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Abstract

The existence of stable periodic orbits and chaotic invariant sets of singularly perturbed prob-
lems of fast-slow type having Bogdanov-Takens bifurcation points in its fast subsystem is proved
by means of the geometric singular perturbation method and the blow-up method. In particular,
the blow-up method is effectively used for analyzing the flow near the Bogdanov-Takens type fold
point in order to show that a slow manifold near the fold point is extended along the Boutroux’s
tritronquée solution of the first Painlevé equation in the blow-up space.
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1 Introduction

Let (x1, · · · , xn, y1, · · · , ym) ∈ Rn+m be the Cartesian coordinates. A system of singularly per-
turbed ordinary differential equations of the form

ẋ1 = f1(x1, · · · , xn, y1, · · · , ym, ε),
...

ẋn = fn(x1, · · · , xn, y1, · · · , ym, ε),
ẏ1 = εg1(x1, · · · , xn, y1, · · · , ym, ε),
...

ẏm = εgm(x1, · · · , xn, y1, · · · , ym, ε),

(1.1)

is called a fast-slow system, where the dot ( ˙ ) denotes the derivative with respect to time t, and
where ε > 0 is a small parameter. Fast-slow systems are characterized by two different time
scales, fast and slow time. In other words, the dynamics consists of fast motions ((x1, · · · , xn) di-
rection in the above system) and slow motions ((y1, · · · , ym) direction). This structure yields non-
linear phenomena such as a relaxation oscillation, which is observed in many physical, chemical
and biological problems. See Grasman [13], Hoppensteadt and Izhikevich [16] and references
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therein for applications of fast-slow systems. To analyze the fast-slow system, the unperturbed
system (fast system) of Eq.(1.1) is defined to be

ẋ1 = f1(x1, · · · , xn, y1, · · · , ym, 0),
...

ẋn = fn(x1, · · · , xn, y1, · · · , ym, 0),
ẏ1 = 0,
...

ẏm = 0.

(1.2)

The set of fixed points of the unperturbed system is called a critical manifold, which is defined
by

M = {(x1, · · · , xn, y1, · · · , ym) ∈ Rn+m | fi(x1, · · · , xn, y1, · · · , ym, 0) = 0, i = 1, · · · , n}. (1.3)

TypicallyM is an m-dimensional manifold. Fenichel [11] proved that ifM is normally hyper-
bolic, then the original system (1.1) with sufficiently small ε > 0 has a locally invariant manifold
Mε nearM, and that dynamics onMε is approximately given by the m-dimensional system

ẏ1 = εg1(x1, · · · , xn, y1, · · · , ym, 0),
...

ẏm = εgm(x1, · · · , xn, y1, · · · , ym, 0),

(1.4)

where (x1, · · · , xn, y1, · · · , ym) ∈ Rn+m is restricted to the critical manifold M. The Mε is dif-
feomorphic toM and called the slow manifold. The dynamics of (1.1) approximately consists
of the fast motion governed by (1.2) and the slow motion governed by (1.4). His method for
constructing an approximate flow is called the geometric singular perturbation method.

However, if the critical manifold M has degenerate points x0 ∈ M in the sense that the
Jacobian matrix ∂ f/∂x, f = ( f1, · · · , fn), x = (x1, · · · , xn) at x0 has eigenvalues on the imag-
inary axis, then M is not normally hyperbolic near the x0 and Fenichel’s theory is no longer
applicable. The most common case is that ∂ f/∂x has one zero-eigenvalue at x0 and the critical
manifold M is folded at the point (fold point). In this case, orbits on the slow manifold Mε

may jump and get away fromMε in the vicinity of x0. As a result, the orbit repeatedly switches
between fast motions and slow motions, and complex dynamics such as a relaxation oscillation
can occur. See Mishchenko and Rozov [25] and Jones [18] for treatments of jump points and
the existence of relaxation oscillations based on the boundary layer technique and the geometric
singular perturbation method.

The blow-up method was developed by Dumortier [6] to investigate local flows near non-
hyperbolic fixed points and it was applied to singular perturbed problems by Dumortier and
Roussarie [7]. The most typical example is the system of the form{

ẋ = −y + x2,
ẏ = εg(x, y),

(1.5)
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where (x, y) ∈ R2. The critical manifold is a graph of y = x2 and the origin is the fold point,
at which the Jacobian matrix of the fast system has a zero-eigenvalue. Indeed, the fast system
ẋ = −y + x2 undergoes a saddle-node bifurcation as y varies. To analyze this family of vector
fields, the trivial equation ε̇ = 0 is attached as

ẋ = −y + x2,
ẏ = εg(x, y),
ε̇ = 0.

(1.6)

Then, the Jacobian matrix at the origin (0, 0, 0) degenerates as
0 −1 0
0 0 g(0, 0)
0 0 0

 (1.7)

with the Jordan block. The blow-up method is used to desingularize such singularities based
on certain coordinate transformations. The most simple case g(0, 0) � 0 is deeply investigated
by Krupa and Szmolyan et al. [20, 12] with the aid of a geometric view point. Straightforward
extensions to higher dimensional cases are done by Szmolyan and Wechselberger [33] for n =
1,m = 2 and by Mishchenko and Rozov [25] for any n and m. Under the assumptions that ∂ f/∂x
has only one zero-eigenvalue at a fold point and that the slow dynamics (1.4) has no fixed points
near the fold point, they show that in the blow-up space, the system is reduced to the Riccati
equation dx/dy = y − x2 for any n ≥ 1 and m ≥ 1, and a certain special solution of the Riccati
equation plays an important role to extend a slow manifold Mε to a neighborhood of the fold
point, which guides jumping orbits. It is to be noted that the classical work of Mishchenko and
Rozov [25] is essentially equivalent to the blow-up method.

On the other hand, if the dynamics (1.4) has fixed points on (a set of) fold points, for example,
if g(0, 0) = 0 in Eq.(1.5), then more complex phenomena such as canard explosion can occur.
Such situations are investigated by [7, 20, 32, 22, 24] by using the blow-up method. For example,
for Eq.(1.5) with g(0, 0) = 0, the original system is reduced to the system ẋ = −y + x2, ẏ = x in
the blow-up space. If the dimension m of slow direction is larger than 1, there are many types of
fixed points of (1.4) and thus we need more hard analysis as is done in [22].

The fast system for Eq.(1.5) undergoes a saddle-node bifurcation at the fold point. Thus
we call the fold point the saddle-node type fold point. The cases that fast systems undergo a
transcritical bifurcation and a pitchfork bifurcation are studied in [21]. It is shown that in the
blow-up space, systems are reduced to the equations dx/dy = x2 − y2 + λ and dx/dy = xy − x3,
respectively, whose special solutions are used to construct slow manifolds near fold points.

Despite many works, behavior of flows near fold points at which the Jacobian matrix ∂ f/∂x
of the fast system has more than one zero-eigenvalues is not understood well. The purpose of
this article is to investigate a three dimensional fast-slow system of the form

ẋ = f1(x, y, z, ε, δ),
ẏ = f2(x, y, z, ε, δ),
ż = εg(x, y, z, ε, δ),

(1.8)

3



whose fast system has fold points with two zero-eigenvalues, where f1, f2, g are C∞ functions,
ε > 0 is a small parameter, and where δ > 0 is a small parameter which controls the strength
of the stability of the critical manifold (see the assumption (C5) in Sec.2). Note that the critical
manifold

M(δ) = {(x, y, z) ∈ R3 | f1(x, y, z, 0, δ) = f2(x, y, z, 0, δ) = 0} (1.9)

gives curves on R3 in general. We consider the situation that at a fold point (x0, y0, z0) ∈ R3 on
M, the Jacobian matrix ∂( f1, f2)/∂(x, y) has two zero-eigenvalues with the Jordan block, and the
two dimensional unperturbed system (fast system) undergoes a Bogdanov-Takens bifurcation.
We call such a fold point the Bogdanov-Takens type fold point. For this system, we will show
that the first Painlevé equation

d2y
dz2
= y2 − z

appears in the blow-up space and plays an important role in the analysis of a local flow near
the Bogdanov-Takens type fold points. This is in contrast with the fact that the Riccati equation
appears in the case of saddle-node type fold points. It is shown that in the blow-up space, the slow
manifold is extended along one of the special solutions, the Boutroux’s tritronquée solution [1,
19], of the first Painlevé equation. One of the main results in this article is that a transition map
of Eq.(1.8) near the Bogdanov-Takens type fold point is constructed, in which an asymptotic
expansion and a pole of the Boutroux’s tritronquée solution are essentially used. This result
shows that the distance between a solution of (1.8) near the Bogdanov-Takens type fold point and
a solution of its unperturbed system is of order O(ε4/5) as ε → 0 (see Theorem 1 and Theorem
3.2), while it is of O(ε2/3) for a saddle-node type fold point (see Mishchenko and Rozov [25]).

It is remarkable that all equations appeared in the blow-up space are related to the Painlevé
theory. For example, the equation dx/dy = y − x2 obtained from the saddle-node type fold point
is transformed into the Airy equation du/dy = uy by putting x = (du/dy)/u, which gives classical
solutions of the second Painlevé equation. The equation dx/dy = x2 − y2 + λ obtained from the
transcritical type fold point is transformed into the Hermite equation

d2u
dy2
+ 2y

du
dy
+ (λ + 1)u = 0

by putting x + y = −(du/dy)/u, which gives classical solutions of the fourth Painlevé equation.
For other cases listed above, we also see that equations appeared in the blow-up space have the
Painlevé property [5, 17]; that is, all movable singularities (in the sense of the theory of ODEs
on the complex plane) are poles, not branch points and essential singularities. This seems to be
common for a wide class of fast-slow systems. Painlevé equations have many good properties
[5]. For example, poles of solutions of Painlevé equations can be transformed into zeros of
solutions of certain analytic systems by analytic transformations, which allow us to prove that
the dominant part of the transition map near the Bogdanov-Takens type fold point is given by an
analytic function describing a position of poles of the first Painlevé equation.
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We also investigate global behavior of the system. Under some assumptions, we will prove
that there exists a stable periodic orbit (relaxation oscillation) if ε > 0 is sufficiently small for
fixed δ, and further that there exists a chaotic invariant set if δ > 0 is also small in comparison
with small ε. Roughly speaking, δ controls the strength of the stability of stable branches of the
critical manifolds. While chaotic attractors on 3-dimensional fast-slow systems are reported by
Guckenheimer, Wechselberger and Young [14] in the case of n = 1,m = 2, our system is of n =
2,m = 1. In the situation of [14], the chaotic attractor arises according to the theory of Hénon-
like maps. On the other hand, in our system, the mechanism of the onset of a chaotic invariant
set is similar to that in Silnikov’s works [28, 29, 30], in which the existence of a hyperbolic
horseshoe is shown for a 3-dimensional system which have a saddle-focus fixed point with a
homoclinic orbit. See also Wiggins [34]. Indeed, in our situation, the critical manifold M(δ)
plays a similar role to a saddle-focus fixed point in the Silnikov’s system. Thus the proof of the
existence of a relaxation oscillation in our system will be done in usual way: the Poincaré return
map proves to be contractive, while the proof of the existence of chaos is done in a similar way to
that of the Silnikov’s system: as δ decreases, the Poincaré return map becomes non-contractive,
undergoes a cascade of bifurcations, and horseshoes are created. When one want to prove the
existence of a stable periodic orbit, it is sufficient to show that the image of the return map is
exponentially small. However, to prove the existence of a horseshoe, one has to show that the
image of a rectangle under the return map becomes a horseshoe-shaped (ring-shaped). Thus our
analysis for constructing the return map involves hard calculations, which can be avoided when
proving only a periodic orbit.

Our chaotic invariant set seems to be attracting as that in [14], however, it remains unsolved.
See Homburg [15] for the proof of the existence of chaotic attractors in the Silnikov’s system.

The results in the present article are used in [3] to investigate chaotic invariant sets on the
Kuramoto model, which is one of the most famous models to explain synchronization phenom-
ena. In [3], it is shown that the Kuramoto model with appropriate assumptions can be reduced to
a three dimensional fast-slow system by using the renormalization group method [2].

This paper is organized as follows. In section 2, we give statements of our theorems on the
existence of a periodic orbit and a chaotic invariant set. An intuitive explanation of the theorems
is also shown with an example. In section 3, local analysis near the Bogdanov-Takens type fold
point is given by means of the blow-up method. Section 4 is devoted to global analysis, and
proofs of main theorems are given. Concluding remarks are included in section 5.

2 Main results

To obtain a local result and the existence of relaxation oscillations, the parameter δ in Eq.(1.8)
does not play a role. Thus we consider the system of the form

ẋ = f1(x, y, z, ε),
ẏ = f2(x, y, z, ε),
ż = εg(x, y, z, ε),

(2.1)

5



with C∞ functions f1, f2, g : U × I → R, where U ⊂ R3 is an open domain in R3 and I ⊂ R is a
small interval containing zero. The unperturbed system is given as

ẋ = f1(x, y, z, 0),
ẏ = f2(x, y, z, 0),
ż = 0.

(2.2)

Since z is a constant, this system is regarded as a family of 2-dimensional systems. The critical
manifold is the set of fixed point of (2.2) defined to be

M = {(x, y, z) ∈ U | f1(x, y, z, 0) = f2(x, y, z, 0) = 0}. (2.3)

The reduced flow on the critical manifold is defined as

ż = εg(x, y, z, 0)|(x,y,z)∈M. (2.4)

To investigate a Bogdanov-Takens type fold point, we make the following assumptions.

(A1) The critical manifoldM has a smooth component S + = S +a ∪ {L+} ∪ S +r , where S +a consists
of stable focus fixed points, S +r consists of saddle fixed points, and where L+ is a fold point.

(A2) The L+ is a Bogdanov-Takens type fold point; that is, L+ is a Bogdanov-Takens bifurcation
point of the vector field ( f1(x, y, z, 0), f2(x, y, z, 0)). In particular, Eq.(2.2) has a cusp at L+.

(A3) The reduced flow (2.4) on S +a is directed toward the fold point L+ and g(L+, 0) � 0.

A few remarks are in order. It is easy to see from (A1) that the Jacobian matrix ∂( f1, f2)/∂(x, y)
has two zero eigenvalues at L+ since S +r and S +a are saddles and focuses, respectively. Thus there
exists a coordinate transformation (x, y, z) �→ (X,Y,Z) defined near L+ such that L+ is placed at
the origin and Eq.(2.2) takes the following normal form

Ẋ = a1(Z) + a2(Z)Y2 + a3(Z)XY + O(X3, X2Y, XY2,Y3),
Ẏ = b1(Z) + b2(Z)X + O(X3, X2Y, XY2,Y3),
Ż = 0,

(2.5)

where a1(0) = b1(0) = 0 so that the origin is a fixed point (for the normal form theory, see Chow,
Li and Wang [4]). Then the assumption (A2) means that a2(0) � 0, a3(0) � 0, b2(0) � 0. In
this case, it is well known that the flow of Eq.(2.5) has a cusp at the origin (see also Lemma
3.1). Since Eq.(2.5) has a cusp at L+, there exists exactly one orbit α+ emerging from L+. The
assumption (A3) means that if the critical manifold is locally convex downward (resp. convex
upward ), then g(x, y, z, 0) < 0 (resp. g(x, y, z, 0) > 0) on S +a ∪ {L+}. Thus an orbit of the reduced
flow on S +a reaches L+ in finite time. As a result, an orbit of (2.1) may jump in the vicinity of L+.
The next theorem describes an asymptotic behavior of such a jumping orbit.

Theorem 1. Suppose that the system (2.1) satisfies assumptions (A1) to (A3). Consider a
solution x(t) whose initial point is in the vicinity of S +a . Then, there exist t0, t1 > 0 such that the
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distance between x(t), t0 < t < t1 and the orbit α+ of the unperturbed system emerging from L+

is of O(ε4/5) as ε→ 0.

Note that for a saddle-node type fold points, the distance between x(t) and an orbit emerging
from a fold point is of O(ε2/3). To prove the existence of relaxation oscillations, we need global
assumptions for the system (2.1).

(B1) The critical manifold M has two smooth components S + = S +a ∪ {L+} ∪ S +r and S − =
S −a ∪ {L−} ∪ S −r , where S ±a consist of stable focus fixed points, S ±r consist of saddle fixed points,
and where L± are fold points (see Fig.1).

(B2) The L± are Bogdanov-Takens type fold points; that is, L± are Bogdanov-Takens bifurcation
points of the vector field ( f1(x, y, z, 0), f2(x, y, z, 0)). In particular, Eq.(2.2) has cusps at L±.

(B3) Eq.(2.2) has two heteroclinic orbits α+ and α− which connect L+, L− with points on S −a , S
+
a ,

respectively.

(B4) The reduced flow (2.4) on S ±a is directed toward the fold points L± and g(L±, 0) � 0,
respectively.

Assumptions (B1) and (B2) assure that S ± are locally expressed as parabolas, and thus they
are of “J-shaped”. Components S + and S − are allowed to be connected. In this case, S + ∪ S − is
of “S-shaped”. As was mentioned above, since (2.2) has cusps at L±, there exist two orbits α+

and α− of Eq.(2.2) emerging from L+ and L−. The assumption (B3) means that these orbits are
connected to S −a and S +a , respectively. If S +∪S − is of “S-shaped”, the assumption (B3) is typically
satisfied because at least near the fold points, the unperturbed system (2.2) has heteroclinic orbits
connecting each point on S ±r to S ±a , respectively, due to the basic bifurcation theory. Note that
the assumption (B3) also determines a positional relationship between S + and S −. For example,
if S + is convex downward, S − should be convex upward. By applying Thm.1 combined with the
geometric singular perturbation (boundary layer technique), we can obtain the following result.

Theorem 2. Suppose that the system (2.1) satisfies assumptions (B1) to (B4). Then there
exists a positive number ε0 such that Eq.(2.1) has a hyperbolically stable periodic orbit near
S +a ∪ α+ ∪ S −a ∪ α− if 0 < ε < ε0.

To prove the existence of a periodic orbit, the local assumptions are not so important, though
a positional relationship between components of the critical manifold and the existence of hete-
roclinic orbits α± are essential. Indeed, similar results for fast-slow systems having saddle-node
type fold points are obtained by many authors.

To prove the existence of chaos, we have to control the strength of the stability of S ±a . Let us
consider the system (1.8) with C∞ functions f1, f2, g : U × I × I′ → R, where U and I as above
and I′ ⊂ R is a small interval containing zero. The unperturbed system of Eq.(1.8) is given by

ẋ = f1(x, y, z, 0, δ),
ẏ = f2(x, y, z, 0, δ),
ż = 0.

(2.6)
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Fig. 1: Critical manifold and the flow of Eq.(2.1) with the assumptions (B1) to (B4).

The critical manifoldM(δ) defined by (1.9) is parameterized by δ. At first, we suppose that the
assumptions (B1) to (B4) are satisfied uniformly in δ. More exactly, we assume following.

(C1) There exists δ0 such that for every δ ∈ [0, δ0), the critical manifoldM(δ) has two smooth
components S +(δ) = S +a (δ) ∪ {L+(δ)} ∪ S +r (δ) and S −(δ) = S −a (δ) ∪ {L−(δ)} ∪ S −r (δ). When δ > 0,
S ±a (δ) consist of stable focus fixed points, S ±r (δ) consist of saddle fixed points, and L±(δ) are fold
points (see Fig.1). Further, the δ familyM(δ) is smooth with respect to δ ∈ [0, δ0).

(C2) For every δ ∈ [0, δ0), L±(δ) are Bogdanov-Takens type fold points; that is, L±(δ) are
Bogdanov-Takens bifurcation points of the vector field ( f1(x, y, z, 0, δ), f2(x, y, z, 0, δ)). In partic-
ular, Eq.(2.6) has cusps at L±(δ).

(C3) For every δ ∈ (0, δ0), Eq.(2.6) has two heteroclinic orbits α+(δ) and α−(δ) which connect
L+(δ), L−(δ) with points on S −a (δ), S +a (δ), respectively.

(C4) For every δ ∈ [0, δ0), the reduced flow on S ±a (δ) is directed toward the fold points L±(δ)
and g(L±, 0, δ) � 0, respectively.

In addition to the assumptions above, we make the assumptions for the strength of the stability
of S ±a as follows:

(C5) For every δ ∈ [0, δ0), eigenvalues of the Jacobian matrix ∂( f1, f2)/∂(x, y) of Eq.(2.6) at
(x, y, z) ∈ S +a (δ) and at (x, y, z) ∈ S −a (δ) are expressed by −δ · µ+(z, δ) ±

√
−1ω+(z, δ) and −δ ·

µ−(z, δ) ±
√
−1ω−(z, δ), respectively, where µ± and ω± are real-valued functions satisfying

µ±(z, 0) > 0, ω±(z, 0) � 0. (2.7)

The assumption (C5) means that the parameter δ controls the strength of the stability of stable
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focus fixed points on S ±a (δ).
Finally, we suppose that the basin of S ±a (δ) of the unperturbed system can be taken uniformly

in δ ∈ (0, δ0): By the assumption (C5), there exist open sets V± ⊃ S ±a (δ) such that real parts of
eigenvalues of the Jacobian matrix ∂( f1, f2)/∂(x, y) on V± is of order O(δ). In general, the “size”
of V± depend on δ and they may tend to zero as δ → 0. To prove Theorem 3 below, we assume
following.

(C6) There exist open sets V± ⊃ S ±a (δ), which is independent of δ, such that real parts of eigen-
values of the Jacobian matrix ∂( f1, f2)/∂(x, y) on V± are negative and of order O(δ) as δ → 0.
The orbits α±(δ) emerging from L± enter the set V∓, respectively, in finite time for any δ ∈ [0, δ0].

The first sentence of this assumption also assures that the attraction basin of S ±a (δ) of the
unperturbed system can be taken uniformly in δ ∈ (0, δ0), see an example below. For the second
sentence, note that there exist orbits α±(δ) emerging from L± even for δ = 0 because of (C2),
although they may not be connected to S ∓a at δ = 0 because (C3) is assumed for an open interval
(0, δ0). The second sentence of (C6) implies that the transition map from the section near L± to
the section in V∓ is well-defined as δ→ 0.

Theorem 3. Suppose that the system (1.8) satisfies assumptions (C1) to (C6). Then, there
exist a positive number ε0 and positive valued functions δ1(ε), δ2(ε) such that if 0 < ε < ε0 and
δ1(ε) < δ < δ2(ε), then Eq.(1.8) has a chaotic invariant set near S +a (δ) ∪ α+(δ) ∪ S −a (δ) ∪ α−(δ),
where δ1,2(ε) → 0 as ε → 0. More exactly, the Poincaré return map Π along the flow of (1.8)
near S +a (δ)∪α+(δ)∪S −a (δ)∪α−(δ) is well-defined, andΠ has a hyperbolic horseshoe (an invariant
Cantor set, on which Π is topologically conjugate to the full shift on two symbols).

Theorems 2 and 3 mean that if ε > 0 is sufficiently small for a fixed δ, then there exists
a stable periodic orbit. However, as δ decreases, the periodic orbit undergoes a succession of
bifurcations and if δ gets sufficiently small in comparison with ε, then a chaotic invariant set
appears. In our proof in Sec.4, δ will be assumed to be of O(ε(− log ε)1/2). We conjecture that
this chaotic invariant set is attracting, although the proof is not given in this paper. In general,
given fast-slow systems do not have the parameter δ explicitly. However, Theorem 3 suggests
that as ε increases for fixed δ, a periodic orbit undergoes bifurcations and a chaotic invariant
set may appears, see Fig.2. Obviously the assumptions (C1) to (C4) include assumptions (A1)
to (A3) and (B1) to (B4). In what follows, we consider the system (1.8) with the parameter δ.
When proving Theorems 1 and 2, δ is assumed to be constant, and when proving Theorem 3, δ
is assumed to be of δ ∼ O(ε(− log ε)1/2) as ε → 0. Note that ε << ε(− log ε)1/2 << 1 as ε → 0.
Although δ > 0 is also small, uniformity assumptions on δ and the fact ε << δ allow us to use the
perturbation techniques with respect to only on ε.

In the rest of this section, we give an intuitive explanation of the theorems with an example.
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chaos

periodic

Fig. 2: Typical bifurcation diagram of (1.8) with assumptions (C1) to (C6).

Consider the system 
ẋ = z + 3(y3 − y) + δx(

1
3
− y2),

ẏ = −x,

ż = ε sin

(
5
2

y

)
.

(2.8)

The critical manifoldM = M(δ) is given by the curve z = 3(y − y3), x = 0, and the fold points

are given by L± = (0,∓ 1
√

3
,∓ 2
√

3
), see Fig.3.

2

1 1
1

+

+

3/

2 3/
3/

1 3/

2 3/_

2 3/_
__

_

_

L

S

L

a

Sa

y

z

Fig. 3: Critical manifold of the system (2.8).

It is easy to verify that the assumptions (C1), (C2), (C4) and (C5) are satisfied for (2.8). The
assumption (C3) of existence of heteroclinic orbits are verified numerically (we do not give a
proof here).
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The assumption (C6) is also verified by a straightforward calculation. Now we show that
(C6) implies that the attraction basin of S ±a (δ) of the unperturbed system can be taken uniformly
in δ ∈ (0, δ0). We change the coordinates by an affine transformation (x, y, z) �→ (X,Y,Z) so that
the point (0,−2/

√
3, 2/

√
3) is placed at the origin and the linear part of Eq.(2.8) is diagonalized.

Then the unperturbed system of Eq.(2.8) is rewritten as

d
dt

(
X
Y

)
=

√
−1
2

√
36 − δ2

(
−1 0
0 1

) (
X
Y

)
− δ

2

(
1 0
0 1

) (
X
Y

)
+ h(X,Y, δ), (2.9)

where the explicit form of the polynomial h, whose degree is greater than one, is too complicated
to be written here. However, one can verify that h is of the form

h(X,Y, δ) =
√
−1h1(X,Y, δ) + δh2(X,Y, δ), (2.10)

where h1 and h2 are polynomials with respect to X and Y such that all coefficients of h1 are
real. Note that

√
36 − δ2/2 and δ/2 correspond to ω+(z, δ) and δµ+(z, δ), respectively, in the

assumption (C5).
Now we bring Eq.(2.9) into the normal form with respect to the first term of the right hand

side. There exist a neighborhood W of the origin, which is independent of δ, and a coordinate
transformation (X,Y) �→ (r, θ) defined on W such that Eq.(2.9) is put in the form ṙ = −δ

2
r + a3r

3 + a5r
5 + · · · ,

θ̇ =
√

36 − δ2/2 + O(r2).
(2.11)

Note that the equation of the radius r is independent of θ (see Chow, Li and Wang [4]). In our
case, a3 is given by

a3 = δ
−180 + 29δ2

6(36 − δ2)2
. (2.12)

Further, we can prove that ai ∼ O(δ), i = 3, 5, · · · as δ → 0 by using the induction together
with the property that h(X,Y, 0) takes purely imaginary values if (X,Y) ∈ R2 (see Eq.(2.10)). See
Chiba [2] for explicit formulas of normal forms which are convenient for induction. Thus the
derivative of the right hand side of Eq.(2.11) is calculated as

d
dr

(
−δ

2
r + a3r

3 + · · ·
)
= −δ

2
(1 + b3r

2 + b5r
4 + · · · ) + O(δ2), (2.13)

where b3, b5, · · · are δ-independent constants. It proves that there exists a δ-independent positive
constant C such that if |r(0)| < C, then r(t) decays as |r(t)| ∼ O(e−δt/2) for small δ > 0. The same
property can be verified for any system with the assumption (C6) by means of the normal form.

Figure 4 shows numerical results for Eq.(2.8). If ε = 0.02 and δ = 0.06, there exists a
stable periodic orbit (Fig.4 (a)) while a chaotic behavior occurs if ε = 0.02 and δ = 0.03 (Fig.4
(b)). This verifies Theorems 2 and 3 for Eq.(2.8). As was mentioned, chaos may occurs when
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Fig. 4: Numerical results for Eq.(2.8). If (a) ε = 0.02 and δ = 0.06, there exists a stable periodic
orbit and if (b) ε = 0.02 and δ = 0.03, there exists a chaotic attractor. In (c) and (d), the green
points denote the image of the red points under the Poincaré map from Σ1 to Σ2 for ε = 0.02 and
δ = 0.03. They show that the Poincaré map has a horseshoe and it is attracting.

ε increases for fixed δ. For example, numerical simulations show that chaos also appears for
ε = 0.04 and δ = 0.06.

Although Theorem 3 does not state that a chaotic invariant set mentioned is attracting, Figure
4 (c) corroborates numerically that the chaotic invariant set for our example is actually a chaotic
attractor. Take the Poincaré section Σ1 = {(x, y, z) | y = 0.5, z > 0} and Σ2 = {(x, y, z) | y =
−0.5, z < 0}, like as Σ−out and Σ+out in Fig.5, respectively. Since Eq.(2.8) admits the symmetry
(x, y, z) �→ (−x,−y,−z) and Σ1 corresponds to Σ2 under the symmetry, we identify them and
calculate the Poincaré map from Σ1 to Σ2. The results are represented in Fig.4 (c) and (d). The
red points on Σ1, identified with Σ2, are mapped to the green points on Σ2 by the Poincaré map.
Fig.4(c) shows that the Poincaré map is attracting, and Fig.4(d) shows that it has a horseshoe.

To ascertain the reason why the periodic orbit or the chaotic attractor occur, we take Poincaré
sections Σ+out, Σ

−
II , Σ

−
in, Σ

−
out, Σ

+
II and Σ+in as in Fig. 5.
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Fig. 5: Poincaré sections and a schematic view of the images of the rectangle R under a succes-
sion of the transition maps.

The section Σ+out is parallel to the xz plane and located at the right of L+. Take a rectangle R on
Σ+out and consider how it behaves when it runs along solutions of Eq.(2.8). Since the unperturbed
system of Eq.(2.8) has the heteroclinic orbit α+ connecting L+ and S −a , the rectangle R also
approaches to S −a along α+ and intersects the section Σ−II , as is shown in Fig. 5. Since the velocity
ε sin(5y/2) in the direction z is positive in the vicinity of S −a and since S −a consists of stable focus
fixed points, the intersection area on Σ−II moves upward, rotating around S −a . As a result, the flow
of R intersects the section Σ−in, which is parallel to the xy plane, to form a ring-shaped area as is
shown in Figure 5. Further, we can show that the ring-shaped area on Σ−in moves to Σ−out along
solutions of Eq.(2.8) due to Theorem 1. The area on Σ−out goes back to the section Σ+out in a similar
manner because Eq.(2.8) has the symmetry (x, y, z) �→ (−x,−y,−z). Thus the Poincaré return
map Π from Σ+out into itself is well-defined and it turns out that Π(R) is ring-shaped.

There are two possibilities of locations of the returned ring-shaped area. If the strength of the
stability of stable fixed points on S ±a , say δ as in the assumption (C5), is sufficiently large, then
the radius of the ring-shaped area gets sufficiently small when passing around S ±a . As a result, the
returned ring-shaped area is included in the rectangle R as in Fig.6 (a). It means that the Poincaré
map Π is contractive and it has a stable fixed point, which corresponds to a stable periodic orbit
of Eq.(2.8). On the other hand, if the strength δ is not so large, the radius of the ring-shaped area
is not so small and it intersects with the rectangle as in Fig.6 (b). In this case, the Poincaré map
Π has a horseshoe.
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R

Fig. 6: Positional relationship of the rectangle R with the returned ring-shaped area.

3 Local analysis around the fold points

In this section, we give a local analysis around the fold points L± by using the blow-up method,
and calculate a transition map to observe how orbits of Eq.(1.8) behave near the fold points. To
prove the existence of chaos, we will give a detailed analysis of the transition map, which does
not need for the standard proof of the existence of a periodic orbit. The main theorem in this
section (Thm.3.2) will be made in the end of Sec.3.1. We will calculate only for L+ because
discussion for L− is done in the same way.

3.1 Normal form coordinates

At first, we transform Eq.(1.8) into the normal form in the vicinity of L+(δ). In what follows, if
a (formal) power series h centered at the origin begins with n-th degree terms (i.e. ∂ih(0)/∂xi =

0 (i = 0, 1, · · · , n − 1) and ∂nh(0)/∂xn � 0), we denote the fact as h ∼ Op(n). The notation O(·)
is also used to the usual Landau notation. For example if h(x, y, z) ∼ O(x2, y2, z2, xy, yz, zx) as
x, y, z→ 0, we simply denote it as h ∼ Op(2).

Lemma 3.1. Suppose (C1), (C2) and (C4). For every δ ∈ [0, δ0), There exists a C∞ local
coordinate transformation (x, y, z) �→ (X,Y,Z) defined near L+(δ) such that Eq.(1.8) is brought
into the form

Ẋ = Z − Y2 + c1(δ)XY + Zh1(X,Y,Z, δ) + Y2h2(X,Y,Z, δ) + εh3(X,Y,Z, ε, δ),
Ẏ = −X + Zh4(X,Y,Z, δ) + εh5(X,Y,Z, ε, δ),
Ż = −ε + εh6(X,Y,Z, ε, δ),

(3.1)

where c1(δ) and hi (i = 1, · · · , 6) are C∞ functions such that c1(δ) > 0 for δ > 0 and

h1, h2, h4 ∼ O(X,Y,Z), h6 ∼ O(X,Y,Z, ε). (3.2)

If we assume (C5), then c1(δ) ∼ O(δ) as δ→ 0.

In these coordinates, L+(δ) is placed at the origin and the branch S +(δ) of the critical manifold is
of the form Z = Y2 + Op(3), X = Op(2).
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Proof of the Lemma. We start by calculating the normal form of the unperturbed system (2.6).
We will use the same notation (x, y, z) as the original coordinates after a succession of coordinate
transformations for simplicity. Since the Jacobian matrix of ( f1, f2) at L+(δ) has two zero eigen-
values due to the assumption (C1), the normal form for the equations of (x, y) is of the form (see
Chow, Li and Wang [4]){

ẋ = a1(δ)z + a2(δ)y2 + a3(δ)xy + zh1(x, y, z, δ) + y2h2(x, y, z, δ),
ẏ = b1(δ)x + b2(δ)z + zh4(x, y, z, δ),

(3.3)

where a1(δ), a2(δ), a3(δ), b1(δ), b2(δ) and h1, h2, h4 ∼ O(x, y, z) are C∞ functions. Note that a2(δ) �
0, b1(δ) � 0 for δ ∈ [0, δ0) because of the assumption (C2). Since we can assume that S +(δ) is
locally expressed as z ∼ y2, x ∼ 0 without loss of generality, by a suitable coordinate transforma-
tion, we obtain a2(δ) = −a1(δ) and b2(δ) = 0. Since fixed points on S +a (δ) are attracting and since
fixed points on S +r (δ) are saddles for δ > 0, we obtain a1(δ)b1(δ) < 0 and a3(δ) > 0 for δ > 0.
If we assume (C5), then a3(δ) ∼ O(δ). We can assume that a1(δ) > 0 because we are allowed to
change the coordinates as x �→ −x, y �→ −y if necessary. Thus, the normal form of Eq.(2.6) is
written as 

ẋ = a1(δ)(z − y2) + a3(δ)xy + zh1(x, y, z, δ) + y2h2(x, y, z, δ),
ẏ = b1(δ)x + zh4(x, y, z, δ),
ż = 0,

(3.4)

with a1(δ) > 0, b1(δ) < 0. The coordinate transformation which brings Eq.(2.6) into Eq.(3.4)
transforms Eq.(1.8) into the system of the form

ẋ = a1(δ)(z − y2) + a3(δ)xy + zh1(x, y, z, δ) + y2h2(x, y, z, δ) + εh3(x, y, z, ε, δ),
ẏ = b1(δ)x + zh4(x, y, z, δ) + εh5(x, y, z, ε, δ),
ż = ε(g1(δ) + h6(x, y, z, ε, δ)),

(3.5)

where h3, h5, h6 are C∞ functions such that h6 ∼ O(x, y, z, ε), and where g1(δ) := g(L+, 0, δ) is
a negative constant on account of the assumption (C4). Finally, changing coordinates and time
scales as

x = −X
a1(δ)
g1(δ)

(
− g1(δ)2

a1(δ)b1(δ)

)4/5

, y = Y

(
− g1(δ)2

a1(δ)b1(δ)

)1/5

, z = Z

(
− g1(δ)2

a1(δ)b1(δ)

)2/5

,

t �→ − t
g1(δ)

(
− g1(δ)2

a1(δ)b1(δ)

)2/5

, (3.6)

and modifying the definitions of h′i s (i = 1, · · · , 6) appropriately, we obtain Eq.(3.1). Note that
since g1(δ), a1(δ), b1(δ) � 0 for δ ∈ [0, δ0), this transformation is a local diffeomorphism for every
δ ∈ [0, δ0). �

Let ρ1 be a small positive number and let

Σ+in = {(X,Y, ρ4
1) | (X,Y) ∈ R2}, Σ+out = {(X, ρ2

1,Z) | (X, Z) ∈ R2} (3.7)

15



be Poincaré sections in the (X,Y,Z) space defined near the origin (see Fig.7). The purpose of this
section is to construct a transition map from Σ+in to Σ+out. Recall that there exists an orbit α+(δ)
emerging from L+(δ), where L+(δ) corresponds to the origin in the (X,Y,Z) space.

Theorem 3.2. Suppose (C1), (C2) and (C4) to (C6). If ρ1 > 0 is sufficiently small, there exists
ε0 > 0 such that the followings hold for 0 < ε < ε0 and 0 < δ < δ0:

(I) There exists an open set Uε ⊂ Σ+in near the point Σ+in ∩ S +a (δ) such that the transition map
Π+loc : Uε → Σ+out along the flow of Eq.(3.1) is well-defined, C∞ with respect to X and Y , and
expressed as

Π+loc


X
Y
ρ4

1

 =

G1(ρ1, δ)

ρ2
1

0

 +

G2(X,Y, ρ1, δ)ε4/5 + O(ε log ε)

0
(Ω + H(X,Y))ε4/5 + O(ε log ε)

 , (3.8)

where Ω ∼ −3.416 is a negative constant, and G1,G2,H are C∞ functions with respect to X,Y, δ.
The arguments X,Y are defined by


X = D̂1(X,Y, ρ1, ε, δ)ε

−3/5 exp
[
−d̂(ρ1, δ)

δ

ε

]
,

Y = D̂2(X,Y, ρ1, ε, δ)ε
−2/5 exp

[
−d̂(ρ1, δ)

δ

ε

]
,

(3.9)

where D̂1, D̂2 and d̂ are C∞ functions with respect to X,Y, δ such that d̂ > 0 for δ ≥ 0. Functions
D̂1 and D̂2 are not smooth in ε, however, they are bounded and nonzero as ε→ 0 and δ→ 0.
(II) The point (G1(ρ1, δ), ρ2

1, 0) is the intersection of α+(δ) and Σ+out.
(III) The function H satisfies

H(0, 0) = 0,
∂H
∂X (X,Y) � 0. (3.10)

(IV) If Uε is sufficiently small, for each ε ∈ (0, ε0) and δ ∈ (0, δ0), we can suppose that

∂D̂1

∂X
(X,Y, ρ1, ε, δ) � 0, (3.11)

by changing the value of ρ1 if necessary.
This theorem means that an orbit of Eq.(1.8) or Eq.(3.1) running around S +a (δ) jumps near

L+(δ), goes to the right of L+(δ) and the distance of the orbit and the orbit α+(δ) is of O(ε4/5) (see
Fig.7). In particular, it converges to α+(δ) as ε → 0. We use the blow-up method to prove this
theorem. In Sec.3.2, we introduce the blow-up coordinates and outline the strategy of the proof
of Thm.3.2. Analysis of our system in the blow-up coordinates is done after Sec.3.3 and the proof
is completed in Sec.3.6. The constant Ω is a pole of the first Painlevé equation, as is shown in
Sec.3.3. The function H, which is actually an analytic function, also arises from the first Painlevé
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Fig. 7: Transition map Π+loc and the heteroclinic orbit α+.

equation. To prove Theorems 1 and 2, it is sufficient to show thatX andY are exponentially small
as ε → 0. However, we need more precise decay rate for proving Theorem 3. For this purpose,
the factors ε−3/5 and ε−2/5 will be derived by means of the WKB theory. Eq.(3.10) and (3.11)
are also used to prove Theorem 3. Thus our analysis involves a harder calculation than a usual
treatment of fold points in fast-slow systems. The assumption (C6) is used to assure that the
domain Uε of the transition map is independent of δ ∈ (0, δ0). The assumption (C5) is used to
show that the argument of exp[· · · ] in Eq.(3.9) is of order O(δ). For other parts of the theorem,
we need only (C1), (C2) and (C4).

3.2 Blow-up coordinates

In this subsection, we introduce the blow-up coordinates to “desingularize” the fixed point L+(δ)
having a nilpotent linear part. Regarding ε as a dependent variable on t, we rewrite Eq.(3.1) as

Ẋ = Z − Y2 + c1(δ)XY + Zh1(X,Y,Z, δ) + Y2h2(X,Y,Z, δ) + εh3(X,Y,Z, ε, δ),
Ẏ = −X + Zh4(X,Y,Z, δ) + εh5(X,Y,Z, ε, δ),
Ż = −ε + εh6(X,Y,Z, ε, δ),
ε̇ = 0,

(3.12)

with the estimate (3.2). For this system, we define the blow-up transformations K1,K2 and K3 to
be

(X,Y,Z, ε) = (r3
1x1, r2

1y1, r4
1, r5

1ε1), (3.13)

(X,Y,Z, ε) = (r3
2x2, r2

2y2, r4
2z2, r5

2), (3.14)

(X,Y,Z, ε) = (r3
3x3, r2

3, r4
3z3, r5

3ε3), (3.15)

respectively, where K1,K2 and K3 are defined on half spaces {Z ≥ 0}, {ε ≥ 0} and {Y ≥ 0}, re-
spectively. In what follows, we refer to the coordinates (x1, y1, r1, ε1), (x2, y2, z2, r2), (x3, r3, z3, ε3)
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as K1,K2,K3 coordinates, respectively. Transformations κi j from the Ki coordinates to the Kj

coordinates are given by

κ12 : (x2, y2, z2, r2) = (x1ε
−3/5
1 , y1ε

−2/5
1 , ε−4/5

1 , r1ε
1/5
1 ),

κ21 : (x1, y1, r1, ε1) = (x2z
−3/4
2 , y2z

−1/2
2 , r2z

1/4
2 , z−5/4

2 ),

κ32 : (x2, y2, z2, r2) = (x3ε
−3/5
3 , ε−2/5

3 , z3ε
−4/5
3 , r3ε

1/5
3 ),

κ23 : (x3, r3, z3, ε3) = (x2y
−3/2
2 , r2y

1/2
2 , z2y−2

2 , y−5/2
2 ),

(3.16)

respectively. Our next task is to write out Eq.(3.12) in the Ki coordinate. Eqs.(3.13) and (3.12)
are put together to provide

ẋ1 = r1
(
1 − y2

1 + c1(δ)r1x1y1 + h8(x1, y1, r1, δ) + y2
1h9(x1, y1, r1, δ)

+r1ε1h10(x1, y1, r1, ε1, δ) +
3
4

x1ε1(1 − h7(x1, y1, r1, ε1, δ))
)
,

ẏ1 = r1
(−x1 + r1h11(x1, y1, r1, δ) + r2

1ε1h12(x1, y1, r1, ε1, δ) +
1
2

y1ε1(1 − h7(x1, y1, r1, ε1, δ))
)
,

ṙ1 = −
1
4

r2
1ε1(1 − h7(x1, y1, r1, ε1, δ)),

ε̇1 =
5
4

r1ε
2
1(1 − h7(x1, y1, r1, ε1, δ)),

(3.17)
where hi (i = 7, · · · , 12) are C∞ functions such that

h7(x1, y1, r1, ε1, δ) = h6(r
3
1x1, r

2
1y1, r

4
1, r

5
1ε1, δ), (3.18)

and h8, · · · , h12 are defined in a similar manner through h1, · · · , h5, respectively. Thus in these
functions, x1, y1, ε1 are always with the factors r3

1, r
2
1, r

5
1, respectively. This fact will be used in

later calculations. Note that hi ∼ O(r2
1) for i = 7, 8, 9, 11 because of (3.2). By changing the time

scale appropriately, we can factor out r1 in the right hand side of the above equations:

(K1)



ẋ1 = 1 − y2
1 + c1(δ)r1x1y1 + h8(x1, y1, r1, δ) + y2

1h9(x1, y1, r1, δ)

+r1ε1h10(x1, y1, r1, ε1, δ) +
3
4

x1ε1(1 − h7(x1, y1, r1, ε1, δ)),

ẏ1 = −x1 + r1h11(x1, y1, r1, δ) + r2
1ε1h12(x1, y1, r1, ε1, δ) +

1
2

y1ε1(1 − h7(x1, y1, r1, ε1, δ)),

ṙ1 = −
1
4

r1ε1(1 − h7(x1, y1, r1, ε1, δ)),

ε̇1 =
5
4
ε2

1(1 − h7(x1, y1, r1, ε1, δ)).

(3.19)
Since the time scale transformation does not change the phase portrait of Eq.(3.17), we can use
Eq.(3.19) to calculate the transition map.

In a similar manner (i.e. changing the coordinates and dividing by the common factors), we
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obtain the systems of equations written in the K2,K3 coordinates as

(K2)



ẋ2 = z2 − y2
2 + r2h13(x2, y2, z2, r2, δ),

ẏ2 = −x2 + r2
2h14(x2, y2, z2, r2, δ),

ż2 = −1 + r2
2h15(x2, y2, z2, r2, δ),

ṙ2 = 0,

(3.20)

and

(K3)



ẋ3 =−1+ z3+ c1(δ)r3x3 +
3
2

x3h16(x3, r3, z3, ε3, δ) + r2
3h17(x3, r3, z3, ε3, δ),

ṙ3 = −
1
2

r3h16(x3, r3, z3, ε3, δ),

ż3 = −ε3 + 2z3h16(x3, r3, z3, ε3, δ) + r2
3ε3h18(x3, r3, z3, ε3, δ),

ε̇3 =
5
2
ε3h16(x3, r3, z3, ε3, δ),

(3.21)

respectively, where h16(x3, r3, z3, ε3, δ) := x3 + r2
3h19(x3, r3, z3, ε3, δ) and hi (i = 13, · · · , 19) are

C∞ functions satisfying

h17, h18, h19 ∼ O(x3, r3, z3, ε3).

Our strategy for understanding the flow of Eq.(3.1) near the fold point L+(δ) is as follows: In
Sec.3.3, we analyze Eq.(3.20) in the K2 coordinates. We will find it to be a perturbed first Painlevé
equation. Since asymptotic behavior of the first Painlevé equation is well studied, we can con-
struct a transition map along the flow of it approximately. In Sec.3.4, we analyze Eq.(3.19) in
the K1 coordinates. We will see that in the K1 coordinates, S +a (δ) has a 2-dimensional attract-
ing center manifold Wc(δ) for δ > 0 (see Fig.8). Since it is attracting, orbits passing nearby
S +a (δ) approaches Wc(δ). Thus if we construct the invariant manifold Wc(δ) globally, we can well
understand asymptotic behavior of orbits passing through nearby S +a (δ). Although usual center
manifold theory provides the center manifold Wc(δ) only locally, we will show that there exists
an orbit γ, called the Boutroux’s tritronquée solution, of the first Painlevé equation in the K2 co-
ordinates such that if it is transformed into the K1 coordinates, it is attached on the edge of Wc(δ)
(see Fig.8). This means that the orbit γ of the first Painlevé equation guides the manifold Wc(δ)
and provides a global structure of it. In Sec.3.5, we analyze Eq.(3.21) in the K3 coordinates.
We will see that there exists a fixed point whose unstable manifold is 1-dimensional. Since the
orbit γ of the first Painlevé equation written in the K3 coordinates approaches the fixed point, the
manifold Wc(δ) put on the γ is also attached on the unstable manifold (see Fig.8). The unstable
manifold corresponds to the heteroclinic orbit α+(δ) in the (X,Y,Z) coordinates if it is blown
down. This means that orbits of Eq.(3.1) coming from a region above L+(δ) go to the right of
L+(δ) (see Fig.7) and pass near the heteroclinic orbit α+(δ). Thus the transition map Π+loc is well
defined. The fixed point in the K3 coordinates corresponds to a pole of the solution γ in the K2

coordinates. In this way, the value Ω of the pole appears in the transition map (3.8).
Combining transition maps constructed on each Ki coordinates and blowing it down to the

(X,Y,Z) coordinates, we can prove Thm.3.2.
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Fig. 8: The flow in the (X,Y,Z) coordinates and the blow-up coordinates. The dotted line denotes
the orbit γ of the first Painlevé equation.

3.3 Analysis in the K2 coordinates

We consider Eq.(3.20). Since r2 = ε
1/5 is a small constant, we are allowed to take the system

ẋ2 = z2 − y2
2,

ẏ2 = −x2,
ż2 = −1,

(3.22)

as the unperturbed system of Eq.(3.20). This is equivalent to the first Painlevé equation :
dx2

dz2
= −z2 + y2

2,

dy2

dz2
= x2,

or
d2y2

dz2
2

= −z2 + y2
2. (3.23)

It is known that there exists a two parameter family of solutions of the first Painlevé equation
whose asymptotic expansions are given by(

x2(z2)
y2(z2)

)
=

−
1
2

z−1/2
2 −

(C1

8
z−9/8

2 −
√

2C2z
1/8
2

)
cos φ −

(C2

8
z−9/8

2 +
√

2C1z
1/8
2

)
sin φ + O(z−3

2 )

−z1/2
2 +C1z

−1/8
2 cos φ +C2z

−1/8
2 sin φ + O(z−2

2 )

 ,
(3.24)
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as z2 → ∞ and

(
x2(z2)
y2(z2)

)
=


−12

(z2 − z0)3
+

z0

5
(z2 − z0) +

1
2

(z2 − z0)
2 + 4C3(z2 − z0)

3 + O((z2 − z0)
4)

6
(z2 − z0)2

+
z0

10
(z2 − z0)

2 +
1
6

(z2 − z0)
3 +C3(z2 − z0)

4 + O((z2 − z0)
5)

 , (3.25)

as z2 → z0 + 0, where φ ∼ 4
√

2
5

z5/4
2 (z2 → ∞), and where C1,C2,C3 and z0 are constants

which depend on an initial value. The value z0 is a movable pole of the first Painlevé equation
(see Ince [17], Noonburg [26], Conte [5]). In particular, there exists a unique solution γ, which
corresponds to the case C1 = C2 = 0, whose asymptotic expansions as z2 → ∞ and as z2 → Ω+0
are of the form

γ :

(
x2

y2

)
=

(
x2(z2)
y2(z2)

)
=

−
1
2

z−1/2
2 + O(z−3

2 )

−z1/2
2 + O(z−2

2 )

 , (3.26)

and

γ :

(
x2

y2

)
=

(
x2(z2)
y2(z2)

)
=


−12

(z2 −Ω)3
+
Ω

5
(z2 −Ω) + O((z2 −Ω)2)

6
(z2 −Ω)2

+
Ω

10
(z2 −Ω)2 + O((z2 −Ω)3)

 , (3.27)

respectively, where Ω ∼ −3.416. The γ is called the Boutroux’s tritronquée solution [1, 19].
Let ρ2 and ρ3 be small positive numbers and define Poincaré sections to be

Σin
2 = {z2 = ρ

−4/5
2 }, Σout

2 = {y2 = ρ
−2/5
3 }, (3.28)

(see Fig.9). By Eqs.(3.26, 3.27), the intersections P2 = γ∩Σout
2 , Q2 = γ∩Σin

2 of γ and the sections
are given by

P2 = (px, py, pz) =
(
−(2/3)1/2ρ−3/5

3 + O(ρ1/5
3 ), ρ−2/5

3 , Ω +
√

6ρ1/5
3 + O(ρ3)

)
, (3.29)

Q2 = (qx, qy, qz) =
(
−ρ2/5

2 /2 + O(ρ12/5
2 ), −ρ−2/5

2 + O(ρ8/5
2 ), ρ−4/5

2

)
, (3.30)

respectively.

Proposition 3.3. If ρ2 and ρ3 are sufficiently small positive numbers, there exists an open set
U2 ⊂ Σin

2 such that the transition map Πloc
2 : U2 → Σout

2 along the flow of Eq.(3.20) is well-defined
and expressed as

Πloc
2


x2

y2

ρ−4/5
2
r2

 =


px

py

pz

0

 +


H1(x2 − qx, y2 − qy, ρ2, r2, ρ3, δ)
0

H2(x2 − qx, y2 − qy, ρ2, r2, ρ3, δ)
r2

 , (3.31)

where H1(x, y, ρ2, r, ρ3, δ) and H2(x, y, ρ2, r, ρ3, δ) are C∞ functions with respect to x, y, r and δ
satisfying the equalities H1(0, 0, ρ2, 0, ρ3, δ) = H2(0, 0, ρ2, 0, ρ3, δ) = 0 for any small ρ2, ρ3 > 0
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Fig. 9: The solution γ of the first Painlevé equation and the Poincaré sections.

and δ ∈ [0, δ0).

Proof. This is an immediate consequence of the differentiability of solutions with respect to
initial values x2, y2 and parameters r2, δ. Note that at this time, we did not prove differentiability
at ρ3 = 0, which will be proved in the next Lemma. �

Since H1 and H2 are C∞ with respect to r and δ, we put them in the form

Hi(x, y, ρ2, r, ρ3, δ) = H̃i(x, y, ρ2, ρ3) + O(r), i = 1, 2, (3.32)

where we use the fact that when r2 = 0, the system (3.20) is independent of δ. Then, the value
limρ3→0

(
pz + H̃2(x − qx, y − qy, ρ2, ρ3)

)
gives a pole z0 of a solution of Eq.(3.23) through an initial

point (x, y, ρ−4/5
2 ); that is, x2(z2), y2(z2)→ ∞ as z2 → z0. Prop.3.3 implies that H̃i are C∞ in x and

y when ρ3 > 0. Now we show that H̃i can be expanded in ρ1/5
3 and they are C∞ even if ρ3 = 0.

This means that a position of a pole is also smooth with respect to initial values. In the proof, the
Painlevé property will play a crucial role. Part (ii) of the next Lemma is used to prove Thm.3.2
(III).

Lemma 3.4. (i) The functions H̃1 and H̃2 are analytic with respect to (x, y) ∈ U2, ρ
1/5
2 > 0 and

ρ1/5
3 ≥ 0, though they are singular at ρ1/5

2 = 0.

(ii) H̃2(0, 0, ρ2, 0) = 0,
∂

∂x
H̃2(x, y, ρ2, 0) � 0.

Proof. Let x2 = x2(z2; ρ2, x0, y0) and y2 = y2(z2; ρ2, x0, y0) be a solution of the system (3.23) with
the initial condition

x2(ρ
−4/5
2 ; ρ2, x0, y0) = x0, y2(ρ

−4/5
2 ; ρ2, x0, y0) = y0.

Suppose that y2(z) = ρ
−2/5
3 for some z = z(x0, y0, ρ2, ρ3). When ρ3 > 0, the statement (i) imme-

diately follows from the fundamental theorem of ODEs: Since the right hand side of the system
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(3.23) is analytic, any solution is analytic in time z2, initial time ρ−4/5
2 and initial values (x0, y0).

Applying the implicit function theorem to the equality

y2(z(x0, y0, ρ2, ρ3); ρ2, x0, y0) = ρ
−2/5
3 , (3.33)

one can verify that
z(x0, y0, ρ2, ρ3) = pz + H̃2(x0 − qx, y0 − qy, ρ2, ρ3) (3.34)

is analytic in x0, y0, ρ
1/5
2 > 0 and ρ1/5

3 > 0. Thus

x2(z(x0, y0, ρ2, ρ3); ρ2, x0, y0) = px + H̃1(x0 − qx, y0 − qy, ρ2, ρ3) (3.35)

is also analytic in the same region. Since z→ ∞ as ρ2 → 0, H̃1 and H̃2 are singular at ρ1/5
2 = 0.

When ρ3 = 0, z(x0, y0, ρ2, 0) gives a pole and x2 = y2 = ∞ at z2 = z(x0, y0, ρ2, 0). Thus we
should change the coordinates so that a pole becomes a regular point. For (3.23), change the
dependent variables (x2, y2) and the independent variable z2 to (ξ, η) and τ by the relation

x2 =
2κ2

η3
+
κ2τ

2
η +

κ2

2
η2 − κ2η3ξ,

y2 = −
κ3

η2
,

(3.36)

and z2 = κτ, respectively, where κ := (−6)1/5 < 0. Then, (3.23) is brought into the analytic
system 

dη
dτ
= 1 +

τ

4
η4 +

1
4
η5 − 1

2
η6ξ,

dξ
dτ
=

1
8
τ2η +

3
8
τη2 −

(
τξ − 1

4

)
η3 − 5

4
η4ξ +

3
2
η5ξ2.

(3.37)

Since any pole of y2(z2) is second order [17], a pole of y2 is transformed into a zero of η(τ) of
first order. Let η = η(τ; s, η0, ξ0) and ξ = ξ(τ; s, η0, ξ0) be a solution of the system satisfying the
initial condition

η(s; s, η0, ξ0) = η0, ξ(s; s, η0, ξ0) = ξ0,

where (η0, ξ0) and the initial time s correspond to (x0, y0) and ρ−4/5
2 , respectively, by the transfor-

mation (3.36). Suppose that

η(τ̂(s, η0, ξ0, ρ3); s, η0, ξ0) = (−κ3)1/2ρ1/5
3

for some τ = τ̂(s, η0, ξ0, ρ3), which corresponds to a value of z(x0, y0, ρ2, ρ3) by the relation z = κτ
so that y2(z) = ρ

−2/5
3 (note that when y2 = ρ

−2/5
3 , then η = (−κ3)1/2ρ1/5

3 ). Since

∂η

∂τ

∣∣∣∣
η=(−κ3)1/2ρ1/5

3

= 1 + O(ρ4/5
3 ),
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the implicit function theorem proves that τ̂ is analytic in s, η0, ξ0 and small ρ1/5
3 ≥ 0. Since the

transformation (η0, ξ0) �→ (x0, y0) defined through (3.36) is analytic when y0 � 0, it turns out that
z(x0, y0, ρ2, ρ3) is analytic in (x0, y0) ∈ U2, ρ

1/5
2 > 0 and ρ1/5

3 ≥ 0. Now Eqs.(3.34, 3.35) prove the
part (i) of Lemma.

To prove (ii), let us calculate the asymptotic expansion of τ̂(s, η0, ξ0, 0), at which η = 0. We
rewrite (3.37) as 

dτ
dη
=

1

1 + τ
4η

4 + 1
4η

5 − 1
2η

6ξ
,

dξ
dη
=

1
8τ

2η + 3
8τη

2 −
(
τξ − 1

4

)
η3 − 5

4η
4ξ + 3

2η
5ξ2

1 + τ
4η

4 + 1
4η

5 − 1
2η

6ξ
.

(3.38)

A general solution of this system is obtained in a power series of η as
τ = τ1 + η −

τ1

20
η5 − 1

12
η6 +

ξ1

14
η7 + O(η8),

ξ = ξ1 +
τ2

1

16
η2 +

5τ1

24
η3 + O(η4).

(3.39)

where τ1 and ξ1 are constants to be determined from an initial condition. By using the initial
condition (τ, η, ξ) = (s, η0, ξ0), τ1 is determined as

τ1 = s − η0 +
s

20
η5

0 +
1
30
η6

0 −
ξ0

14
η7

0 + O(η8
0). (3.40)

When η = 0, τ = τ1. This means that the above τ1 gives the expansion of τ̂(s, η0, ξ0, 0). Then we
obtain

∂H̃2

∂x0
(x0 − qx, y0 − qy, ρ2, 0) =

∂z
∂x0

(x0, y0, ρ2, 0)

= κ
∂τ̂

∂x0
(s, η0, ξ0, 0)

= κ
∂τ̂

∂η0

∂η0

∂x0
+ κ

∂τ̂

∂ξ0

∂ξ0

∂x0

= κ

(
− 1

14
η7

0 + O(η8
0)

)
· − 1

κ2η3
0

,

which is not zero for small η0 (thus for large y0). The equality H̃2(0, 0, ρ2, 0) = 0 is obvious from
the definition. �

Remark. Since H̃i is analytic in ρ1/5
3 ≥ 0, it is expanded as

H̃i(x, y, ρ2, ρ3) = Ĥi(x, y, ρ2) + O(ρ1/5
3 ), (3.41)
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for i = 1, 2. Indeed, one can verify that

H̃i(x, y, ρ2, ρ3) = H̃i(x, y, ρ2, 0) +
√

6ρ1/5
3 +

3
√

6
10

(H̃i(x, y, ρ2, 0) + pz)ρ3 + 3ρ6/5
3 + O(ρ7/5

3 )

by using the expansion (3.25). Further, H̃i are expanded in a Laurent series of ρ1/5
2 . In particular,

Eq.(3.40) show that the expansions are of the form

Ĥi(x, y, ρ2) =
ˆ̂Hi(x, y) + ρ−4/5

2 Fi(x, y, ρ
−4/5
2 ), (3.42)

because s = ρ−4/5
2 /κ, where F1, F2 are analytic functions. The proof of the above lemma is based

on the fact that a pole of (3.23) can be transformed into a zero of the analytic system by the
analytic transformation. This property is common to Painlevé equations, and the transformation
(3.36) is used to prove that (3.23) has the Painlevé property [5, 17].

3.4 Analysis in the K1 coordinates

We turn to Eq.(3.19). It is easy to verify that Eq.(3.19) has fixed points (x1, y1, r1, ε1) = (0,±1, 0, 0).
By virtue of the implicit function theorem, we can show that there exist two sets of fixed points
which form two curves emerging from (0,±1, 0, 0), and they correspond to S +a (δ) and S +r (δ), re-
spectively (see Fig.8). On the fixed points, the Jacobian matrix of the right hand side of Eq.(3.19)
has eigenvalues given by

0, 0,
1
2

(
c1(δ)r1y1 + O(r3

1) ±
√

8y1 − 4c1(δ)r1x1 + O(r2
1)
)
. (3.43)

In particular, the eigenvalues become 0, 0,±
√

2i at the fixed point Q1 = (0,−1, 0, 0), but at fixed
points in S +a (δ)\Q1, they have two eigenvalues whose real parts are negative if r1 is small and
δ > 0. Eigenvectors associated with the two zero eigenvalues at points on S +a (δ)\Q1 converge to
those at Q1, which are given by (0, 0, 1, 0) and (−1, 0, 0, 2), as r1 → 0. The vector (0, 0, 1, 0) is
tangent to S +a (δ). Thus (−1, 0, 0, 2) is a nontrivial center direction.

Lemma 3.5. If δ > 0, there exists an attracting 2-dimensional center manifold Wc(δ) which
includes S +a (δ) and the orbit γ of the first Painlevé equation written in the K1 coordinates (see
Fig.10).

Proof. Let B(a) be the open ball of radius a centered at Q1. Since at points in S +a (δ)\B(a) the
Jacobian matrix has two zero eigenvalues and the other two eigenvalues with negative real parts,
there exists an attracting 2-dimensional center manifold Wc(δ, a) emerging from S +a (δ)\B(a) for
any small a > 0. Let γ be the solution of the first Painlevé equation described in the previous
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subsection. Its asymptotic expansion (3.26) is written in the K1 coordinates as

γ :


x1

y1

r1

ε1

 =

−1

2
z−5/4

2 + O(z−15/4
2 )

−1 + O(z−5/2
2 )

0
z−5/4

2


(as z2 → ∞), (3.44)

by the coordinate change κ21 (3.16). The curve (3.44) approaches the point Q1 as z2 → ∞ and
its tangent vector converges to the eigenvector (−1, 0, 0, 2) at Q1 as z2 → ∞. Thus Wc(δ) :=
lim
a→0

Wc(δ, a) ∪ γ forms an invariant manifold. �

Note that γ is included in the subspace {r1 = 0}. This lemma means that the orbit γ guides
global behavior of the center manifold Wc(δ).

Let ρ1, ρ2 > 0 be the small constants referred to in Thm.3.2 and Prop.3.3, respectively. Take
two Poincaré sections Σin

1 and Σout
1 defined to be

Σin
1 = {(x1, y1, r1, ε1) | r1 = ρ1, |x1| ≤ ρ1, |y1 + 1| ≤ ρ1, 0 < ε1 ≤ ρ2},
Σout

1 = {(x1, y1, r1, ε1) | 0 ≤ r1 ≤ ρ1, |x1| ≤ ρ1, |y1 + 1| ≤ ρ1, ε1 = ρ2}, (3.45)

respectively. Note that Σin
1 is included in the section Σ+in (see Eq.(3.7)) if written in the (X,Y,Z)

coordinates and Σout
1 in the section Σin

2 (see Eq.(3.28)) if written in the K2 coordinates.

S

Q

W

+
a

c

1

1y

1

1

r

in

out
1

1

Fig. 10: Poincaré sections to define the transition map Πloc
1 .

Proposition 3.6. Suppose (C1), (C2) and (C4) to (C6).
(I) If ρ1 and ρ2 are sufficiently small, the transition map Πloc

1 : Σin
1 → Σout

1 along the flow of
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Eq.(3.19) is well-defined for every δ ∈ (0, δ0) and expressed as

Πloc
1


x1

y1

ρ1

ε1

 =

ϕ1(ρ1ε

1/5
1 ρ−1/5

2 , ρ2, δ)
ϕ2(ρ1ε

1/5
1 ρ−1/5

2 , ρ2, δ)
ρ1ε

1/5
1 ρ−1/5

2
ρ2

 +


X1

Y1

0
0

 , (3.46)

where ϕ1 and ϕ2 are C∞ functions such that the graph of x1 = ϕ1(r1, ε1, δ) and y1 = ϕ2(r1, ε1, δ)
gives the center manifold Wc(δ). The second term denotes the deviation from Wc(δ), and X1 and
Y1 are defined to be

X1 = D1(x1, y1, ρ1, ε1, ρ2, δ)

(
ρ2

ε1

)3/5

exp
[
−d(ρ1, ε1, ρ2, δ)

δ

ε1

]
,

Y1 = D2(x1, y1, ρ1, ε1, ρ2, δ)

(
ρ2

ε1

)2/5

exp
[
−d(ρ1, ε1, ρ2, δ)

δ

ε1

]
,

(3.47)

where D1,D2 and d are C∞ functions with respect to x1, y1, ρ1 and δ. Although D1,D2 and d are
not C∞ in ε1 and ρ2, they are bounded and nonzero as ε1 → 0 and δ→ 0. Further, they admit the
expansions of the form

Di(x1, y1, ρ1, ε1, ρ2, δ) = D̂i(x1, y1, ρ1, ε1, δ) + O((ε1/ρ2)
1/5), (3.48)

d(ρ1, ε1, ρ2, δ) = d̂(ρ1, δ) + O((ε1/ρ2)
1/5), (3.49)

for i = 1, 2.
(II) The first term in the right hand side of Eq.(3.46) is on the intersection of Σout

1 and the center
manifold Wc(δ). In particular, as ε1 → 0, Πloc

1 (x1, y1, ρ1, ε1) converges to the intersection point of
Σout

1 and γ.
(III) If the initial point (x1, y1, ρ1, ε1) is sufficiently close to Wc(δ),

∂D̂1

∂x1
(x1, y1, ρ1, ε1, δ) � 0 (3.50)

except for a countable set of values of ε1.

Remark. To prove the existence of a periodic orbit, it is sufficient to show that X1 and Y1 are
exponentially small as ε1 → 0. However, to prove the existence of chaos, we need more precise
estimate as the factors (ρ2/ε1)3/5 and (ρ2/ε1)2/5. Eq.(3.50) is used to prove Eq.(3.11).

Proof. At first, we divide the right hand side of Eq.(3.19) by 1 − h7 and change the time scale
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accordingly. Note that this does not change the phase portrait. Then we obtain

ẋ1 = 1 − y2
1 + c1(δ)r1x1y1 +

3
4

x1ε1 + h8 + y2
1h9 + r1ε1h10

+(1 − y2
1 + c1(δ)r1x1y1 + h8 + y2

1h9 + r1ε1h10)h21,

ẏ1 = −x1 +
1
2

y1ε1 + r1h11 + r2
1ε1h12 + (−x1 + r1h11 + r2

1ε1h12)h21,

ṙ1 = −
1
4

r1ε1,

ε̇1 =
5
4
ε2

1,

(3.51)

where h21 =
∑∞

k=1 hk
7, and arguments of functions are omitted. Equations for r1 and ε1 are solved

as

r1(t) = r1(0)

(
4 − 5ε1(0)t

4

)1/5

, ε1(t) =
4ε1(0)

4 − 5ε1(0)t
, (3.52)

respectively. Let T be a transition time from Σin
1 to Σout

1 . Since ε1(T ) = ρ2, T is given by

T =
4

5ε1(0)

(
1 − ε1(0)

ρ2

)
. (3.53)

To estimate x1(T ) and y1(T ), let us introduce the new time variable τ by

τ =

(
4 − 5ε1(0)t

4

)1/5

. (3.54)

Then, r1(t) = r1(0)τ, ε1(t) = ε1(0)τ−5. Note that when t = 0, τ = 1 and when t = T , one has
τ = (ε1(0)/ρ2)1/5.

Claim 1. Any solutions (x1, y1) of (3.51) are of the form x1 = τ
−3u1(τ), y1 = τ

−2u2(τ), where u1

and u2 are C∞ with respect to τ.

Proof. Changing the time t to τ, the system (3.51) is rewritten as

−1
4
ε1(0)τ−4 dx1

dτ
= 1 − y2

1 + c1(δ)r1(0)τx1y1 +
3
4

x1ε1(0)τ−5 + h8 + y2
1h9 + r1(0)ε1(0)τ−4h10

+(1 − y2
1 + c1(δ)r1(0)τx1y1 + h8 + y2

1h9 + r1(0)ε1(0)τ−4h10)h21,

−1
4
ε1(0)τ−4 dy1

dτ
= −x1 +

1
2
ε1(0)τ−5y1 + r1(0)τh11 + r1(0)2ε1(0)τ−3h12

+(−x1 + r1(0)τh11 + r1(0)2ε1(0)τ−3h12)h21.

Putting x1 = τ
−3u1, y1 = τ

−2u2 yields
−1

4
ε1(0)

du1

dτ
=

(
τ7 − τ3u2

2 + c1(δ)r1(0)τ3u1u2 + τ
7h8 + τ

3u2
2h9 + r1(0)ε1(0)τ3h10

)
(1 + h21),

−1
4
ε1(0)

du2

dτ
=

(
−τ3u1 + r1(0)τ7h11 + r1(0)2ε1(0)τ3h12

)
(1 + h21).

(3.55)
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Recall that h7 is defined through (3.18), and thus

h7(x1, y1, r1, ε1, δ) = h6(r1(0)3u1, r1(0)2u2, r1(0)4τ4, r1(0)5ε1(0), δ), (3.56)

which implies that h7 is C∞ with respect to u1, u2, r1(0), ε1(0), δ and τ. Functions h8, · · · , h12

and h21 have the same property. Hence the right hand side of Eq.(3.55) is C∞ with respect to
u1, u2, r1(0), δ and τ, which proves that solutions u1(τ) and u2(τ) are C∞ with respect to r1(0), δ
and τ. �

Next thing to do is to derive the center manifold and how x1(t) and y1(t) approach to it.
The local center manifold Wc(δ) is given as a graph of C∞ functions x1 = ϕ1(r1, ε1, δ), y1 =

ϕ2(r1, ε1, δ). By using the standard center manifold theory, we can calculate ϕ1 and ϕ2 as

ϕ1(r1, ε1, δ) = −
1
2
ε1 + O(r2

1, r1ε1, ε
2
1), ϕ2(r1, ε1, δ) = −1 + O(r2

1, r1ε1, ε
2
1). (3.57)

To see the behavior of solutions x1 and y1 near the center manifold Wc(δ), we put x1 and y1 in the
form

x1(τ) = ϕ1(r1(τ), ε1(τ), δ) + τ
−3v1(τ), y1(τ) = ϕ2(r1(τ), ε1(τ), δ) + τ

−2v2(τ). (3.58)

Since τ3x1(τ) and τ2y1(τ) are C∞ in τ for every solutions x1 and y1, so are solutions τ3ϕ1(r1(τ), ε1(τ), δ)
and τ2ϕ2(r1(τ), ε1(τ), δ) on the center manifold multiplied by τ3 and τ2, respectively. This implies
that v1(τ) and v2(τ) are also C∞ in τ. Substituting Eq.(3.58) into (3.51) and expanding it in v1, v2

and ε1(0), we obtain the system of the form
ε1

dv1

dτ
= −8τ5v2 + 4c1r1τ

5v1 + r3
1τ

7h22(r1, τ, δ)v1 + r2
1τ

7h23(r1, τ, δ)v2 + g1(v1, v2, r1, ε1, δ, τ),

ε1
dv2

dτ
= 4τ3v1 + r4

1τ
7h24(r1, τ, δ)v1 + r3

1τ
7h25(r1, τ, δ)v2 + g2(v1, v2, r1, ε1, δ, τ),

(3.59)

where g1, g2 ∼ O(v2
1, v1v2, v2

2, ε1) denote higher order terms, h22, · · · , h25 are C∞ functions, and
where r1(0), ε1(0) and c1(δ) are denoted by r1, ε1 and c1, respectively. This is a singular perturbed
problem with respect to ε1.

Claim 2. Any nonzero solutions of this system are expressed as

v1 = D∗1(τ, r1, ε1, δ; v10, v20) exp
[
−d∗(τ, r1, δ)

ε1

]
, v2 = D∗2(τ, r1, ε1, δ; v10, v20) exp

[
−d∗(τ, r1, δ)

ε1

]
,

(3.60)
where v10 = v1(1) and v20 = v2(1) are initial values, and where D∗1,D

∗
2 and d∗ are C∞ in

τ, r1, v10, v20 and δ. Although D∗1 and D∗2 are not C∞ in ε1, they are bounded and nonzero as
ε1 → 0, δ→ 0. If v10, v20, r1 and τ are sufficiently small,

∂D∗1
∂v10

(τ, r1, ε1, δ; v10, v20) � 0, (3.61)
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except for a countable set of values of ε1.

Proof. At first, we consider the linearized system of (3.59) as
ε1

dv1

dτ
= −8τ5v2 + 4c1r1τ

5v1 + r3
1τ

7h22(r1, τ, δ)v1 + r2
1τ

7h23(r1, τ, δ)v2 + O(ε1),

ε1
dv2

dτ
= 4τ3v1 + r4

1τ
7h24(r1, τ, δ)v1 + r3

1τ
7h25(r1, τ, δ)v2 + O(ε1),

(3.62)

which yields the equation of v1 as

ε2
1

d2v1

dτ2
− ε1(4c1r1τ

5 + 4r3
1τ

7h26 + O(ε1))
dv1

dτ
+ (32τ8 − 4r2

1τ
7h27 + O(ε1))v1 = 0, (3.63)

where h26(r1, τ, δ) and h27(r1, τ, δ) are C∞ functions. According to the WKB theory, we construct
a solution of this equation in the form

v1(τ) = exp
[ 1
ε1

∞∑
n=0

εn
1S n(τ)

]
.

Substituting this into Eq.(3.63), we obtain the equation of S 0(τ)(
dS 0

dτ

)2

− (4c1r1τ
5 + 4r3

1τ
7h26)

dS 0

dτ
+ 32τ8 − 4r2

1τ
7h27 = 0,

which is solved as S 0 = S ±0 (τ) = V(τ) ± iW(τ), where

V(τ) =
∫ τ

1
(2c1r1s5 + 2r3

1s7h26)ds, W(τ) =
∫ τ

1
(2c1r1s5 + 2r3

1s7h26)

√
8s8 − r2

1s7h27

(c1r1s5 + r3
1s7h26)2

− 1 ds,

are real-valued functions for small r1. If r1 > 0 is sufficiently small and if c1(δ) > 0, 0 < τ < 1,
then V(τ) < 0. For these S +0 (τ) and S −0 (τ), S ±1 (τ), S ±2 (τ), · · · are uniquely determined by induction,
respectively. Thus a general solution v1(τ) is of the form

v1(τ) = k+ exp[V(τ)/ε1] exp[iW(τ)/ε1] exp
[
S +1 + ε1S

+
2 + · · ·

]
+ k− exp[V(τ)/ε1] exp[−iW(τ)/ε1] exp

[
S −1 + ε1S

−
2 + · · ·

]
,

where k+, k− ∈ C are arbitrary constants. Put

D∗1+ = exp[iW(τ)/ε1] exp
[
S +1 + ε1S

+
2 + · · ·

]
, D∗1− = exp[−iW(τ)/ε1] exp

[
S −1 + ε1S

−
2 + · · ·

]
.

Then, v1 is rewritten as

v1(τ) = k+ exp[V(τ)/ε1]D
∗
1+ + k− exp[V(τ)/ε1]D

∗
1−,
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where D∗1+ and D∗1− are C∞ in v10, v20, τ, r1 and δ. They are not C∞ in ε1 because of the factor
1/ε1, however, they are bounded and nonzero as ε1 → 0. In a similar manner, it turns out that v2

is expressed as

v2(τ) = k+ exp[V(τ)/ε1]D
∗
2+ + k− exp[V(τ)/ε1]D

∗
2−,

where D∗2+ and D∗2− are C∞ in v10, v20, τ, r1, δ, and are bounded and nonzero as ε1 → 0. Therefore,
the fundamental matrix of the linear system (3.62) is given as

F(τ) =

(
D∗1+ D∗1−
D∗2+ D∗2−

)
exp[V(τ)/ε1]. (3.64)

Now we come back to the nonlinear system (3.59). We rewrite it in the abstract form as

ε1
dv
dτ
= A(τ)v + g(v, τ),

where v = (v1, v2), g = (g1, g2), and A(τ) is a matrix defining the linear part of the system. To
estimate the nonlinear terms, the variation-of-constants formula is applied. Put v = F(τ)c(τ) with
c(τ) = (c1(τ), c2(τ)) ∈ C2. Then, c(τ) satisfies the equation

dc
dτ
=

1
ε1

F(τ)−1g(F(τ)c, τ). (3.65)

Let c = c(τ, ε1) be a solution of this equation. Since F(τ) ∼ O(eV(τ)/ε1) tends to zero exponentially
as ε1 → 0 and since g is nonlinear, the time-dependent vector field defined by the right hand side
of (3.65) tends to zero as ε1 → 0. Since solutions c(τ, ε1) are continuous with respect to the
parameter ε1, it turns out that c(τ, ε1) tends to a constant as ε1 → 0, which is not zero except
for the trivial solution c(τ, ε1) ≡ 0. This proves Eq.(3.60) with the desired properties by putting
d∗ = −V(τ) and D∗i = D∗i+c1 +D∗i−c2 (i = 1, 2). Note that since the right hand side of (3.59) is not
zero at δ = 0, D∗1 � 0,D∗2 � 0 as δ→ 0.

When r1 = v10 = v20 = 0, the derivatives ∂vi/∂v10, (i = 1, 2) with respect to the initial value
v10 satisfy the initial value problem

ε1
d
dτ

∂v1

∂v10
(τ, 0, ε1, δ; 0; 0) = −8τ5 ∂v2

∂v10
(τ, 0, ε1, δ; 0; 0),

∂v1

∂v10
(1, 0, ε1, δ; 0; 0) = 1,

ε1
d
dτ

∂v2

∂v10
(τ, 0, ε1, δ; 0; 0) = 4τ3 ∂v1

∂v10
(τ, 0, ε1, δ; 0; 0),

∂v2

∂v10
(1, 0, ε1, δ; 0; 0) = 0.

(3.66)

This is exactly solved as

∂v1

∂v10
(τ, 0, ε1, δ; 0; 0) = cos

4
√

2
5ε1

(τ5 − 1)

 . (3.67)
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In particular,
∂v1

∂v10
(0, 0, ε1, δ; 0; 0) = cos

4
√

2
5ε1

 (3.68)

is not zero except for a countable set of values of ε1. This and the continuity of solutions of ODE
prove Eq.(3.61). �

Let us proceed the proof of Prop.3.6. For v1(τ) and v2(τ) in (3.60), x1(τ) and y1(τ) are given
as (3.58). Since τ = (ε1(0)/ρ2)1/5 when t = T , we obtain

x1(T ) = ϕ1(r1(0)(ε1(0)/ρ2)
1/5, ρ2, δ)

+

(
ρ2

ε1(0)

)3/5

D∗1((ε1(0)/ρ2)
1/5, r1(0), ε1(0), δ; v10, v20) exp

[
−d∗((ε1(0)/ρ2)1/5, r1(0), δ)

ε1(0)

]
,

y1(T ) = ϕ2(r1(0)(ε1(0)/ρ2)
1/5, ρ2, δ)

+

(
ρ2

ε1(0)

)2/5

D∗2((ε1(0)/ρ2)
1/5, r1(0), ε1(0), δ; v10, v20) exp

[
−d∗((ε1(0)/ρ2)1/5, r1(0), δ)

ε1(0)

]
.

Put

D∗i ((ε1(0)/ρ2)
1/5, r1(0), ε1(0), δ; v10, v20) = Di(x1(0), y1(0), r1(0), ε1(0), ρ2, δ)

for i = 1, 2. Since D∗i is C∞ in v10, v20, r1(0) and δ, Di is also C∞ in x1(0), y1(0), r1(0) and δ. Since
D∗i is C∞ in τ, Di is bounded and nonzero as ε1(0)→ 0. Finally, let us calculate

d∗((ε1(0)/ρ2)
1/5, r1(0), δ) =

∫ 1

(ε1(0)/ρ2)1/5
(2c1(δ)r1(0)τ5 + 2r1(0)3τ7h26(r1(0), τ, δ))dτ.

Due to the mean value theorem, there exists a number τ∗ > 0 such that

d∗((ε1(0)/ρ2)
1/5, r1(0), δ) =

1
3

c1(δ)r1(0)

1 −
(
ε1(0)
ρ2

)6/5 + h26(r1(0), τ∗, δ)
r1(0)3

4

1 −
(
ε1(0)
ρ2

)8/5 .
By the assumption (C5), an orbit of (3.51) near the center manifold Wc(δ) approaches to Wc(δ)
with the rate O(e−δµ

+t). By the assumption (C6), such an attraction region (basin) of Wc(δ) exists
uniformly in δ > 0 at least near the branch S +a (δ). Thus h26(r1(0), τ∗, δ) is of order O(δ) as well as
c1(δ) if ρ2 > 0 is sufficiently small. Therefore, there exists a function d, which is C∞ with respect
to r1(0) and δ, such that

d∗((ε1(0)/ρ2)
1/5, r1(0), δ) = d(r1(0), ε1(0), ρ2, δ) · δ.

Since µ+(z, 0) � 0, d(r1(0), ε1(0), ρ2, 0) � 0. Since D∗i and d∗ are C∞ in τ = (ε1/ρ2)1/5, they admit
the expansions (3.48, 3.49). This proves (I) of Prop.3.6. Proposition 3.6 (II) is clear from the
definition of ϕ1, ϕ2, and (III) follows from Eq.(3.61). �
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3.5 Analysis in the K3 coordinates

We come to the system (3.21). This system has the fixed point (x3, r3, z3, ε3) = (−
√

2/3, 0, 0, 0)
(see Fig.8). To analyze the system, we divide the right hand side of Eq.(3.21) by−h16(x3, r3, z3, ε3, δ)
and change the time scale accordingly. Note that this does not change the phase portrait. At first,
note that the equality

1
h16(x3, r3, z3, ε3, δ)

= −
√

3
2

1 +
√

3
2

x3 +

√
2
3

 + h31(x3 +
√

2/3, r3, z3, ε3, δ)

 (3.69)

holds, where h31 ∼ Op(2) is a C∞ function. Using Eq.(3.69) and introducing the new coordinate
by x3 +

√
2/3 = x̃3, we eventually obtain

˙̃x3 = −3x̃3 +

√
3
2

z3 − c1(δ)r3 + h32(x̃3, r3, z3, ε3, δ),

ṙ3 =
1
2

r3,

ż3 = −2z3 −
√

3
2
ε3 + ε3h33(x̃3, z3, ε3, δ) + ε3r3h34(x̃3, r3, z3, ε3, δ),

ε̇3 = −
5
2
ε3,

(3.70)

where h32 ∼ Op(2) and h33, h34 ∼ Op(1) are C∞ functions. Note that h33 is independent of r3.
This system has a fixed point at the origin, and eigenvalues of the Jacobian matrix at the origin
of the right hand side of Eq.(3.70) are given by −3, 1/2,−2,−5/2. In particular, the eigenvector
associated with the positive eigenvalue 1/2 is given by (−2c1(δ)/7, 1, 0, 0) and the origin has a
1-dimensional unstable manifold which is tangent to the eigenvector. The asymptotic expansion
(3.27) of the solution γ of the first Painlevé equation is rewritten in the present coordinates as

(x̃3, r3, z3, ε3) = (O((z2 −Ω)4), 0, O((z2 −Ω)4), O((z2 −Ω)5)), (3.71)

which converges to the origin as z2 → Ω (see Fig.11).
Let ρ1 and ρ3 be the small constants introduced in Sec.3.1 and Sec.3.3, respectively. Define

Poincaré sections Σin
3 and Σout

3 to be

Σin
3 = {(x̃3, r3, z3, ε3) | |x̃3| < ρ1, 0 < r3 ≤ ρ1, |z3| ≤ ρ1, ε3 = ρ3}, (3.72)

Σout
3 = {(x̃3, r3, z3, ε3) | |x̃3| < ρ1, r3 = ρ1, |z3| ≤ ρ1, 0 < ε3 ≤ ρ3}, (3.73)

respectively (see Fig.11). Note that Σin
3 is included in the section Σout

2 (see Eq.(3.28)) if written in
the K2 coordinates and Σout

3 in the section Σ+out (see Eq.(3.7)) if written in the (X,Y,Z) coordinates.
Proposition 3.7. (I) If ρ1 and ρ3 are sufficiently small, the transition map Πloc

3 : Σin
3 → Σout

3
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Fig. 11: Poincaré sections to define the transition map Πloc
3 .

along the flow of Eq.(3.70) is well-defined and expressed as

Πloc
3


x̃3

r3

z3

ρ3

 =



β1(ρ1, δ) + r4
3β2(x̃3, r3, z3, ρ3, ρ1, δ)

ρ1(
z3 −

√
6ρ3 + ρ3β3(x̃3, z3, ρ3, δ)

) ( r3

ρ1

)4

+ r5
3 · log r3 · β4(x̃3, r3, z3, ρ3, ρ1, δ)

ρ3

(
r3

ρ1

)5


,

(3.74)
where β1 and β3 are C∞ in their arguments, β2 and β4 are C∞ with respect to x̃3, z3, ρ3 and δ with
the property that β2 and β4 are bounded as r3 → 0.
(II) As r3 → 0, Πloc

3 (x̃3, r3, z3, ρ3) converges to the intersection point (β(ρ1, δ), ρ1, 0, 0) of Σout
3

and the unstable manifold of the origin.

Before proving Prop.3.7, we need to derive the normal form of Eq.(3.70).

Lemma 3.8. In the vicinity of the origin, there exists a C∞ coordinate transformation
x̃3

r3

z3

ε3

 = Φ(X3, r3,Z3, ε3, δ) :=


X3 + ψ1(X3,Z3, ε3, δ)

r3

Z3 + ε3ψ2(X3,Z3, ε3, δ)
ε3

 (3.75)
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such that Eq.(3.70) is transformed into

Ẋ3 = −3X3 +

√
3
2

Z3 − c1(δ)r3 + r3h35(X3, r3,Z3, ε3, δ),

ṙ3 =
1
2

r3,

Ż3 = −2Z3 −
√

3
2
ε3 + ε3r3h36(X3, r3,Z3, ε3, δ),

ε̇3 = −
5
2
ε3,

(3.76)

where ψ2, h35, h36 ∼ Op(1) and ψ1 ∼ Op(2) are C∞ functions.

Proof of Lemma 3.8. When r3 = 0, Eq.(3.70) is written as

˙̃x3 = −3x̃3 +

√
3
2

z3 + h32(x̃3, 0, z3, ε3, δ),

ż3 = −2z3 −
√

3
2
ε3 + ε3h33(x̃3, z3, ε3, δ),

ε̇3 = −
5
2
ε3.

(3.77)

Since eigenvalues of the Jacobian matrix at the origin of the right hand side of the above are
−3,−2,−5/2 and satisfy the non-resonance condition, there exists a C∞ transformation of the
form (x̃3, z3, ε3) �→ (X3+ψ1(X3,Z3, ε3, δ),Z3+ψ̃2(X3,Z3, ε3, δ), ε3) such that Eq.(3.77) is linearized
(see Chow, Li and Wang [4]). The ψ̃2 is of the form ψ̃2 = ε3ψ2, where ψ2 is a C∞ function, because
if ε3 = 0, Eq.(3.77) gives ż3 = −2z3 and it follows that Z3 = z3 when ε3 = 0. This transformation
brings Eq.(3.70) into Eq.(3.76). �

Proof of Prop.3.7. Note that even in the new coordinates (X3, r3,Z3, ε3), the sections Σin
3 and Σout

3
are included in the hyperplanes {ε3 = ρ3} and {r3 = ρ1}, respectively.

Let us calculate the transition time T from Σin
3 to Σout

3 . Since r3(t) = r3(0)et/2 and ε3(t) =
ε3(0)e−5t/2 from Eq.(3.76), T is given by

T = log

(
ρ1

r3(0)

)2

. (3.78)

By integrating the third equation of Eq.(3.76), Z3(t) is calculated as

Z3(t) = Z3(0)e−2t +
√

6ρ3(e
−5t/2 − e−2t) + e−2t

∫ t

0
ρ3r3(0)h36(X3(s), δ)ds, (3.79)

where X3(s) = (X3(s), r3(s),Z3(s), ε3(s)). Owing to the mean value theorem, there exists 0 ≤ τ =
τ(t) ≤ t such that Eq.(3.79) is rewritten as

Z3(t) = (Z3(0) −
√

6ρ3)e
−2t +

√
6ρ3e

−5t/2 + ρ3r3(0)e−2th36(X3(τ), δ)t. (3.80)
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This and Eq.(3.78) are put together to yield

Z3(T ) = (Z3(0) −
√

6ρ3)

(
r3(0)
ρ1

)4

+
√

6ρ3

(
r3(0)
ρ1

)5

+ ρ3
r3(0)5

ρ4
1

h36(X3(τ(T )), δ)T. (3.81)

Next, let us estimate X3(T ). Since (X3, r3)-plane is invariant, the unstable manifold of the
origin is included in this plane and given as a graph of the C∞ function

X3 = φ(r3, δ) = −
2
7

c1(δ)r3 + O(r2
3). (3.82)

To measure the distance between X3(t) and the unstable manifold, put X3 = φ(r3, δ) + u. Then,
the first equation of (3.76) is rewritten as

u̇ = (−3 + h37(u, r3,Z3, ε3, δ))u + Z3h38(u, r3,Z3, ε3, δ) + ε3h39(u, r3,Z3, ε3, δ),

where h37 ∼ Op(1) and h38, h39 are C∞ functions. This is integrated as

u(t) = e−3tE(t)

(
u(0)+

∫ t

0
e3sE(s)−1(Z3(s)h38(u(s), δ) + ε3(s)h39(u(s), δ))ds

)
, (3.83)

where u(s) = (u(s), r3(s),Z3(s), ε3(s)) and E(t) = exp[
∫ t

0
h37(u(s), δ)ds]. Substituting Eq.(3.80)

and ε3(t) = ρ3e−5t/2 and estimating with the aid of the mean value theorem, one can verify that
u(T ) is of the form

u(T ) = r3(0)4h40(X3(0), r3(0),Z3(0), ρ3, ρ1, δ), (3.84)

where h40 is bounded as r3(0) → 0 (the factor Z3(s) in Eq.(3.83) yields the factor r3(0)4, and
other terms are of O(r3(0)5 log r3(0)). Since the transition time T is not C∞ in ρ1 and r3(0), h40 is
C∞ only in X3(0),Z3(0), ρ3 and δ. Thus the transition map Π̃loc

3 from Σin
3 to Σout

3 along the flow of
Eq.(3.76) is given by

Π̃loc
3


X3

r3

Z3

ρ3

 =



φ(ρ1, δ) + r4
3h40(X3, r3,Z3, ρ3, ρ1, δ)

ρ1

(Z3 −
√

6ρ3)

(
r3

ρ1

)4

+
√

6ρ3

(
r3

ρ1

)5

− 2ρ3
r5

3

ρ4
1

log

(
r3

ρ1

)
h41(X3, r3,Z3, ρ3, ρ1, δ)

ρ3

(
r3

ρ1

)5


,

(3.85)
where h41(X3, r3,Z3, ρ3, ρ1, δ) = h36(X3(τ(T )), δ) is bounded as r3 → 0 because X3(τ(T )) is
bounded. Since the transition time T is not C∞ in ρ1 and r3(0), h41 is C∞ in X3(0),Z3(0), ρ3

and δ. Now Eq.(3.74) is verified by calculating Φ ◦ Π̃loc
3 ◦ Φ−1. Note that β3 in Eq.(3.74) is inde-

pendent of r3 and ρ1 because it comes from the inverse of the transformation (3.75), which is of
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the form

Φ−1(x̃3, r3, z3, ρ3) =


x̃3 + β5(x̃3, z3, ρ3, δ)

r3

z3 + ρ3β3(x̃3, z3, ρ3, δ)
ρ3


with C∞ functions β3 and β5. The unstable manifold β1(ρ1, δ) in (x̃3, r3, z3, ε3) coordinate is
obtained from that in (X3, r3,Z3, ε3) coordinate as β1(ρ1, δ) = φ(ρ1, δ) + ψ1(φ(ρ1, δ), 0, 0, δ). This
proves Prop.3.7 (I). To prove (II) of Prop.3.7, note that the hyperplane {r3 = 0} is invariant and
included in the stable manifold of the origin. Since a point (x̃3, r3, z3, ρ3) converges to the stable
manifold as r3 → 0, Πloc

3 (x̃3, r3, z3, ρ3) converges to the unstable manifold as r3 → 0 on account
of the λ-lemma. This proves Prop.3.7 (II). �

3.6 Proof of Theorem 3.2

We are now in a position to prove Theorem 3.2. Let τx : (x, r, z, ε) �→ (x −
√

2/3, r, z, ε) be the
translation in the x direction introduced in Sec.3.5. Eq.(3.8) is obtained by writing out the map
Π̃+loc := τx ◦Πloc

3 ◦ τ−1
x ◦ κ23 ◦Πloc

2 ◦ κ12 ◦Πloc
1 and blowing it down to the (X,Y,Z) coordinates. At

first, Πloc
2 ◦ κ12 ◦ Πloc

1 is calculated as


x1

y1

ρ1

ε1


Πloc

1�−→


ϕ1 + X1

ϕ2 + Y1

ρ1ε
1/5
1 ρ−1/5

2
ρ2


κ12�−→


ρ−3/5

2 ϕ1 + ρ
−3/5
2 X1

ρ−2/5
2 ϕ2 + ρ

−2/5
2 Y1

ρ−4/5
2

ρ1ε
1/5
1


Πloc

2�−→


px + H1(ρ

−3/5
2 ϕ1 + ρ

−3/5
2 X1 − qx, ρ

−2/5
2 ϕ2 + ρ

−2/5
2 Y1 − qy, ρ2, ρ1ε

1/5
1 , ρ3, δ)

ρ−2/5
3

pz + H2(ρ
−3/5
2 ϕ1 + ρ

−3/5
2 X1 − qx, ρ

−2/5
2 ϕ2 + ρ

−2/5
2 Y1 − qy, ρ2, ρ1ε

1/5
1 , ρ3, δ)

ρ1ε
1/5
1

 ,
(3.86)

where ϕ1 = ϕ1(ρ1ε
1/5
1 ρ−1/5

2 , ρ2, δ), ϕ2 = ϕ2(ρ1ε
1/5
1 ρ−1/5

2 , ρ2, δ), and X1,Y1 are defined by Eq.(3.47).
In what follows, we omit the arguments of H1 and H2. The last term in the above is further
mapped to

κ23�−→


ρ3/5

3 px + ρ
3/5
3 H1

ρ1ρ
−1/5
3 ε1/5

1

ρ4/5
3 pz + ρ

4/5
3 H2

ρ3


τ−1

x�−→



√
2/3 + ρ3/5

3 px + ρ
3/5
3 H1

ρ1ρ
−1/5
3 ε1/5

1

ρ4/5
3 pz + ρ

4/5
3 H2

ρ3

 :=


x̃3

r3

z3

ρ3

 . (3.87)
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Let us denote the resultant as (x̃3, r3, z3, ρ3) as above. Then, Π̃+loc proves to be given by

Π̃+loc


x1

y1

ρ1

ε1

 =



−
√

2/3 + β1(ρ1, δ) + r4
3β2(x̃3, r3, z3, ρ3, ρ1, δ)
ρ1

(z3 −
√

6ρ3 + ρ3β3(x̃3, z3, ρ3, δ))

(
r3

ρ1

)4

+ r5
3 · log r3 · β4(x̃3, r3, z3, ρ3, ρ1, δ)

ρ3

(
r3

ρ1

)5



=



−
√

2/3 + β1(ρ1, δ) + ρ
4
1ρ
−4/5
3 ε4/5

1 β2(x̃3, ρ1ρ
−1/5
3 ε1/5

1 , z3, ρ3, ρ1, δ)
ρ1

(z3 −
√

6ρ3 + ρ3β3(x̃3, z3, ρ3, δ))

(
ε1

ρ3

)4/5

+ O(ε1 log ε1)

ε1


. (3.88)

By using the definition of pz in (3.29), the third component of the above is calculated as

(z3 −
√

6ρ3 + ρ3β3(x̃3, z3, ρ3, δ))

(
ε1

ρ3

)4/5

+ O(ε1 log ε1)

=
(
Ω + O(ρ3) + H2(X̂, Ŷ , ρ2, ρ1ε

1/5
1 , ρ3, δ) + ρ

1/5
3 β3(x̃3, z3, ρ3, δ)

)
ε4/5

1 + O(ε1 log ε1), (3.89)

where
X̂ = ρ−3/5

2 ϕ1 + ρ
−3/5
2 X1 − qx, Ŷ = ρ−2/5

2 ϕ2 + ρ
−2/5
2 Y1 − qy.

From Eqs.(3.32) and (3.41), Eq.(3.89) is rewritten as(
Ω + O(ρ3) + Ĥ2(X̂, Ŷ , ρ2) + O(ρ1/5

3 ) + ρ1/5
3 β3(x̃3, z3, ρ3, δ)

)
ε4/5

1 + O(ε1 log ε1). (3.90)

Since Π̃+loc(x1, y1, ρ1, ε1) is independent of ρ3, which is introduced to define the intermediate sec-
tions Σout

2 and Σin
3 , all terms including ρ3 are canceled out and Eq.(3.90) has to be of the form(

Ω + Ĥ2(X̂, Ŷ , ρ2)
)
ε4/5

1 + O(ε1 log ε1). (3.91)

Now we look into X̂ and Ŷ . Since ϕ1(r1, ε1, δ) and ϕ2(r1, ε1, δ) give the graph of the center
manifold Wc(δ) and since the orbit γ of the first Painlevé equation is attached on the edge of
Wc(δ), x1 = ϕ1(0, ε1, δ) and y1 = ϕ2(0, ε1, δ) coincide with γ written in the K1 coordinates. Thus
we obtain

X̂ = ρ−3/5
2 ϕ1(ρ1ε

1/5
1 ρ−1/5

2 , ρ2, δ) + ρ
−3/5
2 X1 − qx

=
(
ρ−3/5

2 ϕ1(0, ρ2, δ) − qx

)
+ ρ−3/5

2 X1 + ρ
−3/5
2 O((ε1/ρ2)

1/5)

= ρ−3/5
2 X1 + ρ

−3/5
2 O((ε1/ρ2)

1/5)

= ρ−3/5
2 D1

(
ρ2

ε1

)3/5

exp
[
−dδ
ε1

]
+ ρ−3/5

2 O((ε1/ρ2)
1/5)

= D1ε
−3/5
1 exp

[
−dδ
ε1

]
+ ρ−3/5

2 O((ε1/ρ2)
1/5). (3.92)
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The Ŷ is calculated in the same manner. Functions D1,D2 and d are expanded as Eqs.(3.48, 3.49),
and Ĥ2 is expanded as (3.42). Since Eq.(3.91) should be independent of ρ2, which is introduced
to define the intermediate sections Σout

1 and Σin
2 , Eq.(3.91) is rewritten as(

Ω + ˆ̂H2(X,Y)
)
ε4/5

1 + O(ε1 log ε1). (3.93)

where

X = D̂1(x1, y1, ρ1, ε1, δ)ε
−3/5
1 exp

[
− d̂(ρ1, δ)δ

ε1

]
, Y = D̂2(x1, y1, ρ1, ε1, δ)ε

−2/5
1 exp

[
− d̂(ρ1, δ)δ

ε1

]
.

(3.94)
Similarly, since the first component of Eq.(3.88) is independent of ρ2 and ρ3, we find that it is
expressed as

−
√

2/3 + β1(ρ1, δ) + Ĝ(X,Y, ρ1, δ)ε
4/5
1 + O(ε1 log ε1) (3.95)

with some C∞ function Ĝ.
Our final task is to blow down Eq.(3.88) with Eqs.(3.93, 3.95) to the (X,Y,Z) coordinates to

obtain Eq.(3.8). By the transformation (3.13), a point (X,Y, ρ4
1, ε) in (X,Y,Z, ε)-space is mapped

to the point (Xρ−3
1 ,Yρ

−2
1 , ρ1, ερ

−5
1 ) in K1-space. Further, it is mapped by the transition map Π̃+loc to

−
√

2/3 + β1(ρ1, δ) + Ĝ(X,Y, ρ1, δ)ε4/5ρ−4
1 + O(ε log ε)

ρ1(
Ω + ˆ̂H2(X,Y)

)
ε4/5ρ−4

1 + O(ε log ε)

ερ−5
1


,

in K3-space, in which

X = D̂1(Xρ
−3
1 ,Yρ

−2
1 , ρ1, ερ

−5
1 , δ)ε

−3/5ρ3
1 exp

[
− d̂(ρ1, δ)δ

ερ−5
1

]
,

Y = D̂2(Xρ
−3
1 ,Yρ

−2
1 , ρ1, ερ

−5
1 , δ)ε

−2/5ρ2
1 exp

[
− d̂(ρ1, δ)δ

ερ−5
1

]
.

Finally, it is blown down by (3.15) as
−
√

2/3ρ3
1 + β1(ρ1, δ)ρ3

1 + ρ
−1
1 Ĝ(X,Y, ρ1, δ)ε

4/5
1 + O(ε1 log ε1)

ρ2
1(

Ω + ˆ̂H2(X,Y)
)
ε4/5

1 + O(ε1 log ε1)

ε


.

By changing the definitions of D̂1, D̂2 and d̂ appropriately, we obtain Theorem 3.2 (I) with

G1 = −
√

2/3ρ3
1 + β1(ρ1, δ)ρ

3
1, G2 = ρ

−1
1 Ĝ, H = ˆ̂H2.
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Theorem 3.2 (II) follows from the fact that the unstable manifold described in Prop.3.7 (II)
coincides with the heteroclinic orbit α+(δ) if written in the (X,Y,Z) coordinates. Theorem 3.2
(III) follows from Lemma 3.4, and (IV) follows from Eq.(3.50) because ε1 in Eq.(3.50) is now
replaced by ερ−5

1 . This complete the proof of Theorem 3.2 �

4 Global analysis and the proof of main theorems

In this section, we construct a global Poincaré map by combining a succession of transition maps
(see Fig.5) and prove Theorems 1,2 and 3.

4.1 Global coordinate

Let us introduce a global coordinate to calculate the global Poincaré map. In what follows, we
suppose without loss of generality that the branch S + and S − of the critical manifold are convex
downward and upward, respectively, as is shown in Fig.1. Recall that (X,Y,Z) coordinate is
defined near the fold point L+ and that the sections Σ+in and Σ+out are defined in Eq.(3.7). We define
a global coordinate transformation (x, y, z) �→ (X,Y,Z) satisfying following: We suppose that
in the (X,Y,Z) coordinate, L+(δ) = (0, 0, 0), L−(δ) = (0, y0, z0) with y0 > 0, z0 > 0, and that Y
coordinates of S −a are larger than those of S +a just as shown in Fig.12. Let z1 > z0 be a number
and put z2 = ρ

4
1 + e−1/ε2

. Define the new section

Σ+I = {Z = ρ4
1 + e−1/ε2}, (4.1)

which lies slightly above Σ+in. Change the coordinates so that the segment of S +a in the region
z2 ≤ Z ≤ z1 is expressed as

{X = 0, Y = −η, z2 ≤ Z ≤ z1}, (4.2)

where η is a sufficiently small positive constant (if ρ1 is sufficiently small). We can define such
a coordinate without changing the local coordinate near L+ and the expression of Π+loc given in
Eq.(3.8) by using a partition of unity. We can change the coordinates near S −a ∪ {L−} in a similar
manner without changing the coordinate expression near S +a ∪ {L+}. Let


Ẋ = f1(X,Y,Z, ε, δ),
Ẏ = f2(X,Y,Z, ε, δ),
Ż = εg(X,Y,Z, ε, δ),

(4.3)

be the system (1.8) written in the resultant coordinate, where the definitions of f1, f2 and g are
accordingly changed.
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M

z

z1

2

Fig. 12: Coordinate for calculating the global Poincaré map, and a slow manifold Mε corre-
sponding to the segment S +a (z2, z1) = {(X,Y,Z) ∈ S +a | z2 ≤ Z ≤ z1} of the critical manifold.

4.2 Flow near the slow manifold

Put S +a (z2, z1) = {(X,Y,Z) ∈ S +a | z2 ≤ Z ≤ z1}. Then, S +a (z2, z1) is a compact attracting normally
hyperbolic invariant manifold of the unperturbed system of (4.3), see Fig.12. In this subsection,
we construct an approximate flow around the slow manifold Mε corresponding to S +a (z2, z1).
If the parameter δ is a constant, the existence of the slow manifold immediately follows from
Fenichel’s theorem:

Theorem (Fenichel [8]).
Let N be a Cr manifold (r ≥ 1), and Xr(N) the set of Cr vector fields on N with the C1

topology. Let F be a Cr vector field on N and suppose that M ⊂ N is a compact normally
hyperbolic F-invariant manifold. Then, there exists a neighborhood U ⊂ Xr(N) of the origin
such that if ε is a small positive number so that εG ∈ U for a given vector field G ∈ Xr(N), then
the vector field F + εG has a locally invariant manifold Mε within an ε-neighborhood of M. It is
diffeomorphic to M and has the same stability as that of M.

Further, Fenichel [9, 10] proved that Mε admits a fibration: there exists a family of smooth
manifolds {Fε(p)}p∈Mε

such that

(i) if p � p′, then Fε(p) ∩ Fε(p′) = ∅.
(ii) Fε(p) ∩ Mε = {p}.
(iii) the family {Fε(p)} is invariant in the sense that φt(Fε(p)) ⊂ Fε(φt(p)), where φt is a flow
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generated by F + εG ∈ Xr(N).
(iv) there exist C > 0, λ > 0 such that for q ∈ Fε(p), ||φt(p) − φt(q)|| < Ce−λt, where we suppose
for simplicity that M (and thus Mε) is attracting.

See also Wiggins [35] for Fenichel theory. These theorems are applied to fast-slow systems by
Fenichel [11] to obtain a slow manifold Mε and a flow around Mε. Roughly speaking, these
theorems state that for a fast-slow system, there is a locally invariant manifold Mε, called the
slow manifold, within an ε-neighborhood of the critical manifold M if ε > 0 is sufficiently small.
A flow near Mε is given as the sum of the slow motion (dynamics on Mε) and the fast motion.
If Mε is attracting, the fast motion decays exponentially to zero and eventually a flow is well
approximated by the dynamics on Mε.

Applying these results to our fast-slow system (4.3), when δ is independent of ε, we obtain
an attracting slow manifold Mε and we can construct an approximate flow around Mε. However,
if δ depends on ε, Fenichel theory is no longer applicable in general even if ε << δ. To see this,
let us recall how the existence of Mε is proved.

For simplicity of exposition, suppose that vector fields are defined on Rm × Rn. We denote
a point on this space as (x, z) ∈ Rm × Rn. Suppose that a given unperturbed vector field F has
an attracting compact normally hyperbolic invariant manifold M on the subspace {x = 0}. We
denote a flow φt generated by the perturbed vector field F + εG by

φt(x, z, ε) = (φ1
t (x, z, ε), φ

2
t (x, z, ε)).

From the assumption of normal hyperbolicity, we can show that there exists a positive constant
T such that ∣∣∣∣∣∣∣∣∂φ1

T

∂x
(0, z, 0)

∣∣∣∣∣∣∣∣·∣∣∣∣∣∣∣∣∂φ2
T

∂z
(0, z, 0)−1

∣∣∣∣∣∣∣∣< 1
4
, for (0, z) ∈ M, (4.4)

because ∂φ1
t /∂x decays faster than ∂φ2

t /∂z. Since M ⊂ {x = 0} is F-invariant, we have

φ1
T (0, z, 0) = 0,

∂φ1
T

∂z
(0, z, 0) = 0, for (0, z) ∈ M. (4.5)

Since the flow is continuous with respect to x, z and ε, for given small positive numbers η1 and
η2, there exist ε0 > 0 and an open set V ⊃ M such that the inequalities

∣∣∣∣∣∣∣∣∂φ1
T

∂x
(x, z, ε)

∣∣∣∣∣∣∣∣·∣∣∣∣∣∣∣∣∂φ2
T

∂z
(x, z, ε)−1

∣∣∣∣∣∣∣∣< 1
2
, (4.6)

||φ1
T (x, z, ε)|| < η1, (4.7)∣∣∣∣∣∣∣∣∂φ1

T

∂z
(x, z, ε)

∣∣∣∣∣∣∣∣< η2, (4.8)

hold for 0 < ε < ε0 and (x, z) ∈ V . Let S be the set of Lipschitz functions from M into the x-space
with a suitable norm. Let S C be the subset of S consisting of functions h such that (h(z), z) ∈ V
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and their Lipschitz constants are smaller than some constant C > 0. We now define the map
G : S c → S through

(Gh)(φ2
T (h(z), z, ε)) = φ1

T (h(z), z, ε).

By using inequalities (4.6, 4.7, 4.8) (and several inequalities which trivially follow from com-
pactness of M), we can show that G is a contraction map from S C into S C. See Lemma 3.2.9
of Wiggins [35], in which all inequalities for proving Fenichel’s theorem are collected. Thus G
has a fixed point hε satisfying hε(φ2

T (hε(z), z, ε)) = φ1
T (hε(z), z, ε). This proves that the graph of

x = hε(z), which defines Mε, is invariant under the flow φt( · , · , ε). The existence of a fibration
{Fε(p)}p∈Mε

can be proved in a similar manner.
If the unperturbed vector field F = Fδ smoothly depends on δ and if δ depends on ε, the

above discussion is not valid even if ε << δ. The inequality (4.4) for Fδ does not imply the
inequality (4.6) for Fδ + εG in general. For example, consider the linear system ẋ = A0x + δA1x
with matrices

A0 =

(
0 1
0 0

)
, A1 =

(
−1 0
0 −1

)
.

Suppose that δ =
√
ε. Eigenvalues of A0+δA1 are given by −δ (double root), so that the derivative

of the flow at the origin is exponentially small for t > 0. Next, add the perturbation εA2x to this
system, where

A2 =

(
0 0
4 0

)
.

Although εA2 is quite smaller than A0 + δA1 if ε is sufficiently small, the eigenvalues of A0 +

δA1 + εA2 are δ and −3δ, so that the derivative of the flow of the perturbed system diverges as
t → ∞. This shows that Eq.(4.4) does not imply Eq.(4.6) in general if δ depends on ε. Further,
the open set V above also depends on ε through δ and it may shrink as ε → 0. For this linear
system, it is easy to see that such a stability change does not occur if A0 has no Jordan block. For
our fast-slow system, the assumption (C5) allows us to prove that such a stability change does
not occur.

Lemma 4.1. Let A(δ, z) and B(ε, δ, z) be 2×2 matrices which are C∞ in their arguments. Suppose
that eigenvalues of A(δ, z) are given by −δµ(z, δ)±

√
−1ω(z, δ) with the conditions µ(z, δ) > 0 and

ω(z, δ) � 0 for δ ≥ 0. Further suppose that δ depends on ε as ε ∼ o(δ) (that is, ε << δ as ε→ 0).
Then, eigenvalues of A(δ, z) + εB(ε, δ, z) are given by

−δµ(z, δ) ±
√
−1ω(z, δ) + O(ε) (4.9)

as ε→ 0.

Proof. Straightforward calculation. �
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Now we return to our fast-slow system (4.3). Put X = (X,Y), f = ( f1, f2) and rewrite Eq.(4.3)
as

Ẋ = f (X,Z, ε, δ), Ż = εg(X,Z, ε, δ). (4.10)

The flow generated by this system is denoted as

φt(X,Z, ε, δ) = (φ1
t (X,Z, ε, δ), φ

2
t (X,Z, ε, δ)). (4.11)

Recall that S +a (z2, z1) is expressed as X = 0,Y = −η; that is, f (0,−η,Z, 0, δ) = 0 for z2 ≤ Z ≤ z1.
When ε = 0, φ2

t (X,Z, 0, δ) = Z, which proves that ||(∂φ2
t (X,Z, 0, δ)/∂Z)−1|| = 1. Next, the

derivative of φ1
t satisfies the variational equation

d
dt

∂φ1
t

∂X
(X,Z, 0, δ) =

∂ f
∂X

(φ1
t (X,Z, 0, δ),Z, 0, δ)

∂φ1
t

∂X
(X,Z, 0, δ).

On S +a (z2, z1), this is reduced to the autonomous system

d
dt

∂φ1
t

∂X
(0,−η,Z, 0, δ) = ∂ f

∂X
(0,−η,Z, 0, δ)

∂φ1
t

∂X
(0,−η,Z, 0, δ).

The assumption (C5) implies that the eigenvalues of the matrix
∂ f
∂X

(0,−η,Z, 0, δ) are given by

−δµ+(z, δ) ±
√
−1ω+(z, δ). Thus

∂φ1
t

∂X
(0,−η,Z, 0, δ) ∼ O(e−δt)

on S +a (z2, z1). This proves the inequality

∣∣∣∣∣∣∣∣∂φ1
T

∂X
(0,−η,Z, 0, δ)

∣∣∣∣∣∣∣∣·∣∣∣∣∣∣∣∣∂φ2
T

∂Z
(0,−η,Z, 0, δ)−1

∣∣∣∣∣∣∣∣< 1
4
, (4.12)

for some large T > 0. In general, this does not imply Eq.(4.6) as was explained. However, in our
situation, by applying Lemma 4.1 to

A(δ, z) =
∂ f
∂X

(0,−η,Z, 0, δ),

it turns out that eigenvalues of the matrix
∂ f
∂X

(0,−η,Z, ε, δ) are of the form (4.9) for small ε >

0. Therefore,
∂φ1

t

∂X
(0,−η,Z, ε, δ) also decays with the rate O(e−δt) on S +a (z2, z1). Further, the

assumption (C6) proves that there exists a neighborhood V+ of S +a (z2, z1), which is independent
of δ, such that real parts of eigenvalues of ∂ f/∂X are also of order O(−δ) on V+. This yields
the inequality (4.6) on V+. Inequalities (4.7) and (4.8) are easily obtained. In this manner, all
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inequalities for proving Fenichel’s theorem are obtained, and the existence of the slow manifold
Mε and a fibration on Mε for our system are proved in the standard way as long as ε << δ (To
prove Theorem 3, we will suppose that δ ∼ O(ε(− log ε)1/2) >> ε). Note that the existence of
a neighborhood V+ of the critical manifold, on which eigenvalues of ∂ f/∂X have negative real
parts, are also assumed in the classical approach for singular perturbed problems to estimate the
dynamics of fast motion, see O’Malley [27] and Smith [31].

Remark. Another way to construct an approximate flow near S ±a is to use the blow-up method
near cylinders by adding the equation δ̇ = 0, which may allow one to obtain approximate solu-
tions even for δ ∼ O(ε). In this paper, we adopt Fenichel’s argument by noting the assumption
ε << δ because the extension of Fenichel’s theorem itself is important.

We have seen that a solution of (4.10) on V+ is written as the sum of the slow motion on the
slow manifold and the fast motion which decays exponentially. To calculate them, it is convenient
to introduce the slow time scale by τ = εt, which provides

ε
dX
dτ
= f (X,Z, ε, δ),

dZ
dτ
= g(X,Z, ε, δ). (4.13)

A solution of this system is given by{
X(τ, ε, δ) = xs(τ, ε, δ) + x f (τ, ε, δ),
Z(τ, ε, δ) = zs(τ, ε, δ) + z f (τ, ε, δ),

(4.14)

where xs, zs describe the slow motion and x f , z f describe the fast motion. They are C∞ in ε
(see Fenichel [11]) and their expansions with respect to ε are obtained step by step according to
O’Malley [27] as follows: We expand them as

xs(τ, ε, δ) =
∞∑

k=0

εkx(k)
s (τ, δ), x f (τ, ε, δ) =

∞∑
k=0

εkx(k)
f (τ, δ),

zs(τ, ε, δ) =
∞∑

k=0

εkz(k)
s (τ, δ), z f (τ, ε, δ) =

∞∑
k=0

εkz(k)
f (τ, δ),

with the initial condition

X(0, ε, δ) = x0(δ) + O(ε), Z(0, ε, δ) = z0(δ) + O(ε),

in V+. At first, x(0)
s and z(0)

s are determined to satisfy the system (4.13) for ε = 0. Thus x(0)
s is

given by x(0)
s = (0,−η) and z(0)

s is given as the solution of the equation

dz(0)
s

dτ
= g(0,−η, z(0)

s , 0, δ) (4.15)

with the initial condition z(0)
s (0, δ) = z0(δ). This system is called the slow system. Next, from the

system (4.10) for ε = 0, we obtain z(0)
f ≡ 0, and x(0)

f is governed by the system

dx(0)
f

dt
=

dX
dt

(t, 0, δ) − dx(0)
s

dt
(τ, δ) = f ((0,−η) + x(0)

f , z
(0)
s (τ), 0, δ) (4.16)
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with the initial condition

x(0)
f (0, δ) = x0(δ) − xs(0, 0, δ) = x0(δ) − (0,−η). (4.17)

Fenichel’s theorem (Part (iv) above) shows that if x(0)
f (0, δ) ∈ V+, then x(0)

f decays exponentially
as t → ∞. In the classical approach [27], the existence of V+ is used to estimate Eq.(4.16)
directly to prove that x(0)

f decays exponentially, see also Smith [31]. To investigate behavior of a
solution as ε→ 0, we rewrite Eq.(4.16) as

dx(0)
f

dτ
=

1
ε

∂ f
∂X

(0,−η, z(0)
s (τ), 0, δ)x(0)

f +
1
ε

Q1(x
(0)
f , δ), (4.18)

where Q1 ∼ O((x(0)
f )2) is a C∞ function.

Lemma 4.2. A solution of the system (4.18) is given by K1(τ, ε) cos
[

1
ε
W(τ)

]
+ K2(τ, ε) sin

[
1
ε
W(τ)

]
K3(τ, ε) cos

[
1
ε
W(τ)

]
+ K4(τ, ε) sin

[
1
ε
W(τ)

]
K5(τ, ε) cos

[
1
ε
W(τ)

]
+ K6(τ, ε) sin

[
1
ε
W(τ)

]
K7(τ, ε) cos

[
1
ε
W(τ)

]
+ K8(τ, ε) sin

[
1
ε
W(τ)

]
 ×

exp
[
−δ
ε

∫ τ

0
µ+(z(0)

s (s), δ)ds
](

x(0)
f (0, δ) + u(τ, ε, δ; x(0)

f (0, δ))
)
, (4.19)

where W(τ) =
∫ τ

0
ω+(z(0)

s (s), δ)ds, Ki (i = 1, · · · , 8) are C∞ functions, and u ∼ O(x(0)
f (0, δ)2)

denotes higher order terms with respect to the initial value.

Proof. We use the WKB analysis. Put x(0)
f = (v1, v2) and

∂ f
∂X

(0,−η, z(0)
s (τ), 0, δ) =

(
a(τ) b(τ)
c(τ) d(τ)

)
. (4.20)

Let us consider the linearized system

d
dτ

(
v1

v2

)
=
∂ f
∂X

(0,−η, z(0)
s (τ), 0, δ)

(
v1

v2

)
=

(
a(τ) b(τ)
c(τ) d(τ)

) (
v1

v2

)
. (4.21)

Then, v1(τ) proves to satisfy the equation

ε2v′′1 −
(
ε(a + d) + ε2 b′

b

)
v′1 +

(
ad − bc + ε(

ab′

b
− a′)

)
v1 = 0. (4.22)

We construct a formal solution of the form

v1(τ) = exp
[1
ε

∞∑
n=0

εnS n(τ)
]
.
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Substituting it into Eq.(4.22), we obtain an equation of S 0

(S ′0)
2 − (a + d)S ′0 + (ad − bc) = 0.

This is solved as

S 0(τ) =
∫ τ

0
λ+(s)ds,

∫ τ

0
λ−(s)ds,

where

λ±(τ) = −δµ(z(0)
s (τ), δ) ±

√
−1ω+(z(0)

s (τ), δ)

are eigenvalues of the matrix (4.20). For each
∫ τ

0
λ+(s)ds and

∫ τ

0
λ−(s)ds, S 1, S 2, · · · are uniquely

determined. Thus a general solution v1(τ) is given by

v1(τ) = C1 exp
[1
ε

∫ τ

0
λ+(s)ds

]
K11(τ, ε) +C2 exp

[1
ε

∫ τ

0
λ−(s)ds

]
K12(τ, ε),

where C1,C2 ∈ C and K11,K12 are C∞ functions. In a similar manner, it turns out that v2 is
expressed as

v2(τ) = C1 exp
[1
ε

∫ τ

0
λ+(s)ds

]
K21(τ, ε) +C2 exp

[1
ε

∫ τ

0
λ−(s)ds

]
K22(τ, ε).

Therefore, a general solution of the system (4.21) is written as

(
v1

v2

)
=

 exp
[

1
ε

∫ τ

0
λ+(s)ds

]
K11(τ, ε) exp

[
1
ε

∫ τ

0
λ−(s)ds

]
K12(τ, ε)

exp
[

1
ε

∫ τ

0
λ+(s)ds

]
K21(τ, ε) exp

[
1
ε

∫ τ

0
λ−(s)ds

]
K22(τ, ε)


(
C1

C2

)
.

The fundamental matrix of (4.21) is given by exp
[

1
ε

∫ τ

0
λ+(s)ds

]
K11(τ, ε) exp

[
1
ε

∫ τ

0
λ−(s)ds

]
K12(τ, ε)

exp
[

1
ε

∫ τ

0
λ+(s)ds

]
K21(τ, ε) exp

[
1
ε

∫ τ

0
λ−(s)ds

]
K22(τ, ε)


 K11(0, ε) K12(0, ε)

K21(0, ε) K22(0, ε)


−1

.

This shows that each component of the fundamental matrix is a linear combination of

exp
[
−δ
ε

∫ τ

0
µ+(z(0)

s (s), δ)ds
]
cos

[1
ε

W(τ)
]

and exp
[
−δ
ε

∫ τ

0
µ+(z(0)

s (s), δ)ds
]
sin

[1
ε

W(τ)
]
.

Finally, the variation-of-constants formula is applied to the nonlinear system (4.18) to prove
Lemma 4.2. �
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With this x(0)
f , the zeroth order approximate solution is constructed as

(
X(τ, ε, δ)
Z(τ, ε, δ)

)
=


O(ε)

−η + O(ε)
z(0)

s (τ, δ) + O(ε),

 +
(

x(0)
f (τ, δ) + O(ε)

O(ε)

)
, (4.23)

as long as the orbit is in V+. The first term in the right hand side denotes the position on Mε

and the second term denotes the deviation from Mε. It is known that all terms x(k)
f , z

(k)
f in the

expansions of the fast motion decay exponentially as well as x(0)
f ([11, 27, 31]).

Combining this approximate solution near the slow manifold with the transition map near the
fold point, Theorem 1 is easily proved.

Proof of Theorem 1. To prove Theorem 1, δ is assumed to be fixed. For the system (2.1), take an
initial value in V+. Then, a solution is given by (4.23) with (4.19). These expressions show that
when t > 0, the solution lies sufficiently close to the critical manifold S +a if ε is sufficiently small.
Because of the assumption (A3), zs decreases (where we suppose that S + is convex downward)
with the velocity of order ε (with respect to the original time scale t). Thus the solution reaches
the section Σ+in after some time, which is of order O(1/ε). The intersection point is mapped into
Σ+out by the transition map Π+loc given in Thm.3.2, and it proves that after passing through Σ+out the
distance between the solution and the orbit α+ is of order O(ε4/5). �

4.3 Global Poincaré map

In Sec.3, the transition map Π+loc around the fold point L+(δ) had been constructed. The transition
map around the fold point L−(δ) is obtained in the same way. The sections Σ−in and Σ−out are defined
in a similar way to Σ+in and Σ+out (see Fig.5), respectively, and the transition map Π−loc from an open
set in Σ−in into Σ−out along the flow of (4.3) proves to take the same form as Π+loc, although functions
G1,G2 and higher order terms denoted as O(ε log ε) may be different from one another (note that
Ω and H are common for Π+loc and Π−loc because they arise from the first Painlevé equation).

Since the unperturbed system has a heteroclinic orbit α− connecting L−(δ) with a point on
S +a (δ) and since S +a (δ) has an attraction basin V+ which is independent of δ, there is an open set
U−out ⊂ Σ−out, which is independent of δ and ε, such that orbits of (4.3) starting from U−out go into
V+ and are eventually approximated by Eq.(4.23). Let z0 be the Z coordinate of L−(δ). Define
the section Σ+II to be

Σ+II = V+ ∩ {(X,Y,Z) |Y = −η, |Z − z0| ≤ ρ4}, (4.24)

where ρ4 is a small positive number so that a solution of (4.3) starting from U−out intersects Σ+II
only once (see Fig.13).

The global Poincaré map is constructed as follows: Let Π+II,out, Π
+
I,II , Π

+
in,I be transition maps

from U−out ⊂ Σ−out into Σ+II , Σ
+
II into Σ+I , Σ+I into Σ+in, respectively. Then, the transition map Π+ from

U−out into Σ+out is given by

Π+ = Π+loc ◦ Π+in,I ◦ Π+I,II ◦ Π+II,out.
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Fig. 13: The sections Σ+I ,Σ
+
II and an orbit of Eq.(4.3).

The transition mapΠ− from an open set in Σ+out into Σ−in is calculated in a similar manner and it has
the same form as Π+. The global Poincaré map is given by Π+ ◦ Π−. However, it is sufficient to
investigate one of them by identifying Σ+out and Σ−out. If Π+ : U−out → Σ+out is a contraction map, so
is Π+ ◦Π−, and if Π+ has a horseshoe, so is Π+ ◦Π− because Π+ and Π− have the same properties.
To identify two sections Σ−out and Σ+out, recall that L− = (0, y0, z0) in the (X,Y,Z)-coordinate, and
define Σ−out to be {Y = y0 − ρ2

1}. Let U−out be an open set in Σ−out such that the transition map
Π+II,out : U−out → Σ+II is well-defined. The set U−out includes the point Σ−out ∩ α−. We identify U−out

with an open set U+out in Σ+out by the translation

T :


X
ρ2

1
Z

 �→


X
y0 − ρ2

1
Z + z0

 . (4.25)

Then, the transition map Π̃+II,out from U+out ⊂ Σ+out into Σ+II is obtained by combining the translation
and Π+II,out. Since the velocity in the Z direction is of order ε, it is expressed as

Π̃+II,out


X
ρ2

1
Z

 = Π+II,out ◦ T


X
ρ2

1
Z

 =


P+(X,Z, ε, δ)
−η

Z + z0 + O(ε)

 , (4.26)

where P+ is a C∞ function. Since Π̃+II,out is C∞, we expand it as

Π̃+II,out


X
ρ2

1
Z

 =


p(δ) + O(X,Z, ε)
−η

Z + z0 + O(ε)

 , (4.27)
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To prove Theorem 3, we will use the fact that there exists a positive constant p0 > 0 such that
|p(δ)| > p0 for 0 < δ < δ0, which is proved as follows: Since δ controls the strength of the
stability of S +a , if δ is sufficiently small, orbits which converge to (0,−η, z0) (the intersection
of the heteroclinic orbit α− and S +a ) rotate around this point so many times. In particular, they
intersect with Σ+II before reaching (0,−η, z0). If p(δ) were zero, the right hand side above tends
to (0,−η, z0) as X,Z, ε→ 0, which yields a contradiction.

Next thing to do is to combine the above Π̃+II,out with Π+I,II . By Eq.(4.23), the transition map
Π+I,II from Σ+II into Σ+I is given by

Π+I,II


X
−η
Z

 =


O(ε)
−η + O(ε)

z2

 +
(

x(0)
f (τ(X,Z, ε, δ), δ) + O(ε)

0

)
, (4.28)

where x(0)
f = x(0)

f (τ, δ) is given by (4.19) with the initial condition x(0)
f (0, δ) = (X, 0), z2 = ρ

4
1 +

e−1/ε2
is the Z coordinate of the section Σ+I as defined before, and τ = τ(X,Z, ε, δ) is a transition

time (with respect to the slow time scale) from a point (X,−η,Z) to Σ+I . This transition time
τ is determined as follows: Let z(0)

s (τ, δ) be a solution of Eq.(4.15) with the initial condition
z(0)

s (0, δ) = Z. Then, Eq.(4.23) implies that τ = τ(X,Z, ε, δ) is given as a root of the equation

z2 = z(0)
s (τ, δ) + O(ε).

Let τ̂ be a root of the equation z2 = z(0)
s (τ, δ). By virtue of the implicit function theorem, τ is

written as τ = τ̂ + O(ε). Since Eq.(4.15) is independent of X and ε, so is τ̂. Thus we obtain

τ(X,Z, ε, δ) = τ̂(Z, δ) + O(ε). (4.29)

Further, τ̂ is bounded as δ → 0 because g � 0 on S +a uniformly in 0 ≤ δ < δ0. Therefore, Π+I,II
proves to be of the form

Π+I,II


X
−η
Z

 =


O(ε)
−η + O(ε)

z2



+


X

(
K1(τ̂, ε) cos

[
1
ε
W(τ̂)

]
+ K2(τ̂, ε) sin

[
1
ε
W(τ̂)

])
exp

[
− δ
ε

∫ τ̂

0
µ+(z(0)

s (s), δ)ds
]
(1 + O(ε, X))

X
(
K5(τ̂, ε) cos

[
1
ε
W(τ̂)

]
+ K6(τ̂, ε) sin

[
1
ε
W(τ̂)

])
exp

[
− δ
ε

∫ τ̂

0
µ+(z(0)

s (s), δ)ds
]
(1 + O(ε, X))

0

 .
(4.30)

The first line denotes the intersection point Mε ∩ Σ+I and thus it is independent of X and Z. The
second line denotes the deviation from the intersection. Note that the transition map Π+in,I from
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Σ+I into Σ+in is O(e−1/ε2
)-close to the identity map. Thus Π+in,I ◦ Π+I,II ◦ Π+II,out ◦ T is calculated as

Π+in,I ◦ Π+I,II ◦ Π+II,out ◦ T


X
ρ2

1
Z

 =


O(ε)
−η + O(ε)

ρ4
1



+


p(δ)

(
K1(τ̂, ε) cos

[
1
ε
W(τ̂)

]
+ K2(τ̂, ε) sin

[
1
ε
W(τ̂)

])
exp

[
− δ
ε

∫ τ̂

0
µ+(z(0)

s (s), δ)ds
]
(1 + O(ε, X,Z))

p(δ)
(
K5(τ̂, ε) cos

[
1
ε
W(τ̂)

]
+ K6(τ̂, ε) sin

[
1
ε
W(τ̂)

])
exp

[
− δ
ε

∫ τ̂

0
µ+(z(0)

s (s), δ)ds
]
(1 + O(ε, X,Z))

0

 ,
(4.31)

where τ̂ = τ̂(Z + z0, δ) and z(0)
s (τ) is a solution of (4.15) satisfying the initial condition z(0)

s (0) =
Z + z0. Finally, the transition map

Π+ = Π+loc ◦ Π+in,I ◦ Π+I,II ◦ Π+II,out ◦ T

from U−out into Σ+out is obtained by combining the above map with Π+loc.

At this stage, we can prove Theorem 2.
Proof of Theorem 2. To prove Theorem 2, it is sufficient to show that the map Π+ has a hyper-
bolically stable fixed point. Then, the global Poincaré map (without identifying Σ+out and Σ−out) has
the same property because Π− takes the same form as Π+. Indeed, if ε is sufficiently small for
fixed δ, Them.3.2 and Eq.(4.31) show that the image of the map Π+ is exponentially small, and
thus Π+ is a contraction map. Further, eigenvalues of the derivative of Π+ is of order O(e−1/ε),
which proves that Π+ has a hyperbolically stable fixed point. �

4.4 Derivative of the transition map

If δ is fixed, it is obvious that the transition map Π+ is of order O(e−1/ε) as ε→ 0. However, when
δ is small as well as ε, the action of Π+ becomes more complex. In what follows, we suppose
that δ depends on ε and ε ∼ o(δ) (ε << δ) as ε→ 0. A straightforward calculation shows that the
derivative of Π+ is of the form

∂Π+

∂(X,Z)
=

(
L1(X,Z, ε, δ)ε1/5 L2(X,Z, ε, δ)ε−4/5

L3(X,Z, ε, δ)ε1/5 L4(X,Z, ε, δ)ε−4/5

)
×

exp
[
−d̂(ρ, δ)

δ

ε

]
· exp

[
−δ
ε

∫ τ̂

0
µ+(z(0)

s (s), δ)ds
]
(1 + L5(X,Z, ε, δ)), (4.32)

where Li (i = 1, · · · , 4) are bounded as ε → 0, and L5 denotes higher order terms such that
L5 ∼ o(1) as X,Z, ε→ 0.

Eigenvalues of the derivative are given by

λ1 = L4ε
−4/5 exp

[
−d̂(ρ, δ)

δ

ε

]
· exp

[
−δ
ε

∫ τ̂

0
µ+(z(0)

s (s), δ)ds
]
(1 + o(1)), (4.33)
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and

λ2 =
L1L4 − L2L3

L4
ε1/5 exp

[
−d̂(ρ, δ)

δ

ε

]
· exp

[
−δ
ε

∫ τ̂

0
µ+(z(0)

s (s), δ)ds
]
(1 + o(1)). (4.34)

If δ is fixed, they are exponentially small as ε → 0, although if δ is small as well as ε, |λ1| may
become large. For example, if δ = Cε(− log ε)1/2 with a positive constant C, and if L4(X,Z, ε, δ) �
0, |λ1| is of order ε−4/5e−C(− log ε)1/2

, which is larger than 1 if ε is sufficiently small. On the other
hand, |λ2| is always smaller than 1. The function L4 is given by

L4(X,Z, ε, δ) =
∂H
∂X

(D̂1ε
−3/5e−d̂δ/ε, D̂2ε

−2/5e−d̂δ/ε) · ∂D̂1

∂X
· p(δ) · ∂

∂Z
W(τ̂) ×(

−K1(τ̂, ε) sin
[1
ε

W(τ̂)
]
+ K2(τ̂, ε) cos

[1
ε

W(τ̂)
])
, (4.35)

in which arguments of D̂i = D̂i( · , · , ρ1, ε, δ) are given by the first and second components of
Eq.(4.31). From Thm.3.2 (III) and (IV), we obtain ∂H/∂X � 0, ∂D̂1/∂X � 0. The value p(δ) is
also not zero as was explained above. Recall that τ̂(Z + z0, δ) is defined as a transition time along
the flow of Eq.(4.15). Since g < 0 uniformly on S +a and 0 ≤ δ < δ0, τ̂ is monotonically increas-
ing with respect to Z. Further, W(τ̂) is monotonically decreasing or monotonically increasing
because ω+ � 0 uniformly. This proves ∂W(τ̂)/∂Z � 0. Therefore, L4 = 0 if and only if

−K1(τ̂(Z + z0, δ), ε) sin
[1
ε

W(τ̂(Z + z0, δ))
]
+ K2(τ̂(Z + z0, δ), ε) cos

[1
ε

W(τ̂(Z + z0, δ))
]

= −K1(τ̂(z0, δ), ε) sin
[1
ε

W(τ̂(Z + z0, δ))
]
+ K2(τ̂(z0, δ), ε) cos

[1
ε

W(τ̂(Z + z0, δ))
]
+ O(Z)

is zero. If there exists Z such that the above value is zero, then it is zero for a countable set of
values of Z because of the periodicity. For these “bad” Z, λ1 degenerates and |λ1| may become
smaller than 1. Now we have the same situation as the proof of the existence of chaos in Sil-
nikov’s systems. In the proof of Silnikov’s chaos, an eigenvalue of a transition map degenerates
if and only if an expression k1 sin(log(z/ε)) + k2 cos(log(z/ε)) is zero, where k1 and k2 are some
constants, see Wiggins [34].

4.5 Proof of Theorem 3

Now we are in a position to prove Theorem 3. The proof is done in the same way as the proof
of Silnikov’s chaos. At first, we show that the transition map Π+ has a topological horseshoe:
We show that an image of a rectangle under Π+ becomes a ring-shaped area and it appropriately
intersects with the rectangle. Next, to prove that the horseshoe is hyperbolic, we investigate the
derivative of Π+. We can avoid “bad” Z, at which the derivative degenerates, because they are at
most countable.

Proof of Thm.3. Suppose that δ = C1ε(− log ε)1/2 with some positive constant C1. Recall that
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there exists a slow manifold within an ε neighborhood of S +a . Since it is one dimension, the slow
manifold is a solution orbit of the system (4.10). By virtue of Thm.3.2, this orbit intersects with
Σ+out near α+. Let Q ∈ Σ+out be the intersection point of this orbit and Σ+out. Take a rectangle R on
Σ+out including the point Q, whose boundaries are parallel to the X axis and the Z axis (see Fig.5).
Let hR = C2ε be the height of R, where C2 is a positive constant to be determined. The image of
R under the map Π̃+out,II = Π

+
out,II ◦T is a deformed rectangle whose “height” is also of order O(ε)

since dZ/dt ∼ O(ε).
Next thing to consider is the shape of Π+II,I ◦ Π̃+out,II(R). It is easy to show by using Eq.(4.30)

that the image of Π̃+out,II(R) under the map Π+II,I becomes a ring-shaped area whose radius is of
order e−δ/ε. Since the “height” of Π̃+out,II(R) is of order ε, the rotation angle of the ring-shaped
area is estimated as

1
ε

W(τ̂(Z + z0 + O(ε))) − 1
ε

W(τ̂(Z + z0)) =
1
ε

∫ τ̂(Z+z0+O(ε))

τ̂(Z+z0)
ω+(z(0)

s (s), δ)ds ∼ O(1). (4.36)

Thus we can choose C2 so that the rotation angle of the ring-shaped area is sufficiently close to
2π as is shown in Fig.14.

Fig. 14: Images of the rectangle R under a succession of transition maps.

Finally, we consider the shape of Π+(R) by using Thm.3.2. Since ∂H/∂X(0, 0) � 0, the
expansion of H is estimated as

H(X,Y) ∼ Xε−3/5 exp[−d̂δ/ε](1 + O(ε1/5)). (4.37)

This and Eq.(3.8) show that the radius of Π+(R) is of order O(ε1/5e−δ/ε). Since we put δ =
C1ε(− log ε)1/2, the inequality

hR = C2ε << O(ε1/5e−δ/ε) (4.38)

holds if ε is sufficiently small. Further, the ring Π+(R) surrounds the point Q because the image
of the rectangle R under the flow rotates around the slow manifold when passing between the
section Σ+II and Σ+in. This means that two horizontal boundaries of R intersect with the ring Π+(R)
as is shown in Fig.6 (b). It is obvious that the vertical boundaries of R are mapped to the inner and
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outer boundaries of the ring, and the horizontal boundaries are mapped to the other boundaries
in radial direction. This proves that the map Π+ creates a horseshoe and thus has an invariant
Cantor set.

To prove that this invariant set is hyperbolic, it is sufficient to show that there exist two disjoint
rectangles H1 and H2 in R, whose horizontal boundaries are parallel to the X axis and vertical
boundaries are included in those of R, such that the inequalities

||DxΠ
+
1 || < 1, (4.39)

||(DzΠ
+
2 )−1|| < 1, (4.40)

1 − ||(DzΠ
+
2 )−1|| · ||DxΠ

+
1 || > 2

√
||DzΠ

+
1 || · ||DxΠ

+
2 || · ||(DzΠ

+
2 )−1||2, (4.41)

1 − (||DxΠ
+
1 || + ||(DzΠ

+
2 )−1||) + ||DxΠ

+
1 || · ||(DzΠ

+
2 )−1|| > ||DxΠ

+
2 || · ||DzΠ

+
1 || · ||(DzΠ

+
2 )−1||,(4.42)

hold on H1 ∪ H2, where Π+1 and Π+2 denote the X and Z components of Π+, respectively, and Dx

and Dz denote the derivatives with respect to X and Z, respectively. See Wiggins [34] for the
proof. We can take such H1 and H2 so that “bad” Z, at which L4 = 0, are not included. Then,
inequalities above immediately follows from Eq.(4.32): ||DxΠ

+
1 || and ||DxΠ

+
2 || are sufficiently

small, and ||DzΠ
+
1 || and ||DzΠ

+
2 || are sufficiently large as ε→ 0. This proves Theorem 3. �

5 Concluding remarks

Our assumption of Bogdanov-Takens type fold points is not generic in the sense that the Jacobian
matrix has two zero eigenvalues. However, this assumption is not essential for existence of
periodic orbits or chaotic invariant sets.

At first, we remark that Theorems 2 and 3 hold even if we add a small perturbation to Eq.(1.8),
since hyperbolic invariant sets remain to exist under small perturbations.

Second, we can consider the case that one of the connected components of critical manifolds
consists of stable nodes, stable focuses and a saddle-node type fold point (i.e. a saddle-node
bifurcation point of a unperturbed system), as in Fig.15. In this case, Theorem 2 is proved
in a similar way and Theorem 3 still holds if the length of the subset of the critical manifold
consisting of stable focuses is of order O(1). However, analysis of saddle-node type fold points
is well performed in [20, 25, 12] and thus we do not deal with such a situation in this paper.

We can also consider the case that one of the connected components S̃ of critical manifolds
has no fold points but consists of saddles with heteroclinic orbits α±, see Fig.16. In this case,
analysis around the S̃ is done by using the exchange lemma (see Jones [18]) and we can prove
theorems similar to Theorems 2 and 3. Such a situation arises in an extended prey-predator
system. In [23], a periodic orbit and chaos in an extended prey-predator system are numerically
investigated with the aid of the theory of the present paper.
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stable nodes
saddles

stable focuses

Fig. 15: Critical manifold consisting of a saddle-node type fold point, stable nodes, and stable
focuses and an orbit near it.
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