.5), we have

0 =
m∑
j=1

(
(z − α0)

aj−ai−1 ∂fi
∂xj

(y) · (z − α0)
−aj−γ

∞∑
k=0

gj,k(A)(z − α0)
k

)

+
m∑
j=1

∂gi
∂xj

(x(z))

(
ajxj(z)(z − α0)

−1 −
∞∑
k=1

kdj,k(z − α0)
−aj+k−1

)

=
m∑
j=1

(z − α0)
−ai−γ−1 ∂fi

∂xj

(y)
∞∑
k=0

gj,k(A)(z − α0)
k

+ (ai + γ)(z − α0)
−ai−γ−1

∞∑
k=0

gi,k(A)(z − α0)
k

−
m∑
j=1

(z − α0)
aj−ai−γ ∂gi

∂xj

(y)
∞∑
k=1

kdj,k(z − α0)
−aj+k−1.

Multiplied by (z − α0)
ai+γ+1, this is rewritten as

∞∑
k=0

(z−α0)
k

m∑
j=1

(
∂fi
∂xj

(y) + (aj + γ)δi,j

)
gj,k(A)−

m∑
j=1

∂gi
∂xj

(y)
∞∑
k=1

kdj,k(z−α0)
k = 0.

(3.6)
To estimate the last term, we use induction. Recall that we consider γ ≥ 2. Assume
that (K(c) + γ − k)Gk(A) = 0 holds for k = 0, 1, · · · , n− 1, where n ≤ γ − 1. Then
G0 = G1 = · · · = Gn−1 = 0 holds because −γ,−γ + 1, · · · ,−γ + n − 1 (≤ −2) are
not K-exponents. Hence, (3.6) gives
∞∑
k=n

(z − α0)
k

m∑
j=1

(
∂fi
∂xj

(y) + (aj + γ)δi,j

)
gj,k(A)−

m∑
j=1

∂gi
∂xj

(y)
∞∑
k=1

kdj,k(z − α0)
k = 0

(the first summation starts from k = n). Divide by (z−α0)
n and consider the limit

z → α0:
m∑
j=1

(
∂fi
∂xj

(c) + (aj + γ)δi,j

)
gj,n(A)− lim

z→α0

m∑
j=1

∂gi
∂xj

(y)
∞∑
k=1

kdj,k
(z − α0)

k

(z − α0)n
= 0. (3.7)
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By the definition of gi,k(A), we have

gi(y1, · · · , ym) =
∞∑
k=0

gi,k(A)(z − α0)
k =

∞∑
k=n

gi,k(A)(z − α0)
k,

yj = cj +
∞∑
k=1

dj,k(z − α0)
k.

The derivation of both sides by z yields

m∑
j=1

∂gi
∂xj

(y1, · · · , ym)
∞∑
k=1

kdj,k(z − α0)
k−1 =

∞∑
k=n

kgi,k(A)(z − α0)
k−1

⇒
m∑
j=1

∂gi
∂xj

(y1, · · · , ym)
∞∑
k=1

kdj,k
(z − α0)

k−1

(z − α0)n−1
= ngi,n(A) +O(z − α0).

As z → α0,

lim
z→α0

m∑
j=1

∂gi
∂xj

(y1, · · · , ym)
∞∑
k=1

kdj,k
(z − α0)

k

(z − α0)n
= ngi,n(A)

This and (3.7) gives

m∑
j=1

(
∂fi
∂xj

(c) + (aj + γ − n)δi,j

)
gj,n(A) = 0. (3.8)

This proves that (K(c) + γ − k)Gk(A) = 0 holds for k = n. The induction step
continues up to k = γ − 1. □

Even when the degree γ of a given quasi-homogeneous equation is larger than
1, the K-exponents are defined in a similar manner as follows. Let us consider
dxi/dz2 = gi(x) given in (A1) having the degree γ. We consider the Puiseux series
solution of the form

xi(z2) = pi(z2 − β0)
−ai/γ +

∞∑
k=1

qi,k(z2 − β0)
(−ai+k)/γ , i = 1, · · · ,m, (3.9)

where β0 is a singularity and pi, qi,k are constants to be determined. Substituting it
into the equation, it turns out that an indicial locus p = (p1, · · · , pm) is given as a
root the equation

−ai
γ
pi = gi(p1, · · · , pm), i = 1, · · · ,m. (3.10)

For a given p, qj = (q1,j, · · · , qm,j) is iteratively determined as a solution of

(Kγ(p)−
j

γ
· I)qj = (polynomial of p and qk for k = 1, · · · , j − 1), (3.11)
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where the K-matrix Kγ(p) is defined by

Kγ(p) =

{
∂gi
∂xj

(p) +
ai
γ
δi,j

}m

i,j=1

. (3.12)

The eigenvalues ρ0, ρ1, · · · , ρm−1 are called the K-exponents. If j/γ is a K-exponent,
qj includes a free parameter. As in Prop.2.3, ρ0 = −1 is always a K-exponent with
the eigenvector (a1p1, · · · , ampm). When ρ1, · · · , ρm−1 ∈ N/γ, p is called a principle
indicial locus.

4 Flow of the free parameters

Let φF
z1
and φG

z2
be the flow of F and G, respectively; φF

z1
maps x(0) to x(z1) along the

orbit of vector field F , and similarly for φG
z2
. To obtain a solution of the system (2.1)

as a function of z1 and z2, for a solution x(z1;A) = φF
z1
◦Φ(A) of ∂x/∂z1 = F (x), we

assume that A = A(z2) is a function of z2. Let us substitute this x into the second
equation ∂x/∂z2 = G(x).

(left hand side) =
∂φF

z1

∂x
(Φ(A))

dΦ

dz2
(A) =

∂φF
z1

∂x
(Φ(A))

m−1∑
l=0

∂Φ

∂αl

(A)
dαl

dz2
.

It is known that (A2) is equivalent to the identity φF
t ◦φG

s = φG
s ◦φF

t . The derivative
of it at s = 0 gives

∂φF
t

∂x
(x)G(x) = G(φF

t (x)).

Hence,

(right hand side) = G(x(z1;A)) = G(φF
z1
◦ Φ(A)) =

∂φF
z1

∂x
(Φ(A))G(Φ(A)).

This proves

m−1∑
l=0

∂Φ

∂αl

(A)
dαl

dz2
= G(Φ(A)) ⇒ dA

dz2
=

(
∂Φ

∂A
(A)

)−1

G(Φ(A)), (4.1)

that gives the flow of A(z2).

Proposition 4.1. The right hand side of (4.1) is
(i) independent of α0 and polynomial in α1, · · · , αm−1,
(ii) quasi-homogeneous of degree γ with respect to the weight (κ0, · · · , κm−1).

Proof. (i) Denote ci = di,0 for simplicity to express (2.5) as xi(z1) =
∑∞

j=0 di,j(z1−
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α0)
−ai+j. By substituting it to ∂xi/∂z2 = gi(x), we obtain

(left hand side) =
∞∑
j=0

(ai − j)di,j(z1 − α0)
−ai+j−1dα0

dz2
+

∞∑
j=0

ddi,j
dz2

(z1 − α0)
−ai+j,

(right hand side) = (z1 − α0)
−ai−γgi(

∞∑
j=0

d1,j(z1 − α0)
j, · · · ,

∞∑
j=0

dm,j(z1 − α0)
j),

= (z1 − α0)
−ai−γ

∞∑
j=0

gi,j(A)(α1, · · · , αm−1) · (z1 − α0)
j,

where gi,j(A) is a j-th coefficient of the Taylor expansion of gi(
∑∞

j=0 d1,j(z1−α0)
j, · · · )

in z1−α0, that was introduced in Sec.3. This is a polynomial of α1, · · · , αm−1 because
so is di,j. Comparing the coefficients of (z1 − α0)

−ai−1 in both sides, we obtain

aici
dα0

dz2
= gi,γ−1(α1, · · · , αm−1). (4.2)

Similarly, coefficients of (z1 − α0)
−ai+κl provide

(ai − 1− κl)di,1+κl

dα0

dz2
+

dαl

dz2
= gi,κl+γ(α1, · · · , αm−1), l = 1, · · · ,m− 1, (4.3)

where i is chosen so that αl = di,κl
. Eq.(4.2) shows that dα0/dz2 is independent of

α0. Thus, (4.3) proves that dαl/dz2 is also independent of α0 and is polynomial in
α1, · · · , αm−1 for l = 1, · · · ,m− 1.

(ii) Eq.(4.2) and (4.3) provide another expression of (4.1) as
dα0

dz2
=

gi,γ−1(A)

aici
=: ĝ0(A),

dαl

dz2
= gi,κl+γ(A)− (ai − 1− κl)di,1+κl

(A)
gi,γ−1(A)

aici
=: ĝl(A).

(4.4)

Remark that gi,γ−1(A)/aici is independent of i and well-defined even when ci = 0
because of Corollary 3.2 and 3.4 (ĝ0(A) here is h(A) there). As above, we put

gi(
∞∑
j=0

d1,j(A)(z1 − α0)
j, · · · ,

∞∑
j=0

dm,j(A)(z1 − α0)
j) =

∞∑
j=0

gi,j(A) · (z1 − α0)
j.

Since λjdi,j(A) = di,j(λ ·A) by Prop.2.5, the left hand side above is invariant by A 7→
λ·A, α0 7→ λ−1α0 and z1 7→ λ−1z1 (recall that λ·A = (λ−1α0, λ

κ1α1, · · · , λκm−1αm−1)).
Thus, we obtain gi,j(λ · A) = λjgi,j(A) from the right hand side. This proves

ĝl(λ
κ1α1, · · · , λκm−1αm−1) = λκl+γ ĝl(α1, · · · , αm−1) (4.5)

for l = 0, 1, · · · ,m− 1. □
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Now we investigate the system (4.1) or equivalently (4.4);

dA

dz2
=

(
∂Φ

∂A
(A)

)−1

G(Φ(A)) ⇔


dα0

dz2
= ĝ0(A)

dαi

dz2
= ĝi(A), i = 1, · · · ,m− 1

(4.6)

satisfying (4.5). The next lemma immediately follows from (4.5).

Lemma 4.2. A monomial αn1
1 αn2

2 · · ·αnm−1

m−1 can be included in ĝl(A) only when a
tuple of nonnegative integers (n1, · · · , nm−1) satisfies κ1n1+· · ·+κm−1nm−1 = κl+γ.

From the lemma, it turns out that ĝl(A) for l = 1, · · · ,m− 1 does not include a
constant term when c is an isolated principle indicial locus (i.e. κl > 0). Applying
the lemma to l = 0 gives κ1n1 + · · · + κm−1nm−1 = γ − 1. When γ = 1, ĝ0 is a
constant function. When γ ≥ 2, ĝ0 does not include a constant term. For example
when γ = 2, there exists a K-exponent κ = 1. More generally, there exists a
K-exponent smaller than γ if ĝ0 is not identically zero.

Let ξ = (ξ0, · · · , ξm−1) be an indicial locus of (4.6) and ρ0 = −1, ρ1, · · · , ρm−1

its K-exponents.

Lemma 4.3. Besides ρ0 = −1, (4.6) has another negative exponent ρ1 = −1/γ.

Proof. The proof is based on the fact that the right hand side of (4.6) is
independent of α0. The K-matrix of (4.6) defined by (3.12) is given as

Kγ(ξ) =


0 ∂ĝ0/∂α1 · · · ∂ĝ0/∂αm−1

0

{
∂ĝi
∂αj

}m−1

i,j=1

+


−1/γ 0

κ1/γ

0
. . .

κm−1/γ

 .

(4.7)
Hence, its eigenvalues are −1/γ and K-exponents of the subsystem dαi/dz2 =
ĝi(A), i = 1, · · · ,m − 1. Since the subsystem has a K-exponent −1, the proof
is completed. □

Remark 4.4. The first expression of (4.6) implies that it is obtained from
dx/dz2 = G(x) by the coordinate transformation x = Φ(A). For the system
dx/dz2 = G(x), let p = (p1, · · · , pm) be an indicial locus. Then, ξ = Φ−1(p) is
an indicial locus of (4.6) as long as ξ is in the domain on which Φ is a diffeomor-
phism. In this case, the K-exponents of (4.6) at Φ−1(p) coincide with those of G at
p due to Prop.2.5 and Thm.2.7.

4.1 γ = 1

When γ = 1, dα0/dz2 = ĝ0(A) = gi(c)/(aici) (=: constant k1) due to (4.2). It is
solved as α0 = k1z2 + k2. Thus, we consider the system

dαi

dz2
= ĝi(α1, · · · , αm−1), i = 1, · · · ,m− 1, (4.8)
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which is of degree γ = 1 with respect to the weight (κ1, · · · , κm−1). Let ξ =
(ξ1, · · · , ξm−1) be an indicial locus and ρ0 = −1, ρ2, · · · , ρm−1 its K-exponents (we
skip ρ1 = −1/γ shown in Lemma 4.3 because it arises from the equation of α0). The
Laurent series solution is written as

αi(z2) = (z2 − β0)
−κi

(
ξi +

∞∑
j=1

ηi,j(z2 − β0)
j

)
=: (z2 − β0)

−κiyi, (4.9)

with coefficients ηi,j and a pole β0. Thus, x(z1, z2) satisfying both equations of (2.1)
is given by

xi(z1, z2) = (z1 − α0)
−ai

(
ci +

∞∑
j=1

di,j(α1, · · · , αm−1)(z1 − α0)
j

)
(4.10)

= (z1 − α0)
−ai

(
ci +

∞∑
j=1

di,j(y1, · · · , ym−1)
(z1 − α0)

j

(z2 − β0)j

)
, (4.11)

where we used di,j(λ · A) = λjdi,j(A). This gives a solution of (2.1) as a function
of (z1, z2) as long as the right hand side converges. Assume that the series (4.9)
converges when |z2 − β0| ≤ ε2 and (4.10) converges when |z1 − α0| ≤ ε1. Let ε be a
small number. Now we consider the solution restricted on the line

z1 − α0 = ε(z2 − β0) ⇔ z2 := q(z1) =
z1 + εβ0 − k2

ε+ k1
, (4.12)

This yields

xi(z1, q(z1)) = (z1 − α0)
−ai

(
ci +

∞∑
j=1

di,j(y1, · · · , ym−1) · εj
)
, (4.13)

yi = ξi +
∞∑
j=1

ηi,j(z1 − α0)
j/εj.

This is a convergent series when |ε| < |ε1| and |z1 −α0| < εε2. Expanding it gives a
new Laurent series solution

xi(z1, q(z1)) = (z1 − α0)
−ai

(
ci +

∞∑
j=1

di,j(ξ1, · · · , ξm−1) · εj +O(z1 − α0)

)
, (4.14)

with the indicial locus

(c1 +
∞∑
j=1

d1,j(ξ1, · · · , ξm−1)ε
j , · · · , cm +

∞∑
j=1

dm,j(ξ1, · · · , ξm−1)ε
j). (4.15)

If there are k−2 nonnegative integers among ρ2, · · · , ρm−1, (4.14) includes k−1 free
parameters (α0 and k− 2 parameters in ηi,j). Suppose ξ is a principle indicial locus
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of (4.8); all ρ2, · · · , ρm−1 are nonnegative integers, then (4.14) represents m − 1
parameter family of Laurent series. This is not a solution of dx/dz1 = F but a
combination of F and G;

d

dz1
xi(z1, q(z1)) =

∂

∂z1

∣∣∣
z2=q(z1)

xi(z1, z2) +
∂

∂z2

∣∣∣
z2=q(z1)

xi(z1, z2) ·
dq

dz1

= fi(x(z1, q(z1))) +
1

ε+ k1
gi(x(z1, q(z1))). (4.16)

This implies that there exists a lower indicial locus of the vector field F +G/(ε+k1)
whose K-exponents are given by ρ0 = −1, ρ1 = −1 and ρ2, · · · , ρm−1. Since the
number of free parameters is smaller than m, x(z1, q(z1)) is a non-principle Laurent
series solution.

Proposition 4.5. Suppose ε and |z1 − α0| are sufficiently small. The Laurent
series solution (4.14) is convergent and it satisfies (4.16). In particular, there exists
an indicial locus of the vector field F +G/(ε+ k1) whose K-exponents are given by
ρ0 = −1, ρ1 = −1 and ρ2, · · · , ρm−1 for any small ε 6= 0.

Although the series (4.14) does not converge when ε is large, K-exponents ρ0 =
−1, ρ1 = −1, ρ2, · · · , ρm−1 can be defined as the eigenvalues of the K-matrix of
F +G/(ε+ k1). Since they analytically depend on ε and are constants in ε when ε
is small, we can take ε → ∞ and obtain the main theorem in this subsection.

Theorem 4.6. There exists a lower indicial locus of the vector field F whose
K-exponents are given by ρ0 = −1, ρ1 = −1 and ρ2, · · · , ρm−1.

The expression of the corresponding indicial locus ci +
∑∞

j=1 di,j(ξ1, · · · , ξm−1)ε
j

makes sense by an analytic continuation when ε is large. It is notable that F has a
lower indicial locus, but G need not have. When γ = 1, the difference of assumptions
for F and G are only (A3). This suggests that (A3) is essential for the existence of
lower indicial loci. This is illustrated in the next example.

Example 4.7. Let us consider the two Hamiltonian functions{
HF (q1, p1, q2, p2) = (p21/2− 2q31) + (p22/2− 2q32),
HG(q1, p1, q2, p2) = p21/2− 2q31,

(4.17)

and let F and G be the corresponding Hamiltonian vector fields. The vector field F
is a direct product of the two-dimensional system given in Example 2.8. The weight
is (a1, b1, a2, b2) = (2, 3, 2, 3) and γ = 1. The only F satisfies the condition (A3).
The vector field F has three indicial loci with K-exponents as

(P1) : (q1, p1, q2, p2) = (1,−2, 0, 0), κ = −1, 2, 3, 6,

(P2) : (q1, p1, q2, p2) = (0, 0, 1,−2), κ = −1, 2, 3, 6,

(P3) : (q1, p1, q2, p2) = (1,−2, 1,−2), κ = −1,−1, 6, 6.

The only (P3) is a lower locus. For the first one (P1), the Laurent series solution of
(q1, p1) is given by (2.15), which has a free parameter d1,6 at 6-th place (counting
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from T−3). (q2, p2) is a holomorphic solution. Thus, free parameters are the constant
terms of the Taylor expansion those are in 2nd and 3rd places counting from T−2

and T−3, respectively. These three parameters correspond to κ = 2, 3, 6. Similarly
for (P2). For (P3), both of (q1, p1) and (q2, p2) are Laurent series solutions of the
form (2.15). Hence, there are two free parameters at 6-th place, that correspond to
κ = 6, 6.

For (P1), the flow of the free parameters are given by

α′
0 = −1, α′

1 = −α2, α′
2 = −6α2

1, α′
3 = 0.

It has only one indicial locus and its K-exponents are given by κ = −1,−1, 6, 6, that
confirms Theorem 4.6.

On the other hand, the vector field G has only one indicial locus whose K-
exponents are given by (−1, 2, 3, 6). There are no lower indicial loci. When γ = 1, we
cannot distinguish F and G by assumptions (A1) and (A2). This suggests that the
assumption (A3) “F (x) = 0 only when x = 0” plays a crucial role for the existence
of a lower indicial locus, though the authors do not know a clear statement.

Fig. 1 represents a schematic view of the flow of F . In Chiba [3, 6], the geom-
etry of families of Laurent series solutions of quasi-homogeneous vector fields are
investigated via the weighted projective space (in this example, it is CP 4(2, 3, 2, 3)).
This is a compact manifold constructed by attaching an m − 1 dimensional mani-
fold, denoted by D in the figure, to the original phase space Cm at infinity. A given
vector field on Cm is extended to a vector field on Cm ∪ D, and it is shown that
there is a one-to-one correspondence between indicial loci and fixed points on D.
Further, eigenvalues of the Jacobi matrix of F at the fixed point on D coincide with
K-exponents. In the figure, (P1) and (P2) are stable fixed points that correspond to
principle indicial loci, respectively, and (P3) is a saddle point that corresponds to
the lower indicial locus. The space is divided into two regions that are occupied by
two families of principle Laurent series solutions, and their boundary is occupied by
the non-principle Laurent series solutions. The red dotted orbit indicates an orbit
of the vector field F +G/(ε+ k1) given in Proposition 4.5.

4.2 γ ≥ 2

Let us consider the case γ ≥ 2. For the equation dα0/dz2 = ĝ0(A), the right hand
side is not a constant because of Lemma 4.2, however, it may become identically
zero. For it, we can prove the next proposition. The proof is given in Appendix.

Proposition 4.8. Let c be an isolated principle indicial locus of F = (f1, · · · , fm)
and κ1 ≥ 1 be the smallest K-exponent other than κ0 = −1. If the vector (d1,κ1 , · · · , dm,κ1)
is not an eigenvector associated with a zero eigenvalue of the Jacobi matrix of G at
c, then ĝ0(A) is not identically zero.

In what follows, we assume that ĝ0(A) 6≡ 0, not identically zero. We rewrite
(4.6) as

dαi

dα0

=
ĝi(A)

ĝ0(A)
, i = 1, · · · ,m− 1, A = (α1, · · · , αm−1). (4.18)
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P1
P3

P2
D

Fig. 1: A schematic view of the flow of F on the compactified space. The original
phase space C4 is compactified by attaching D at “infinity”. There are three fixed
points on D that correspond to three indicial loci. The red dotted orbit indicates
an orbit of the vector field F +G/(ε+ k1) given in Proposition 4.5.

Because of (4.5), it has the degree 1 with respect to the weight (κ1, · · · , κm−1).

Lemma 4.9. Let ξ = (ξ0, · · · , ξm−1) be an indicial locus of (4.6). Assume that

ĝ0(ξ) 6= 0. Then, (4.18) has an indicial locus ξ̃ = (ξ̃1, · · · , ξ̃m−1) with ξ̃i = ξκi
0 ξi.

Proof. Since (4.6) has the degree γ with respect to the weight κ0, · · · , κm−1, the
indicial locus is given by the root of the equation (see (3.10))

ĝ0(ξ) = −κ0ξ0/γ = ξ0/γ, ĝi(ξ) = −κiξi/γ.

Putting ξi = ξ−κi
0 ξ̃i gives

ξ0
ĝi(ξ)

ĝ0(ξ)
= −κiξi ⇒ ξ0

ξ−κi−γ
0 ĝ0(ξ̃)

ξ−κ0−γ
0 ĝ0(ξ̃)

= −κiξ
−κi
0 ξ̃i

⇒ ĝi(ξ̃)

ĝ0(ξ̃)
= −κiξ̃i (4.19)

Hence, ξ̃ satisfies the definition of an indicial locus of (4.18). □
Proposition 4.10. Let ρ0 = −1, ρ1 = −1/γ, ρ2, · · · , ρm−1 be K-exponents of

(4.6) at a locus ξ (see Lemma 4.3). Then, the K-exponents of (4.18) at the locus ξ̃
above are given by ρ0 = −1 and γρ2, · · · , γρm−1.

Proof. Denote

grad(ĝ0) =

(
∂ĝ0
∂α1

(ξ), · · · , ∂ĝ0
∂αm−1

(ξ)

)
, (Jĝ) =

{
∂ĝi
∂αj

(ξ)

}m−1

i,j=1

,
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and diag(κ) = diag(κ1, · · · , κm−1). Then, the K-matrix of (4.6) given in (4.7) is
written as

Kγ(ξ) =

(
0 grad(ĝ0)
0 (Jĝ)

)
+

(
−1/γ 0
0 diag(κ)/γ

)
. (4.20)

Further, put a = 1/(γĝ0(ξ)) and v = (κ1ξ1, · · · , κm−1ξm−1)
T , which is an eigenvector

associated with the K-exponent ρ0 = −1 of the subsystem (4.8). Define

P =

(
a 0
−v I

)
. (4.21)

Then, we can verify that

P−1Kγ(ξ)P =

(
k11 grad(ĝ0)/a
k21 k22

)
,

where 
k11 = −grad(ĝ0) · v/a− 1/γ,
k21 = −(grad(ĝ0) · v)v/a− v/γ − (Jĝ)v − diag(κ)v/γ,
k22 = (Jĝ) + v · grad(ĝ0)/a+ diag(κ)/γ.

Since v is an eigenvector of the K-exponent −1 of (4.8), we have

((Jĝ0) + diag(κ)/γ)v = −v.

From the derivative of (4.5) for l = 0 at λ = 1, we have

m−1∑
j=1

∂ĝ0
∂αj

(ξ)κjξj = (−1 + γ)ĝ0(ξ).

By using these two equalities, we can show that k11 = −1 and k21 = 0. Thus, the
eigenvalues of k22 are ρ1 = −1/γ and ρ2, · · · , ρm−1. This implies that the eigenvalues
of γ ·k22 are −1 and γρ2, · · · , γρm−1. Hence, it is sufficient to prove that the K-matrix

of (4.18) at ξ̃ is conjugate to γ · k22.
By a straightforward calculation with the aid of (4.19) and (3.3), it is easy to

see that the (i, j)-component of the K-matrix of (4.18) is given by

K̃(ξ̃)i,j =
1

ĝ0(ξ̃)

(
∂ĝi
∂αj

(ξ̃) + κiξ̃i
∂ĝ0
∂αj

(ξ̃)

)
+ κiδij

=
ξ0

ĝ0(ξ)

(
ξ
κi−κj

0

∂ĝi
∂αj

(ξ) + ξ
κi−κj−1
0 κiξi

∂ĝ0
∂αj

(ξ)

)
+ κiδij.

Put Q = diag(ξκ1
0 , · · · , ξκm−1

0 ). Then, we can show that Q−1K̃(ξ̃)Q = γk22. □
Let ξ = (ξ0, · · · , ξm−1) be an indicial locus of (4.6) and assume that the associated

Puiseux series solution includes m − 1 free parameters. As is shown in the end of

Sec.3, its K-exponents should be ρi ∈ N/γ for i = 2, · · · ,m−1. Then, ξ̃ is a principle
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indicial locus of the system (4.18) with K-exponents −1, γρ2, · · · , γρm−1 satisfying
γρ2, · · · , γρm−1 ∈ N. Since (4.18) is a rational vector field of degree 1 with respect
to the weight (κ1, · · · , κm−1), it has a Laurent series solution of the form

αi(α0) = (α0 − β0)
−κi

(
ξ̃i +

∞∑
j=1

η̃i,j(α0 − β0)
j

)
=: (α0 − β0)

−κi ỹi, (4.22)

for i = 1, · · · ,m − 1. Free parameters are included in η̃i,j for j = γρ2, · · · , γρm−1.
Hence, x(z1, α0) satisfying both equations of (2.1) is given by

xi(z1, α0) = (z1 − α0)
−ai

(
ci +

∞∑
j=1

di,j(α1, · · · , αm−1)(z1 − α0)
j

)
(4.23)

= (z1 − α0)
−ai

(
ci +

∞∑
j=1

di,j(ỹ1, · · · , ỹm−1)
(z1 − α0)

j

(α0 − β0)j

)
, (4.24)

where α0 = α0(z2) is related to z2 though dα0/dz2 = ĝ0(A). Assume that the series
(4.22) converges when |α0 − β0| ≤ ε2 and (4.23) converges when |z1 − α0| ≤ ε1. Let
ε be a small number. Now we consider the solution restricted on the line

z1 − α0 = ε(α0 − β0) ⇔ α0 := q(z1) =
z1 + εβ0

1 + ε
, (4.25)

This yields

xi(z1, q(z1)) = (z1 − α0)
−ai

(
ci +

∞∑
j=1

di,j(ỹ1, · · · , ỹm−1) · εj
)
, (4.26)

ỹi = ξ̃i +
∞∑
j=1

η̃i,j(z1 − α0)
j/εj.

This is a convergent series when |ε| < |ε1| and |z1 − α0| < εε2. Expanding it gives
a new Laurent series solution as in Section 4.1. If all γρ2, · · · , γρm−1 are positive
integers, then it represents m− 1 parameter family of Laurent series. This satisfies

d

dz1
xi(z1, q(z1)) =

∂

∂z1

∣∣∣
α0=q(z1)

xi(z1, α0) +
∂

∂α0

∣∣∣
α0=q(z1)

xi(z1, α0) ·
dq

dz1

= fi(x(z1, q(z1))) +
1

1 + ε

∂

∂α0

∣∣∣
α0=q(z1)

xi(z1, α0).

On the other hand, we have

gi(x) =
∂xi

∂z2
=

∂xi

∂α0

· dα0

dz2
=

∂xi

∂α0

· ĝ0(A).

This shows

d

dz1
xi(z1, q(z1)) = fi(x(z1, q(z1))) +

1

1 + ε

gi(x(z1, q(z1)))

ĝ0(A)
. (4.27)
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Here, ĝ0(A) is regarded as a function of x = x(z1, q(z1)) through A = Φ−1(x). By
the same way as Section 4.1, we obtain the next results.

Proposition 4.11. Suppose ε and |z1 − α0| are sufficiently small. The Laurent
series solution (4.26) is convergent and it satisfies (4.27). In particular, there exists
an indicial locus of the vector field F +G/(ĝ0 · (1+ ε)) whose K-exponents are given
by ρ0 = −1, ρ1 = −γ and γρ2, · · · , γρm−1 for any small ε 6= 0.

Theorem 4.12. There exists a lower indicial locus of the vector field F whose
K-exponents are given by ρ0 = −1, ρ1 = −γ and γρ2, · · · , γρm−1 .

Example 4.13. Let us consider the two Hamiltonian functions{
HF (q1, p1, q2, p2) = 2p1p2 + 3p22q1 + q41 − q21q2 − q22,
HG(q1, p1, q2, p2) = p21 + 2p1p2q1 − q51 + p22q2 + 3q31q2 − 2q1q

2
2,

(4.28)

and let F and G be the corresponding Hamiltonian vector fields. This is known as
the autonomous version of the 4-dimensional first Painlevé equation [6].

The weight is (a1, b1, a2, b2) = (2, 5, 4, 3) and γ = 3. With this weight, the
weighted degrees of Hamiltonian are deg(HF ) = 8 and deg(HG) = 10.

The vector field F has two indicial loci with K-exponents as

(P1) : (q1, p1, q2, p2) = (1, 1, 1,−1), κ = −1, 2, 5, 8,

(P2) : (q1, p1, q2, p2) = (3, 27, 0,−3), κ = −3,−1, 8, 10.

The only (P2) is a lower locus. It is known that for Hamiltonian vector fields, the
K-exponents always appear as a pair in the sense that;

Proposition 4.14 [6]. For a quasi-homogeneous Hamiltonian system F satisfy-
ing (A1), if κ is a Kovalevskaya exponent, so is µ given by κ + µ = deg(HF ) − 1.
Further, the following formula holds

κ+ µ = deg(HF )− 1 = deg(qi) + deg(pi). (4.29)

In this example, it means that

κi + κ4−i−1 = deg(qj) + deg(pj) = deg(HF )− 1 = 7, i = 0, 1, j = 1, 2.

Applying the proposition to κ0 = −1, it turns out that deg(HF ) is always a K-
exponent. By Theorem 4.12, κ1 = −γ is a K-exponent for a lower indicial locus.
In this example, this means (−3) + κ2 = 7 and κ2 = 10 = deg(HG). Thus, we can
obtain K-exponents of lower indicial locus from the weight of Hamiltonian functions.

For (P1), the flow of the free parameters are given by

α′
0 = 3α1, α′

1 = −3

2
α2, α′

2 = −54α4
1, α′

3 = 42α3
1α2.

It has three lower indicial loci and their K-exponents are given by ρ = −1/3,−1, 8/3, 10/3,
that confirms Theorem 4.12. The vector field G has a lower indicial locus whose
K-exponents are also ρ = −1/3,−1, 8/3, 10/3. As was explained in Remark 4.4, it
is induced from the lower locus of the parameter flow.
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A The proof of Proposition 4.8.

We again state the proposition;

Proposition A.1. Let c be an isolated principle indicial locus of F = (f1, · · · , fm)
and κ1 ≥ 1 be the smallest K-exponent other than κ0 = −1. If the vector (d1,κ1 , · · · , dm,κ1)
is not an eigenvector associated with a zero eigenvalue of the Jacobi matrix of G at
c, then ĝ0(A) is not identically zero.

Proof. The first half of the proof is similar to that of Prop.4.1. We repeat it to
fix our notation. A Laurent series solution of dxi/dz1 = fi(x) is given by

xi = (z1 − α0)
−ai

(
ci +

∑
j=1

di,j(A)(z1 − α0)
j

)
,

=: (z1 − α0)
−aiyi(A), A = (α1(z2), · · · , αm−1(z2)).

Substituting it into dxi/dz2 = gi(x), for the left hand side we have

dxi

dz2
= aici(z1 − α0)

−ai−1dα0

dz2
+
∑
j=1

(ai − j)di,j(A)(z1 − α0)
j−ai−1dα0

dz2

+
∑
j=1

d

dz2
(di,j(A)) · (z1 − α0)

j−ai .

For the right hand side,

gi(x) = (z1 − α0)
−ai−γgi(y1, · · · , ym)

=: (z1 − α0)
−ai−γ

∑
k=0

gi,k(A)(z1 − α0)
k,

where gi,k(A) is a coefficient of the Taylor expansion of gi(y1, · · · , ym). They are
given through

gi(y1, · · · , ym) = gi(c) +
m∑
l=1

∂gi
∂xl

(c) ·

(∑
j=1

dl,j(A)(z1 − α0)
j

)
+ · · · . (A.1)

Comparing coefficients of both sides of dxi/dz2 = gi(x), we obtain gi,0 = · · · =
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gi,γ−2 = 0 and

(z1 − α0)
−ai−1 : aici

dα0

dz2
= gi,γ−1(A)

(z1 − α0)
−ai : (ai − 1)di,1(A)

dα0

dz2
= gi,γ(A)

(z1 − α0)
−ai+1 : (ai − 2)di,2(A)

dα0

dz2
+

d

dz2
di,1(A) = gi,γ+1(A)

...

(z1 − α0)
−ai+j : (ai − j − 1)di,j+1(A)

dα0

dz2
+

d

dz2
di,j(A) = gi,γ+j(A)

...

Now we assume that ĝ0(A) = gi,γ−1(A)/(aici) = 0 and we will derive a contradiction.
Since dα0/dz2 = ĝ0(A) = 0, the above equations yield gi,γ(A) = 0 and

d

dz2
di,j(A) = gi,γ+j(A), j = 1, 2, · · · . (A.2)

Let κ1 ≥ 1 be the smallest K-exponent. Then, di,j(A) = 0 for j = 1, · · · , κ1 − 1 and
i = 1, · · · ,m, and dl,κ1(A) = α1 for some l by the definition of the free parameter
α1 (see Definition 2.4 below). Hence, (A.1) becomes

gi(y1, · · · , ym) = gi(c) +
m∑
l=1

∂gi
∂xl

(c) · (dl,κ1(A)(z1 − α0)
κ1 + · · · ) +O((z1 − α0)

2κ1).

This provides

gi,κ1(A) =
m∑
l=1

∂gi
∂xl

(c)dl,κ1(A).

Further, di,j(A) = 0 for j = 1, · · · , κ1 − 1 with (A.2) gives gi,γ+1 = · · · = gi,γ+κ1−1 =
0. In particular,

gi,κ1(A) = 0 =
m∑
l=1

∂gi
∂xl

(c)dl,κ1(A).

It contradicts with the assumption of the proposition. □
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