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Abstract

The existence of stable periodic orbits and chaotic invariant sets of singularly perturbed prob-
lems of fast-slow type having Bogdanov-Takens bifurcation pointsin itsfast subsystem is proved
by means of the geometric singular perturbation method and the blow-up method. In particular,
the blow-up method is effectively used for analyzing the flow near the Bogdanov-Takenstypefold
point in order to show that a slow manifold near the fold point is extended along the Boutroux’s
tritronquée solution of the first Painlevé equation in the blow-up space.
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1 Introduction

Let (X, -+, %Y1, - »Ym) € R™™M be the Cartesian coordinates. A system of singularly per-
turbed ordinary differential equations of the form

).(1 = f]_(X]_,"‘ ’Xn,yl,"' ’Ym’g),

?(n = fn(xl’ Tt th yla Y ym, 8)7 (1-1)
yl = ggl(xl’ R Xl"l, yl7 e ’yma 8)7

S/m = ggm(X].’ T, Xn’ Y1, T, ym9 8)’

is called a fast-slow system, where the dot () denotes the derivative with respect to time t, and
where £ > 0 is a small parameter. Fast-slow systems are characterized by two different time
scales, fast and slow time. In other words, the dynamics consists of fast motions ((xy, - - - , X,) di-
rection in the above system) and slow motions ((y1, - - - , ym) direction). This structure yields non-
linear phenomena such as arelaxation oscillation, which is observed in many physical, chemical
and biological problems. See Grasman [13], Hoppensteadt and |zhikevich [16] and references
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therein for applications of fast-slow systems. To analyze the fast-slow system, the unperturbed
system (fast system) of Eq.(1.1) is defined to be

Xl = fl(X]_, T, Xn, yl’ T, ym, O)’

Xn = fn(X]_’ Y Xn’ yl’ tee ,ym, 0)7

: 12
y1=0, (12)
.ym = O.

The set of fixed points of the unperturbed system is called a critical manifold, which is defined
by

M: {(Xl"" ,Xn’YL"' ’Ym) € Rn+m| fi(X]_,"‘ ’Xn’YL"' ’ym,o) = 0’ I = 1’ ’n}' (13)

Typicaly M is an mdimensional manifold. Fenichel [11] proved that if M is normally hyper-
bolic, then the original system (1.1) with sufficiently small £ > 0 hasalocally invariant manifold
M., near M, and that dynamics on M, is approximately given by the m-dimensional system

yl = 8gl(xl7 RS Xn’ y17 et 7yma 0)7
: (1.9)

ym = ng(Xl’ T, Xn’yla Tt ,Ym, O)’

where (X3, -+ , %, Y1, -+ »Ym) € R™™M is restricted to the critical manifold M. The M, is dif-
feomorphic to M and called the slow manifold. The dynamics of (1.1) approximately consists
of the fast motion governed by (1.2) and the slow motion governed by (1.4). His method for
constructing an approximate flow is called the geometric singular perturbation method.

However, if the critical manifold M has degenerate points X, € M in the sense that the
Jacobian matrix af /ox, f = (fy,---, 1), X = (X, , X,) & Xo has eigenvalues on the imag-
inary axis, then M is not normally hyperbolic near the xo and Fenichel’s theory is no longer
applicable. The most common case isthat df /0x has one zero-eigenvalue at X, and the critical
manifold M is folded at the point (fold point). In this case, orbits on the slow manifold M,
may jump and get away from M, in the vicinity of xo. Asaresult, the orbit repeatedly switches
between fast motions and slow motions, and complex dynamics such as a relaxation oscillation
can occur. See Mishchenko and Rozov [25] and Jones [18] for treatments of jump points and
the existence of relaxation oscillations based on the boundary layer technique and the geometric
singular perturbation method.

The blow-up method was developed by Dumortier [6] to investigate local flows near non-
hyperbolic fixed points and it was applied to singular perturbed problems by Dumortier and
Roussarie [7]. The most typical exampleis the system of the form

X=-y+ X,
{ = (%), (19
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where (x,y) € R2. The critica manifold is a graph of y = x? and the origin is the fold point,
at which the Jacobian matrix of the fast system has a zero-eigenvalue. Indeed, the fast system
X = —y + x? undergoes a saddle-node bifurcation as y varies. To analyze this family of vector
fields, the trivial equation ¢ = 0 is attached as

X=-y+ X2,
y =eg(x.y), (1.6)
e=0.

Then, the Jacobian matrix at the origin (0, 0, 0) degenerates as

0O -1 O
[O 0 g(0,0) (1.7)
0 0 0
with the Jordan block. The blow-up method is used to desingularize such singularities based
on certain coordinate transformations. The most simple case g(0, 0) # 0 is deeply investigated
by Krupa and Szmolyan et al. [20, 12] with the aid of a geometric view point. Straightforward
extensions to higher dimensional cases are done by Szmolyan and Wechselberger [33] for n =
1, m = 2 and by Mishchenko and Rozov [25] for any n and m. Under the assumptionsthat 9 /9x
has only one zero-eigenvalue at afold point and that the slow dynamics (1.4) has no fixed points
near the fold point, they show that in the blow-up space, the system is reduced to the Riccati
equation dx/dy = y — x> forany n > 1 and m > 1, and a certain specia solution of the Riccati
eguation plays an important role to extend a slow manifold M, to a neighborhood of the fold
point, which guides jumping orbits. It isto be noted that the classical work of Mishchenko and
Rozov [25] is essentially equivalent to the blow-up method.

Onthe other hand, if the dynamics (1.4) hasfixed points on (aset of) fold points, for example,
if g(0,0) = 0in EQ.(1.5), then more complex phenomena such as canard explosion can occur.
Such situations are investigated by [7, 20, 32, 22, 24] by using the blow-up method. For example,
for Eq.(1.5) with g(0, 0) = 0, the original system is reduced to the system X = —y + X2, y = X in
the blow-up space. If the dimension mof slow direction is larger than 1, there are many types of
fixed points of (1.4) and thus we need more hard analysis asis donein [22].

The fast system for Eq.(1.5) undergoes a saddle-node bifurcation at the fold point. Thus
we call the fold point the saddle-node type fold point. The cases that fast systems undergo a
transcritical bifurcation and a pitchfork bifurcation are studied in [21]. It is shown that in the
blow-up space, systems are reduced to the equations dx/dy = x? — y? + 1 and dx/dy = xy — X,
respectively, whose special solutions are used to construct slow manifolds near fold points.

Despite many works, behavior of flows near fold points at which the Jacobian matrix o /dx
of the fast system has more than one zero-eigenvalues is not understood well. The purpose of
this article is to investigate a three dimensional fast-slow system of the form

{ x= fi(X,y,z¢,0),

y = (XY, 2 ¢,0), (1.8)
Z=¢eg(XY,z&,0),
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whose fast system has fold points with two zero-eigenvalues, where f;, f,, g are C* functions,
e > O isasmall parameter, and where 6§ > 0 is a small parameter which controls the strength
of the stability of the critical manifold (see the assumption (C5) in Sec.2). Note that the critical
manifold

M) ={(x¥,2 € R®| f1(x.Y,20,6) = fo(x,y,20,6) = 0} (1.9)

gives curves on R® in general. We consider the situation that at a fold point (X, Yo, Z)) € R® on
M, the Jacobian matrix d(f, f2)/9(x, y) has two zero-eigenvalues with the Jordan block, and the
two dimensional unperturbed system (fast system) undergoes a Bogdanov-Takens bifurcation.
We call such afold point the Bogdanov-Takens type fold point. For this system, we will show
that the first Painlevé equation
d?y
dzz2 y -z

appears in the blow-up space and plays an important role in the analysis of a local flow near
the Bogdanov-Takens type fold points. Thisisin contrast with the fact that the Riccati equation
appearsin the case of saddle-nodetypefold points. It isshown that in the blow-up space, the slow
manifold is extended along one of the special solutions, the Boutroux’s tritronquée solution [1,
19], of the first Painlevé equation. One of the main resultsin this article is that a transition map
of Eq.(1.8) near the Bogdanov-Takens type fold point is constructed, in which an asymptotic
expansion and a pole of the Boutroux’s tritronquée solution are essentially used. This result
shows that the distance between a solution of (1.8) near the Bogdanov-Takenstype fold point and
asolution of its unperturbed system is of order O(s*°) as e — 0 (see Theorem 1 and Theorem
3.2), whileit is of O(¢%3) for a saddle-node type fold point (see Mishchenko and Rozov [25]).

It is remarkable that all equations appeared in the blow-up space are related to the Painlevée
theory. For example, the equation dx/dy = y — x? obtained from the saddle-node type fold point
istransformed into the Airy equation du/dy = uy by putting x = (du/dy)/u, which givesclassical
solutions of the second Painlevé equation. The equation dx/dy = x? — y? + 1 obtained from the
transcritical type fold point is transformed into the Hermite equation

2
(dj—;zj+2yg—;+(/l+l)u:0

by putting x + y = —(du/dy)/u, which gives classica solutions of the fourth Painlevé equation.
For other cases listed above, we also see that equations appeared in the blow-up space have the
Painlevé property [5, 17]; that is, all movable singularities (in the sense of the theory of ODES
on the complex plane) are poles, not branch points and essential singularities. This seemsto be
common for a wide class of fast-slow systems. Painlevé equations have many good properties
[5]. For example, poles of solutions of Painlevé equations can be transformed into zeros of
solutions of certain analytic systems by analytic transformations, which allow us to prove that
the dominant part of the transition map near the Bogdanov-Takens type fold point is given by an
analytic function describing a position of poles of the first Painlevé equation.
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We also investigate global behavior of the system. Under some assumptions, we will prove
that there exists a stable periodic orbit (relaxation oscillation) if € > 0 is sufficiently small for
fixed §, and further that there exists a chaotic invariant set if § > 0 is also small in comparison
with small e. Roughly speaking, ¢ controls the strength of the stability of stable branches of the
critical manifolds. While chaotic attractors on 3-dimensional fast-slow systems are reported by
Guckenheimer, Wechselberger and Young [14] inthe caseof n = 1, m = 2, our systemisof n =
2,m = 1. In the situation of [14], the chaotic attractor arises according to the theory of Hénon-
like maps. On the other hand, in our system, the mechanism of the onset of a chaotic invariant
set is similar to that in Silnikov’s works [28, 29, 30], in which the existence of a hyperbolic
horseshoe is shown for a 3-dimensional system which have a saddle-focus fixed point with a
homoclinic orbit. See also Wiggins [34]. Indeed, in our situation, the critical manifold M(6)
plays asimilar role to a saddle-focus fixed point in the Silnikov’s system. Thus the proof of the
existence of arelaxation oscillation in our system will be done in usual way: the Poincaré return
map proves to be contractive, while the proof of the existence of chaosisdonein asimilar way to
that of the Silnikov’s system: as ¢ decreases, the Poincaré return map becomes non-contractive,
undergoes a cascade of bifurcations, and horseshoes are created. When one want to prove the
existence of a stable periodic orbit, it is sufficient to show that the image of the return map is
exponentially small. However, to prove the existence of a horseshoe, one has to show that the
image of arectangle under the return map becomes a horseshoe-shaped (ring-shaped). Thus our
analysis for constructing the return map involves hard calculations, which can be avoided when
proving only aperiodic orbit.

Our chaotic invariant set seems to be attracting as that in [14], however, it remains unsolved.
See Homburg [15] for the proof of the existence of chaotic attractorsin the Silnikov’s system.

The results in the present article are used in [3] to investigate chaotic invariant sets on the
Kuramoto model, which is one of the most famous models to explain synchronization phenom-
ena. In[3], itisshown that the Kuramoto model with appropriate assumptions can be reduced to
athree dimensional fast-slow system by using the renormalization group method [2].

This paper is organized as follows. In section 2, we give statements of our theorems on the
existence of aperiodic orbit and a chaotic invariant set. An intuitive explanation of the theorems
is also shown with an example. In section 3, local analysis near the Bogdanov-Takens type fold
point is given by means of the blow-up method. Section 4 is devoted to global analysis, and
proofs of main theorems are given. Concluding remarks are included in section 5.

2 Main results

To obtain alocal result and the existence of relaxation oscillations, the parameter § in Eq.(1.8)
does not play arole. Thus we consider the system of the form

x=fi(x,y,z¢e),
y = f2(X, Y, Z €), (2.1
Z=¢eg(XY,ze),
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with C* functions f, f,,0: U x| - R, whereU c R®isanopendomaininR®and| c Risa
small interval containing zero. The unperturbed system is given as

x= fi(x,y,20),
y=faxy.20), (2.2)
z=0.

Since z is a constant, this system is regarded as a family of 2-dimensional systems. The critical
manifold is the set of fixed point of (2.2) defined to be

M={(xy.2 e U|fi(xy,z0) = fo(X,y,z 0) = O}. (2.3
The reduced flow on the critical manifold is defined as

z=eg(% Y, Z 0)lxyem- (2.9

To investigate a Bogdanov-Takens type fold point, we make the following assumptions.

(A1) Thecritical manifold M has a smooth component S* = S} U {L*} U S}, where S} consists
of stable focus fixed points, S; consists of saddle fixed points, and where L* isafold point.

(A2) ThelL* isaBogdanov-Takenstypefold point; that is, L* isaBogdanov-Takens bifurcation
point of the vector field (f1(Xx,Y, z 0), f2(X, Y, z, 0)). In particular, Eq.(2.2) hasacusp at L*.

(A3) Thereduced flow (2.4) on S} is directed toward the fold point L* and g(L*, 0) # O.

A few remarksarein order. Itiseasy to seefrom (A1) that the Jacobian matrix d(fy, f2)/9(X, y)
has two zero eigenvalues at L* since S;" and S} are saddles and focuses, respectively. Thusthere
exists a coordinate transformation (x,y, z) — (X, Y, Z) defined near L* such that L* is placed at
the origin and Eq.(2.2) takes the following normal form

Y = by(Z) + b(Z2)X + O(X3, X2Y, XY2, Y3), (2.5)

X = a1(2) + ax(Z) Y2 + ag(Z)XY + O(X3, X2Y, XY2, Y3),
Z=0,

where a;(0) = b;(0) = 0 so that the origin isafixed point (for the normal form theory, see Chow,
Li and Wang [4]). Then the assumption (A2) means that a,(0) # 0, az(0) # 0, by(0) # 0. In
this case, it is well known that the flow of Eq.(2.5) has a cusp at the origin (see also Lemma
3.1). Since Eq.(2.5) hasacusp at L*, there exists exactly one orbit o™ emerging from L*. The
assumption (A3) means that if the critical manifold is locally convex downward (resp. convex
upward ), then g(x,y, z 0) < 0 (resp. g(x,y,z 0) > 0) on S; U {L*}. Thusan orbit of the reduced
flow on S} reaches L* infinitetime. Asaresult, an orbit of (2.1) may jump in thevicinity of L*.
The next theorem describes an asymptotic behavior of such ajumping orbit.

Theorem 1.  Suppose that the system (2.1) satisfies assumptions (Al) to (A3). Consider a
solution x(t) whose initial point isin the vicinity of SZ. Then, there exist to, t; > 0 such that the
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distance between x(t), to < t < t; and the orbit o* of the unperturbed system emerging from L*
isof O(e*°) ase — O.

Note that for a saddle-node type fold points, the distance between x(t) and an orbit emerging
from afold point is of O(%3). To prove the existence of relaxation oscillations, we need global
assumptions for the system (2.1).

(B1) The critical manifold M has two smooth components S* = S; U {L*} U S/ and S~ =
S, U{L7} U S;, where S; consist of stable focus fixed points, S;- consist of saddle fixed points,
and where L* arefold points (see Fig.1).

(B2) TheL* are Bogdanov-Takenstypefold points; that is, L* are Bogdanov-Takens bifurcation
points of the vector field (f1(X,y, z 0), f2(X,y, z 0)). In particular, Eq.(2.2) has cusps at L*.

(B3) EQ.(2.2) hastwo heteroclinic orbits ™ and @~ which connect L*, L™ with pointson S, Sf,
respectively.

(B4) The reduced flow (2.4) on S; is directed toward the fold points L* and g(L*,0) # O,
respectively.

Assumptions (B1) and (B2) assure that S* are locally expressed as parabolas, and thus they
are of “Jshaped”. Components S* and S- are allowed to be connected. Inthiscase, S* U S™ is
of “S-shaped”. As was mentioned above, since (2.2) has cusps at L*, there exist two orbits a*
and o~ of Eq.(2.2) emerging from L* and L~. The assumption (B3) means that these orbits are
connectedto S; and S, respectively. If S*US™ isof “S-shaped”, the assumption (B3) istypically
satisfied because at least near the fold points, the unperturbed system (2.2) has heteroclinic orbits
connecting each point on S* to S;, respectively, due to the basic bifurcation theory. Note that
the assumption (B3) also determines a positional relationship between S* and S—. For example,
if S*isconvex downward, S~ should be convex upward. By applying Thm.1 combined with the
geometric singular perturbation (boundary layer technique), we can obtain the following result.

Theorem 2.  Suppose that the system (2.1) satisfies assumptions (B1) to (B4). Then there
exists a positive number &o such that EQ.(2.1) has a hyperbolically stable periodic orbit near
SfUuetuUS;Ua if0<e < eé.

To prove the existence of a periodic orbit, the local assumptions are not so important, though
a positional relationship between components of the critical manifold and the existence of hete-
roclinic orbits o* are essential. Indeed, similar results for fast-slow systems having saddle-node
type fold points are obtained by many authors.

To prove the existence of chaos, we have to control the strength of the stability of S;. Let us
consider the system (1.8) with C* functions f;, f,,g: U x| x|’ - R, where U and | as above
and I’ c Risasmall interval containing zero. The unperturbed system of Eq.(1.8) is given by

x= f1(x,y,20,9),
y = f2(%,Y,20,0), (2.6)
z=0.



Fig. 1: Critica manifold and the flow of Eq.(2.1) with the assumptions (B1) to (B4).

The critical manifold M(5) defined by (1.9) is parameterized by ¢. At first, we suppose that the
assumptions (B1) to (B4) are satisfied uniformly in 6. More exactly, we assume following.

(C1) There exists 6o such that for every 6 € [0, 6p), the critical manifold M(5) has two smooth
components S*(6) = S;(6) U {L*(6)} U S/ (6) and S™(6) = S;(6) U{L™(6)} U S;(6). When § > 0,
S;(6) consist of stable focus fixed points, S7(6) consist of saddle fixed points, and L*(5) are fold
points (see Fig.1). Further, the 6 family M(6) is smooth with respect to ¢ € [0, 6o).

(C2) For every 6 € [0,6p), L*(6) are Bogdanov-Takens type fold points; that is, L*(6) are
Bogdanov-Takens bifurcation points of the vector field (f1(X,y, z 0,6), f2(X,y, z 0, 6)). In partic-
ular, Eq.(2.6) has cusps at L*(0).

(C3) For every 6 € (0,00), EQ.(2.6) has two heteroclinic orbits a*(5) and @~ (5) which connect
L*(5), L~(5) with points on S;(6), S%(5), respectively.
(C4) For every 6 € [0, dp), the reduced flow on SZ(6) is directed toward the fold points L*(6)
and g(L*, 0,6) # O, respectively.

In addition to the assumptions above, we make the assumptionsfor the strength of the stability
of S; asfollows:

(C5) For every 6 € [0,6p), eigenvalues of the Jacobian matrix d(fy, f)/0(X,y) of Eq.(2.6) at
(X,y,2) € Si(6) and at (x,y,2) € S,(0) are expressed by —6 - u*(z 6) + V=1w*(z 6) and —6 -
u(z6) + V-1w(z 6), respectively, where u* and w* are real-valued functions satisfying

1*(z,0) >0, w*(z0) #0. (2.7)
The assumption (C5) means that the parameter ¢ controlsthe strength of the stability of stable
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focus fixed points on S;(9).

Finally, we suppose that the basin of S;(5) of the unperturbed system can be taken uniformly
inéd € (0,80): By the assumption (C5), there exist open sets V* > Sz(6) such that real parts of
eigenvalues of the Jacobian matrix d(fy, f2)/d(x,y) on V* isof order O(5). In general, the “size”
of V* depend on § and they may tend to zero asé — 0. To prove Theorem 3 below, we assume
following.

(C6) There exist open sets V* > S;(6), which isindependent of ¢, such that real parts of eigen-
values of the Jacobian matrix d(fy, f2)/d(x,y) on V* are negative and of order O(9) asé — 0.
The orbits o*(6) emerging from L* enter the set V¥, respectively, infinitetimefor any 6 € [0, 6.

The first sentence of this assumption also assures that the attraction basin of S; (o) of the
unperturbed system can be taken uniformly in § € (0, §p), See an example below. For the second
sentence, note that there exist orbits a* () emerging from L* even for 6 = 0 because of (C2),
although they may not be connected to S7 at ¢ = 0 because (C3) is assumed for an open interval
(0, 6p). The second sentence of (C6) implies that the transition map from the section near L* to
the section in V¥ iswell-defined as§ — O.

Theorem 3.  Suppose that the system (1.8) satisfies assumptions (C1) to (C6). Then, there
exist a positive number g, and positive valued functions 6;(e), d2(¢) such that if 0 < & < g9 and
01(g) < ¢ < d2(¢), then Eq.(1.8) has a chaotic invariant set near S;(6) U a*(6) U S;(8) U a™ (),
where 6;,(¢) — O0ase — 0. More exactly, the Poincaré return map IT along the flow of (1.8)
near S;(6) Ua™(6) US;(6) Ua(6) iswell-defined, and IT has a hyperbolic horseshoe (an invariant
Cantor set, on which IT is topol ogically conjugate to the full shift on two symbols).

Theorems 2 and 3 mean that if ¢ > 0 is sufficiently small for a fixed 6, then there exists
a stable periodic orbit. However, as ¢ decreases, the periodic orbit undergoes a succession of
bifurcations and if ¢ gets sufficiently small in comparison with &, then a chaotic invariant set
appears. In our proof in Sec.4, ¢ will be assumed to be of O(s(~ log £)*/2). We conjecture that
this chaotic invariant set is attracting, although the proof is not given in this paper. In general,
given fast-slow systems do not have the parameter § explicitly. However, Theorem 3 suggests
that as ¢ increases for fixed §, a periodic orbit undergoes bifurcations and a chaotic invariant
set may appears, see Fig.2. Obvioudly the assumptions (C1) to (C4) include assumptions (A1)
to (A3) and (B1) to (B4). In what follows, we consider the system (1.8) with the parameter 6.
When proving Theorems 1 and 2, ¢ is assumed to be constant, and when proving Theorem 3, §
is assumed to be of § ~ O(g(~loge)Y?) ase — 0. Notethat ¢ << &(—loge)/? << 1ase — 0.
Although 6 > O isaso small, uniformity assumptions on § and the fact £ << ¢ allow usto usethe
perturbation techniques with respect to only on e.

In the rest of this section, we give an intuitive explanation of the theorems with an example.
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Fig. 2: Typical bifurcation diagram of (1.8) with assumptions (C1) to (C6).

Consider the system
1

X =2+ 3(y° ~y) +6x(5 - ¥).

y=-X (2.8)

Z=¢gsn §

=¢ 2y .
The critical manifold M = M(9) is given by the curve z = 3(y — y®), x = 0, and the fold points
2 .

aregivenby L* = (0, :L—B, 1—3), see Fig.3.

Fig. 3: Critical manifold of the system (2.8).

It is easy to verify that the assumptions (C1), (C2), (C4) and (C5) are satisfied for (2.8). The
assumption (C3) of existence of heteroclinic orbits are verified numerically (we do not give a
proof here).
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The assumption (C6) is also verified by a straightforward calculation. Now we show that
(C6) implies that the attraction basin of S;(6) of the unperturbed system can be taken uniformly
iné € (0,dp). We change the coordinates by an affine transformation (x,y, 2) — (X, Y, Z) so that
the point (0, -2/ V3, 2/ V/3) is placed at the origin and the linear part of Eq.(2.8) is diagonalized.
Then the unperturbed system of EQ.(2.8) is rewritten as

d(X\ V-1 ——=(-1 0\(X) 6(1 0\(X
E(Y):T 36_‘52(0 1)(\()‘5(0 1)(Y)+h(><,Y,6), (2.9)

where the explicit form of the polynomial h, whose degree is greater than one, istoo complicated
to be written here. However, one can verify that his of the form

h(X,Y,6) = V=1hy(X, Y, 8) + sha(X, Y, 6), (2.10)

where h; and h, are polynomials with respect to X and Y such that al coefficients of h, are
real. Note that V36 — 62/2 and §/2 correspond to w*(z 6) and su*(z 6), respectively, in the
assumption (C5).

Now we bring Eq.(2.9) into the normal form with respect to the first term of the right hand
side. There exist a neighborhood W of the origin, which is independent of 6, and a coordinate
transformation (X, Y) + (r, 6) defined on W such that Eq.(2.9) is put in the form

P = ragrdragte. .
0= V36— 62/2 + O(r?).

Note that the equation of the radius r is independent of 6 (see Chow, Li and Wang [4]). In our
case, az isgiven by

(2.11)

3 5—180 + 2962

%= 0@ 0792

Further, we can prove that a ~ O(6), i = 3,5,--- asd — 0 by using the induction together

with the property that h(X, Y, 0) takes purely imaginary valuesif (X, Y) € R? (see Eq.(2.10)). See

Chiba [2] for explicit formulas of normal forms which are convenient for induction. Thus the
derivative of the right hand side of Eq.(2.11) iscalculated as

% (—gr Fagrd4 ) _ —g(1+ bar? + bgr® + ---) + O(62), (2.13)
where bs, bs, - - - are §-independent constants. It proves that there exists a 6-independent positive
constant C such that if |r(0)| < C, then r(t) decays as|r(t)| ~ O(e?) for small § > 0. The same
property can be verified for any system with the assumption (C6) by means of the normal form.

Figure 4 shows numerical results for Eq.(2.8). If ¢ = 0.02 and § = 0.06, there exists a
stable periodic orbit (Fig.4 (a)) while a chaotic behavior occursif € = 0.02 and 6 = 0.03 (Fig.4
(b)). This verifies Theorems 2 and 3 for Eq.(2.8). As was mentioned, chaos may occurs when

(2.12)
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Fig. 4: Numerical resultsfor Eq.(2.8). If (a) € = 0.02 and 6 = 0.06, there exists a stable periodic
orbit and if (b) & = 0.02 and 6 = 0.03, there exists a chaotic attractor. In (c) and (d), the green
points denote the image of the red points under the Poincaré map from X, to X, for ¢ = 0.02 and
6 = 0.03. They show that the Poincaré map has a horseshoe and it is attracting.

e increases for fixed 6. For example, numerical simulations show that chaos also appears for
& =0.04and ¢ = 0.06.

Although Theorem 3 does not state that a chaotic invariant set mentioned is attracting, Figure
4 (c) corroborates numerically that the chaotic invariant set for our exampleis actually a chaotic
attractor. Take the Poincaré section X, = {(X,y,2)|y = 05,z > Oy and X, = {(X,Y,2 ]y =
—-0.5, z < 0}, like as X, and X%, in Fig.5, respectively. Since Eq.(2.8) admits the symmetry
(%Y,2 — (=X -Yy,—2) and Z; corresponds to X, under the symmetry, we identify them and
calculate the Poincaré map from X, to X,. The results are represented in Fig.4 (¢) and (d). The
red points on X, identified with X,, are mapped to the green points on X, by the Poincaré map.
Fig.4(c) shows that the Poincaré map is attracting, and Fig.4(d) shows that it has a horseshoe.

To ascertain the reason why the periodic orbit or the chaotic attractor occur, we take Poincaré
sections X, Xy, I Xoys Xy, and X asinFig. 5.

in> “out>
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Fig. 5: Poincaré sections and a schematic view of the images of the rectangle R under a succes-
sion of the transition maps.

The section X¢ ; isparallel to the xz plane and located at the right of L*. Take arectangle Ron
24, and consider how it behaves when it runs along solutions of Eq.(2.8). Since the unperturbed
system of Eq.(2.8) has the heteroclinic orbit * connecting L* and S;, the rectangle R also
approachesto S; along o* and intersects the section X, asis shownin Fig. 5. Since the velocity
e38Nn(5y/2) inthedirection zis positive in the vicinity of S; and since S; consists of stable focus
fixed points, the intersection area on X;; moves upward, rotating around S;. As aresult, the flow
of Rintersects the section X, which is parallel to the xy plane, to form aring-shaped area asis
shown in Figure 5. Further, we can show that the ring-shaped area on X, moves to X, aong
solutions of Eq.(2.8) dueto Theorem 1. The areaon X, goes back to the section X, inasimilar
manner because Eq.(2.8) has the symmetry (x,y,2) — (—X,—Y,—2). Thus the Poincaré return
map IT from X, into itself is well-defined and it turns out that I1(R) is ring-shaped.

There aretwo possibilities of locations of the returned ring-shaped area. If the strength of the
stability of stable fixed points on S, say ¢ asin the assumption (C5), is sufficiently large, then
the radius of the ring-shaped area gets sufficiently small when passing around S;. Asaresult, the
returned ring-shaped areaisincluded in therectangle Rasin Fig.6 (a). It means that the Poincaré
map IT is contractive and it has a stable fixed point, which corresponds to a stable periodic orbit
of Eq.(2.8). On the other hand, if the strength ¢ is not so large, the radius of the ring-shaped area
isnot so small and it intersects with the rectangle asin Fig.6 (b). In this case, the Poincaré map
IT has a horseshoe.

13
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Fig. 6: Positional relationship of the rectangle R with the returned ring-shaped area.

3 Local analysisaround the fold points

In this section, we give alocal analysis around the fold points L* by using the blow-up method,
and calculate a transition map to observe how orbits of Eq.(1.8) behave near the fold points. To
prove the existence of chaos, we will give a detailed analysis of the transition map, which does
not need for the standard proof of the existence of a periodic orbit. The main theorem in this
section (Thm.3.2) will be made in the end of Sec.3.1. We will calculate only for L* because
discussion for L™ is done in the same way.

3.1 Normal form coordinates

At first, we transform Eq.(1.8) into the normal form in the vicinity of L*(6). In what follows, if
a(formal) power series h centered at the origin begins with n-th degree terms (i.e. 9'h(0)/ox' =
0@l =0,1---,n-1)and d"h(0)/0x" # 0), we denote the fact as h ~ Op(n). The notation O(:)
is aso used to the usua Landau notation. For example if h(x,y,2) ~ O(X2,y?, 22, Xy, yz zX) as
X, Y,z — 0, wesimply denoteit ash ~ Opy(2).

Lemma 3.1. Suppose (C1), (C2) and (C4). For every 6 € [0,80), There exists a C* local
coordinate transformation (x,y,2) +— (XY, Z) defined near L*(6) such that Eq.(1.8) is brought
into the form

X =Z - Y2+ ci(6)XY + Zhy(X, Y, Z,8) + Y2hpo(X, Y, Z,8) + eha(X, Y, Z, &, 6),
Y = =X+ Zhy(X, Y, Z,6) + ehs(X, Y, Z, &, ), (3.1)
Z=—-c+¢ehg(X Y, Z¢,0),
wherecy(6) and hy (i = 1,--- ,6) are C* functions such that ¢,(6) > 0 for 6 > 0 and
hl, hz, h4 ~ O(X, Y, Z), hG ~ O(X, Y, Z, 8). (32)

If we assume (C5), then ¢,(6) ~ O(5) ass — 0.

In these coordinates, L* () is placed at the origin and the branch S*(6) of the critical manifold is
of theform Z = Y2 + Oy(3), X = Oy(2).

14



Proof of the Lemma. We start by calculating the normal form of the unperturbed system (2.6).
We will use the same notation (X, Y, z) asthe original coordinates after a succession of coordinate
transformations for simplicity. Since the Jacobian matrix of (fy, f,) at L*(6) has two zero eigen-
values due to the assumption (C1), the normal form for the equations of (X, y) is of the form (see
Chow, Li and Wang [4])

{ X = 31(6)Z + ax(6)y? + as(8)xy + Zhy(X. Y, 7, 6) + Y2ha(X, Y, Z,6), (3.3)

y = bi(6)X + ba(6)z + Zha(X, Y, Z, 6),

whereay (6), ax(0), az(6), b1(6), bo(6) and hy, hy, hy ~ O(X, y, 2) are C* functions. Notethat a,(5) #
0,by(6) # Ofor 6 € [0, o) because of the assumption (C2). Since we can assume that S*(6) is
locally expressed as z ~ y?, x ~ 0 without loss of generality, by a suitable coordinate transforma-
tion, we obtain a,(6) = —ay(6) and b,(5) = 0. Since fixed points on S} (5) are attracting and since
fixed points on S} (6) are saddles for 6 > 0, we obtain a;(6)b;(6) < 0 and ag(6) > 0 for § > 0.
If we assume (C5), then az(6) ~ O(5). We can assume that a;(6) > 0 because we are alowed to
change the coordinates as x — —X,y — -y if necessary. Thus, the normal form of Eq.(2.6) is
written as

y = bi(6)X + Zh4(X, Y, Z 6), (3.4)
z=0,

with a;(6) > 0, by(6) < 0. The coordinate transformation which brings Eq.(2.6) into Eq.(3.4)
transforms Eq.(1.8) into the system of the form

{ X = ay(6)(z— y?) + ag(0)xy + Zhu(X. Y, . 6) + Y*hy(X. Y. Z,6),

Yy = ba(6)x + Zh4(X. Y. Z. 6) + ehs(X, Y, Z £, 6), (35)

{ X =a1(0)(z-Y?) + as(0)xy + Zm(X, Y, z 8) + Y?ha(X, Y, 2, 6) + ehs(X, Y, Z &, 6),
z=g(91(0) + he(X. Y, 2 &, 0)),

where hg, hs, hg are C* functions such that hg ~ O(X,Y, z €), and where g,(6) := g(L*,0,6) is
a negative constant on account of the assumption (C4). Finally, changing coordinates and time
scales as

_xa1(5)( 01(6)? )4/5, yzy(_ % (6)* )1/5, z:Z( _GlOF )2/5,

0.(6) \ " a1(6)ba(6) au(6)b1(6) ~ ay(6)bs(6)
t ®u©)? \°
NS (‘al(a)bl(a)) ’ (36)

and modifying the definitions of h's(i = 1,--- , 6) appropriately, we obtain Eq.(3.1). Note that
since g.(6), a1(6), b1(6) # Ofor 6 € [0, 6p), thistransformationisalocal diffeomorphism for every
6 € [0, 6p). ]

Let p; be asmall positive number and let

=Y pD (X Y) € RY, =4, = (X, 02, 2) | (X, Z) € R (3.7
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be Poincaré sectionsin the (X, Y, Z) space defined near the origin (see Fig.7). The purpose of this
section is to construct a transition map from X to X ,. Recall that there exists an orbit o*(6)
emerging from L*(6), where L*(5) corresponds to the origin in the (X, Y, Z) space.

Theorem 3.2. Suppose (C1), (C2) and (C4) to (C6). If p; > O issufficiently small, there exists
&o > 0 such that the followings hold for 0 < & < gg and 0 < § < &o:

(I) There exists an open set U, c X* near the point = N S;(6) such that the transition map

in

I, - U, — X, along the flow of Eq.(3.1) is well-defined, C* with respect to X and Y, and

expressed as
X Gl(pl’ 6)
Y | = pi

12 0

Ga(X, Y, p1,6)e™® + O(elog &)
0 , 38)
(Q+ H(X, Y))e*® + O(slog e)

+

loc +

where Q ~ —3.416 isanegative constant, and G,, G,, H are C* functionswith respect to X, Y, 6.
The arguments X, Y are defined by

X = [’\)1()(’ Y’pla &, 5)8_3/5 a(p[_a(pla 6)2]9
i ) (3.9)
Y = BaX Y., £,0)e 2 exp| A1, 0)° |

where Dy, D, and d are C functions with respect to X, Y, 5 such that d > 0 for 6 > 0. Functions
D; and D, are not smooth in &, however, they are bounded and nonzero ase — 0O and 6 — 0.
(1) The point (G (o1, 6), o3, 0) isthe intersection of *(5) and 3.

(111) The function H satisfies

OH
H(0.0) = 0. Z2(X. %) #0. (3.10)

(IV) If U, issufficiently small, for each € € (0, &9) and ¢ € (0, 6p), we can suppose that
%(X, Y, p1,&,0) 0, (3.12)
by changing the value of p, if necessary.

This theorem means that an orbit of Eq.(1.8) or Eq.(3.1) running around S%(5) jumps near
L*(5), goesto theright of L*(5) and the distance of the orbit and the orbit a*(6) is of O(s*°) (see
Fig.7). In particular, it convergesto a*(6) ase — 0. We use the blow-up method to prove this
theorem. In Sec.3.2, we introduce the blow-up coordinates and outline the strategy of the proof
of Thm.3.2. Analysisof our system in the blow-up coordinatesis done after Sec.3.3 and the proof
is completed in Sec.3.6. The constant Q is a pole of the first Painlevé equation, as is shown in
Sec.3.3. Thefunction H, which isactually an analytic function, also arises from thefirst Painlevé
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Fig. 7: Transition map I1" . and the heteroclinic orbit o*.

eguation. To prove Theorems 1 and 2, it issufficient to show that X and Y are exponentially small
ase — 0. However, we need more precise decay rate for proving Theorem 3. For this purpose,
the factors £~ and &%/° will be derived by means of the WKB theory. Eq.(3.10) and (3.11)
are also used to prove Theorem 3. Thus our analysis involves a harder calculation than a usual
treatment of fold points in fast-slow systems. The assumption (C6) is used to assure that the
domain U, of the transition map is independent of § € (0, §p). The assumption (C5) is used to
show that the argument of exp[- - -] in Eq.(3.9) is of order O(¢). For other parts of the theorem,
we need only (C1), (C2) and (C4).

3.2 Blow-up coordinates

In this subsection, we introduce the blow-up coordinates to “desingularize” the fixed point L*(5)
having a nilpotent linear part. Regarding ¢ as a dependent variable on t, we rewrite Eq.(3.1) as

X=Z-Y2+c(6)XY + Z(X, Y, Z,8) + Y2ho(X, Y, Z, 6) + ehs(X, Y, Z, &, 6),
Y = =X + Zha(X, Y, Z,6) + shs(X, Y, Z, &, 6),

Z=-c+ ehe(X, Y, Z, &, 6),

£=0,

(3.12)

with the estimate (3.2). For this system, we define the blow-up transformations K4, K, and K; to
be

(XY, Z &) = (r3xg, réyy, ry, riey), (3.13)
(X, Y,Z,8) = (3%, r3ys, 132, 13), (3.14)
(X, Y.Z,&) = (r3xs, r3, r3zs, raes), (3.15)

respectively, where K4, K, and K3 are defined on half spaces {Z > 0}, {¢ > 0} and {Y > O}, re-
spectively. In what follows, we refer to the coordinates (xq, Y1, 1, €1), (X2, Y2, 22, I'2), (X3, I'3, Z3, £3)
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as Ky, Ky, K3 coordinates, respectively. Transformations «;; from the K; coordinates to the K;
coordinates are given by

4/ 1/5

L (% Y2, 22, T2) = (a7, yael?®, €77°, 11677),

. -3/4  _-1/2 4 _-5/4
k21t (X1, Y1, 11, €1) = (%Z, " Y2z, 2, rzzé/ » 4 .

K1

N

(3.16)

. a5 o >
K32 - (X2, Y2, 22, 12) = (Xa&g /s, £ /5, 23534/5, r3£é/5)’
: ~3/2 2 ~5/2

ks o (Xan T3 2, 20) = Oy, T2¥5 2 22550 ¥, ),

respectively. Our next task is to write out EQ.(3.12) in the K; coordinate. Egs.(3.13) and (3.12)
are put together to provide

X1 = r1(1 = Y5 + ca(6)raxays + hg(Xa, Y1, 1, 6) + Yaho(Xa, Y1, 1, 6)
3
+r1e1hio(Xe, Y1, 11, £1,0) + ZX181(1 — h7(X1, y1, 11, €1,9))),
: 1
Vi = (=X + r1hys(Xe, Y1, 11, 6) + rieshyo(Xe, Ya, 11, £1,6) + EY181(1 — h7(X1, Y1, 11, €1, 6))),

) 1
r = _Zr%f;l(l — h7(le yl’ M, &1, 6))’

) 5
& = Zrlgi(l — h7(X1’ y17 rla €1, 5))’

(3.17)
whereh; (i=7,---,12) are C* functions such that

h7(Xla yl’ rla €1, 5) = h6(r§X1, r%yl’ ril, r?{;‘]_, 6)’ (318)

and hg, - - - , hy, are defined in a similar manner through hy, - - - , hs, respectively. Thus in these
functions, x4, y1, &1 are always with the factors r3,r2, r>, respectively. This fact will be used in
later calculations. Note that hj ~ O(r%) for i = 7, 8,9, 11 because of (3.2). By changing the time
scale appropriately, we can factor out ry in the right hand side of the above equations:

Y1 = 1= yi+ Ca(6)rixays + Ng(Xa, Y1, 11, 6) + Yiho(Xa, Y1, 71, 6)

+rie1Mo(Xa, Y1, 11, €1,6) + legl(l — h7(X1, y1, 11, £1,0)),
(K1) Y= =X+ rihaa(Xa, 1, 11, 6) + rieshia(Xe, ya, 11, £1,6) + %Y181(1 — (X1, Y1, 11, £1,0)),
1= —%rlgl(l — hy(Xa, Y1, 1, €1, 0)),

5
&1 = Zai(l - h7(Xla yl’ rl’ &1, 5))‘

(3.19)

Since the time scale transformation does not change the phase portrait of Eq.(3.17), we can use
Eq.(3.19) to calculate the transition map.

In asimilar manner (i.e. changing the coordinates and dividing by the common factors), we
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obtain the systems of equations written in the K,, K3 coordinates as

XZ =2 — yg + r2h13(x2, yZ’ 2,1, 6)5
yz = —X+ r§h14(X2, Yo, 2,12, 6)’

K . 3.20
(K2) 2, = =1+ r3his(Xe, ¥a, 22, 12, 6), (320
f, =0,
and
. 3
X3 =—=1+ Zz3+ C1(0)r3Xs + §X3h16(X3, 3, Z3, £3,0) + I3M17(Xs, 3, Z3, £3, ),
1
f3 =—=rsh r
(Ka) .3 o3 16(Xs, '3, Z3, €3, 0), 2 (3.21)
Z3 = —g3 + 223h6(X3, I3, Z3, €3, 0) + r5e3h18(X3, I3, 23, £3, ),
. 5
£3 = 583h16(X3, rs, Zs, €3,0),
respectively, where hyg(Xs, I3, Z3, £€3,0) = X3 + r§h19(x3, rs, z3,&3,0) and hy (i = 13,---,19) are

C* functions satisfying
M7, hig, hig ~ O(Xs, I3, Z3, £3).

Our strategy for understanding the flow of Eq.(3.1) near the fold point L*(6) isasfollows: In
Sec.3.3, weanalyze Eq.(3.20) in the K, coordinates. We will find it to be a perturbed first Painlevé
equation. Since asymptotic behavior of the first Painlevé equation is well studied, we can con-
struct a transition map along the flow of it approximately. In Sec.3.4, we analyze Eq.(3.19) in
the K; coordinates. We will see that in the K, coordinates, S} (5) has a 2-dimensional attract-
ing center manifold W¢(6) for 6 > O (see Fig.8). Since it is attracting, orbits passing nearby
S;(6) approaches W°(5). Thusif we construct the invariant manifold W¢(5) globally, we can well
understand asymptotic behavior of orbits passing through nearby S;(5). Although usual center
manifold theory provides the center manifold W°(6) only locally, we will show that there exists
an orbit y, called the Boutroux’s tritronquée solution, of the first Painlevé equation in the K, co-
ordinates such that if it is transformed into the K; coordinates, it is attached on the edge of W¢(5)
(see Fig.8). This means that the orbit y of the first Painlevé equation guides the manifold W¢(6)
and provides a global structure of it. In Sec.3.5, we analyze Eq.(3.21) in the K3 coordinates.
We will see that there exists a fixed point whose unstable manifold is 1-dimensional. Since the
orbit y of the first Painlevé equation written in the K3 coordinates approaches the fixed point, the
manifold W°(5) put on the y is also attached on the unstable manifold (see Fig.8). The unstable
manifold corresponds to the heteroclinic orbit a*(5) in the (X, Y, Z) coordinates if it is blown
down. This means that orbits of Eq.(3.1) coming from a region above L*(6) go to the right of
L* (o) (see Fig.7) and pass near the heteroclinic orbit a*(6). Thus the transition map IT,; . is well
defined. The fixed point in the K3 coordinates corresponds to a pole of the solution y in the K,
coordinates. In this way, the value Q of the pole appearsin the transition map (3.8).

Combining transition maps constructed on each K; coordinates and blowing it down to the
(X,Y, Z) coordinates, we can prove Thm.3.2.

19



K3

/ &
unstable mfd.

K32

Fig. 8: Theflow inthe (X, Y, Z) coordinates and the blow-up coordinates. The dotted line denotes
the orbit y of the first Painlevé equation.

3.3 Analysisin the K, coordinates

We consider Eq.(3.20). Sincer, = £'/° isasmall constant, we are allowed to take the system
?'<2 =24 - y§,
Yo = =X, (3.22)
2z =-1,

as the unperturbed system of Eq.(3.20). Thisis equivalent to the first Painlevé equation :

dX2

— =2+ &

dz Y2 _ _

YA . or iz Z+Y5. (3.23)
- 25

d22

It is known that there exists a two parameter family of solutions of the first Painlevé equation
whose asymptotic expansions are given by

(xz(zz)) _ _%251/2 _ (%259/8 - x/Eczz;/S) coSh — (%z;gfs + x/éclz;/s) sing + 0(z,%)
Ya(2) —22 + C1, 8 cos¢ + Coz, 2 sing + O(z?)

(3.24)
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asz, — oo and

—12 o 1 2 3 4
( x2(22)) _| @y te@-2)+ 2§Zz 2)” +4Cs(z2 - 20)” + O((z2 - %)) 325
Ya(2,) ot 2@ - 20+ 522~ %) + Calze - 20)* + Ol(22 - %))
4V2 5,
asz — zp+ 0, where ¢ ~ —zg (zz » o), and where C,,C,,C3; and z, are constants

which depend on an initial value. The value 7, is a movable pole of the first Painlevé equation
(see Ince [17], Noonburg [26], Conte [5]). In particular, there exists a unique solution y, which
correspondsto the case C; = C, = 0, whose asymptotic expansionsasz, — c andasz, —» Q+0

are of the form .
X X2(22) _ __251/2 + O(ZE?’)
I (yZ) - (YZ(Zz)) Bl ( ;22%/2 +0(z) ; (3.26)

) _ () _[ Toma 5D O
& (yz) B (Y2(Zz)) =1 76 Q ) .t (3.27)
(2, - Q)2 + E(Zz -0+ 0((z - Q)?

respectively, where Q ~ —3.416. They is called the Boutroux’s tritronquée solution [1, 19].
Let p, and p3 be small positive numbers and define Poincaré sections to be

23 =z =p,") 25 = {y2 = p37"), (3.28)
(seeFig.9). By Egs.(3.26, 3.27), theintersections P, = yNZ, Q, = yNZ!! of y and the sections
are given by
P2 = (Px. By. P2) = (—(2/3)"20;%° + 0(03®). p5°°. Q@ + VBp3/® + O(ps)).  (3.29)
Q2 = (G & O) = (—p5"°/2+ O(p3”"%). —p,”"° + O(3). p,*®). (3.30)
respectively.

Proposition 3.3. If p, and p3 are sufficiently small positive numbers, there exists an open set
U, c 2 such that the transition map I : U, — =" along the flow of Eq.(3.20) iswell-defined
and expressed as

X2 pX Hl(XZ - CIx, y2 - qy7p2’ r2’p3, 6)
0
me| o= P+ , 331
2 | ¥ P2 | | Ha(X2 = O, Y2 — Gy 02, T2, 03, 6) (3.31)
ry 0 ro

where Hi(X, Y, p2, 1, p3,6) and Ha(X, Y, o2, 1, p3,6) are C* functions with respect to x,y,r and §
satisfying the equalities H1(0, 0, p2, 0, p3,6) = H2(0,0, 02,0, p3,6) = 0 for any small p,,p3 > 0
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Fig. 9: The solution y of the first Painlevé equation and the Poincaré sections.

and ¢ € [O, 50)

Proof. Thisis an immediate consegquence of the differentiability of solutions with respect to
initial values X,, y, and parametersr,, 6. Note that at this time, we did not prove differentiability
at p3 = 0, which will be proved in the next Lemma. |

Since H; and H, are C* with respect to r and §, we put them in the form
Hi(X, Y, 02,1, p3,0) = |‘~|i(X, Y, p2,p3) +O(r), i =1,2, (332

where we use the fact that when r, = 0, the system (3.20) is independent of §. Then, the value

lim,,_o (pZ + Ho(x- gy — qy,pz,pg,)) givesapole z, of asolution of Eq.(3.23) through aninitial

point (XY, p,*°); tht is, Xa(22), Y2(z2) — o0 asz, — 7. Prop.3.3 impliesthat H; are C* in x and

y when ps > 0. Now we show that H; can be expanded in p%'® and they are C* even if p3 = 0.
This meansthat a position of a poleis aso smooth with respect to initial values. In the proof, the
Painlevé property will play a crucia role. Part (ii) of the next Lemmais used to prove Thm.3.2
().

Lemma3.4. (i) Thefunctions H; and H, are analytic with respect to (x,y) € Uy, p
pa/® > 0, though they are singular at p2/® = 0.

N 0 ~

(if) H2(0,0,p2,0) =0, a_><H2(X’ Y, p2,0) # 0.

Proof. Let X, = Xo(2; p2, Xo, Yo) @and Yo = Ya(2; p2, Xo, Yo) be asolution of the system (3.23) with
the initial condition

1/5

;> 0and

Xa(05%; 02, %0, Yo) = X0, Y2(03"%; 2, X0, Yo) = Yo

Suppose that y»(2) = p;>' for some z = 2(Xo, Yo, p2, p3). When ps > 0, the statement (i) imme-
diately follows from the fundamental theorem of ODEs: Since the right hand side of the system
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(3.23) isanalytic, any solution is analytic in time z, initial timepg“/5 and initial values (X, Yo)-
Applying the implicit function theorem to the equality

Y2(2(%0, Yo. P2, P3); P2, X0: Yo) = p3° (3.33)

one can verify that N
Z(Xo, Yo, P2, p3) = Pz + Ha(Xo — 0x, Yo — Gy, o2, 03) (3.34)
isanalyticin xo, Yo,p; ° > 0and p3° > 0. Thus

X2(Z(X0, Yo, 02, 03); P2 X0, Y0) = Px + H1(Xo = Gxs Yo — Gly» 02, 03) (3.35)

is also analytic in the same region. Since z — 0 asp; — 0, Hy and H, are singular at p3'° = 0.
When p3 = 0, Z(Xo, Yo, 02, 0) givesapoleand X, = Yy, = oo a 2z = z(Xo, Yo, p2,0). Thuswe

should change the coordinates so that a pole becomes a regular point. For (3.23), change the

dependent variables (x,, y») and the independent variable z, to (£, 1) and T by the relation

2 2 2
Xo = %+%n+%n - K%,
"K3 (3.36)
Yo = ——,

and z, = «t, respectively, where « := (-6)/° < 0. Then, (3.23) is brought into the analytic
system

dn 1.

=1
g -t 2’7f .
%_}2 +§ _ f—} 3_§4+§52 (3.37)
3-8 " Sm e e S

Since any pole of y,(z) is second order [17], a pole of y, is transformed into a zero of n(r) of
first order. Let n = n(t; S, no, &o) and & = &(t; S, no, £o) be a solution of the system satisfying the
initial condition

n(s; s, mo,&0) =m0, £(S; S, M0, £0) = o,

where (170, £) and the initial time s correspond to (o, Yo) and p,*°, respectively, by the transfor-
mation (3.36). Suppose that

n(7 (s no, o, P3); S 10, £0) = (— K3)1/2 1/5

for somet = 7(s, 10, o, p3), Which corresponds to avalue of z(Xo, Yo, p2, p3) by therelation z = xr
so that y»(2) = p;”'> (note that when'y, = p;?'°, then 7 = (—«%)Y/2p2/®). Since

an

07- =(- K3)1/2 1/5

1+ O(p4/5),

23



the implicit function theorem proves that 7 is analytic in s, 70, & and small p¥’®> > 0. Since the
transformation (10, &) — (Xo, Yo) defined through (3.36) is analytic when yg # O, it turns out that
Z(Xo0, Yo, P2, p3) is analytic in (Xo, o) € Uz, 03> > 0 and p3/° > 0. Now Eqgs.(3.34, 3.35) prove the
part (i) of Lemma.

To prove (ii), let us calculate the asymptotic expansion of 7(s, no, &, 0), at which = 0. We

rewrite (3.37) as
dr 1

dp 1+ 5t + 30° - 0%

de  §n+ guf (v - 1) - e + 3

dn 1+ o0+ 3m° — 3% '
A general solution of this system is obtained in a power series of n as

1
T=Tl+n—Ens——nﬁ+én7+0(n8),
20" "1 T 1 (3.39)
£+ Tt 4 P o) |
17167 T g I

where 7; and &; are constants to be determined from an initial condition. By using the initial
condition (t, 77, &) = (S, 1o, &), T1 IS determined as

b

(3.38)

Cel L S5 L
T1 = Tlo 20770 30770
Whenn = 0, T = 1. Thismeans that the above 7, gives the expansion of 7(s, r9, &, 0). Then we

obtain

§O7

270+ O@s). (3.40)

oH 0z
8_X02(X0 — Oy, Yo — Oy, 02,0) = E(XO’ Yo, P2, 0)
ot
= K%(S 10 €0, 0)
Ono 0% 0&0 0%
1

1 7
= k|[l-— omnd |- -—,

which is not zero for small 7, (thus for large o). The equality H(0, 0, p», 0) = 0 is obvious from
the definition. ]

Remark. Since H; isanayticin p3/® > 0, it is expanded as

Hi(%, Y, 2, p3) = Hi(x, Y, p2) + O(03), (3.42)
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fori =1, 2. Indeed, one can verify that

~ ~ 3V6 -~
Hi(X, Y, 02, p3) = Hi(X, Y, p2,0) + VBp3/® + 1—O(Hi(X, Y, p2,0) + P)ps + 305 + O(05°)

by using the expansion (3.25). Further, H; are expanded in a Laurent series of p3'°. In particular,
Eq.(3.40) show that the expansions are of the form

Hi(x. Y. p2) = Hi(x ) + 0, Fi(x y. 0,77°). (3.42)
because s = p;“/ ®/k, where F1, F, are analytic functions. The proof of the above lemmais based
on the fact that a pole of (3.23) can be transformed into a zero of the analytic system by the
analytic transformation. This property is common to Painlevé equations, and the transformation
(3.36) is used to prove that (3.23) has the Painlevé property [5, 17].

3.4 Analysisin the K; coordinates

Weturnto Eq.(3.19). Itiseasy to verify that Eq.(3.19) hasfixed points (X, Y1, r1, €1) = (0, +1,0, 0).
By virtue of the implicit function theorem, we can show that there exist two sets of fixed points
which form two curves emerging from (0, +1, 0, 0), and they correspond to S} (6) and S; (6), re-
spectively (see Fig.8). On the fixed points, the Jacobian matrix of the right hand side of Eq.(3.19)
has eigenvalues given by

0.0, 7 (cao)rays + O + /By, ~ dcs(o)rox, + O(). (343)

In particular, the eigenvalues become 0, 0, + V2i at the fixed point Q; = (0, -1, 0, 0), but at fixed
points in S} (6)\Q, they have two eigenvalues whose real parts are negative if r; is small and
6 > 0. Eigenvectors associated with the two zero eigenvalues at points on S7(5)\ Q; converge to
those at Q,, which are given by (0,0,1,0) and (-1,0,0,2), asr; — 0. The vector (0,0,1,0) is
tangent to S} (6). Thus (-1, 0,0, 2) isanontrivial center direction.

Lemma 35. If 6 > 0, there exists an attracting 2-dimensional center manifold W¢(5) which
includes S} (6) and the orbit y of the first Painlevé equation written in the K; coordinates (see
Fig.10).

Proof. Let B(a) be the open ball of radius a centered at Q;. Since at points in S} (5)\B(a) the
Jacobian matrix has two zero eigenvalues and the other two eigenval ues with negative real parts,
there exists an attracting 2-dimensional center manifold W¢(¢, a) emerging from S (6)\B(a) for
any small a > 0. Let y be the solution of the first Painlevé equation described in the previous
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subsection. Its asymptotic expansion (3.26) iswritten in the K; coordinates as

% 1 Zg5/4 + 0(2515/4)
2
-5/2
y: i’i | -1+ C(;(ZZS/ ) (a5 2, — oo), (3.44)
&1 255/4

by the coordinate change «,; (3.16). The curve (3.44) approaches the point Q; asz, — o and
its tangent vector converges to the eigenvector (-1,0,0,2) at Q; as z — oo. Thus W($) =
Iirrg\/\/°(6, a) U y forms an invariant manifold. |
a—

Note that v is included in the subspace {r; = 0}. Thislemma means that the orbit y guides
global behavior of the center manifold WE(6).

Let p1, 02 > 0 be the small constants referred to in Thm.3.2 and Prop.3.3, respectively. Take
two Poincaré sections X! and £ defined to be

Eiln = {(X1, Y1, T1,€1) |11 = p1, X < p1, Y1+ 1 < p1, 0 < &1 < po},
IM = {(Xe, Y1, M1, €1) [0 < 11 < o1, [Xa] < p1, Iy2 + 1] < p1, €1 = p2), (3.45)

respectively. Note that =" is included in the section = (see Eq.(3.7)) if written in the (X, Y, Z)
coordinates and £ in the section =" (see Eq.(3.28)) if written in the K, coordinates.

Sa

WC
>

\ | o X

\ y, 3;1
Eolut B

V &1

Fig. 10: Poincaré sections to define the transition map IT/.

Proposition 3.6. Suppose (C1), (C2) and (C4) to (C6).
(I) If p1 and p, are sufficiently small, the transition map I : =" — = along the flow of
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Eq.(3.19) iswell-defined for every 6 € (0, ) and expressed as

1/5

X1 901(P15%/5P£zz,/02, ) X
S Y

H|10C Y1 — CPZ(plgl 1/’;2 _1;5pZ, 5) + 1 , (346)
P1 P1E€1 Po 0

where ¢, and ¢, are C* functions such that the graph of x; = ¢1(r1,&1,6) and y; = ¢o(r1, €1, 96)
gives the center manifold W°(5). The second term denotes the deviation from W¢(5), and X; and
Y; are defined to be

3/5
1)
X1 = D1(X1, Y1, p1, €1, P2, 6) (&) eXp[—d(PL &1, P2, 5)—],
€1 €1 (3.47)

2/5
0
Y1 = Do(X1, Y1, p1, €1, 02, 0) (&) E‘Xp[—d(pl, £1,02, 5)—],
&1 &1

where D4, D, and d are C* functions with respect to Xy, y1, p1 and 6. Although D,, D, and d are
not C* in g; and p,, they are bounded and nonzero ase; — 0 and § — 0. Further, they admit the
expansions of the form

Di (X1, Y1. p1, €1, p2. 6) = Di(X1, Y1 p1. €1, 6) + O((£1/02) "), (3.48)
d(p19 €1, 02, 6) = d(pl’ 6) + O((Sl/pZ)l/S)’ (349)

fori=1,2
(I1) Thefirst termin the right hand side of Eq.(3.46) is on the intersection of X and the center
manifold WE(s). In particular, ase; — 0, IT (X4, Y1, p1, £1) COnverges to the intersection point of
¥ andy.
(1) If theinitial point (X, y1, o1, €1) IS sufficiently close to We(6),
?(Xb Y1,01,€1,6) # 0 (3.50)
X1

except for a countable set of values of ¢;.

Remark. To prove the existence of a periodic orbit, it is sufficient to show that X; and Y; are
exponentialy small ase; — 0. However, to prove the existence of chaos, we need more precise
estimate as the factors (p,/£1)%° and (p,/&1)?°. Eq.(3.50) is used to prove Eq.(3.11).

Proof. At first, we divide the right hand side of Eq.(3.19) by 1 — h; and change the time scale
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accordingly. Note that this does not change the phase portrait. Then we obtain

. 3
X1=1- y% + 01(6)r1X1y1 + leé‘l + h8 + yzlhg + r181h10
+(1 =y + C(0)riXays + hg + Yihg + rie1hig) oy,
) 1
Yi=-X+ EY181 +rihy + riethy + (=g + rihy + risthp)hyy, (3.51)
) 1
r = _Zrlgl,
. § 2
&1 = 481,

wherehy; = 3020, h';, and arguments of functions are omitted. Equations for r, and &, are solved
as

~ 4 — 5g,(0)t\"° _ 4g(0)
ri(t) = r(0) (T) ,af(t) = 455,01 (3.52)
respectively. Let T be atransition time from Zi to 2. Since &4(T) = p,, T isgiven by
4 81(0))
T = 1- . 3.53
5:.(0) ( o (559
To estimate x;(T) and y;(T), let us introduce the new time variable r by
_ 1/5
. (—4 521(O)t) . (354)

Then, ry(t) = ri(0)7, &1(t) = £1(0)7°. Notethat whent = 0, 7 = 1 and whent = T, one has
7 = (21(0)/p2)"°.

Claim 1. Any solutions (x4, 1) of (3.51) are of the form x; = 73uy(7), Y1 = 72Ux(7), Where u;
and u, are C* with respect to .

Proof. Changing the timet to 7, the system (3.51) isrewritten as

1 dx 3
_4_181(0)7_4—1 = 1-y; + Cy(O)ra(0)rxays + ZX181(0)T_5 + hg + y2hg + r1(0)&1(0)7*hyo

dr ,
+(1 - ¥5 + 1 (6)r1(0)7xeys + hg + yihg + r1(0)1(0)7 *hyo)has,
1 d 1
—131(0)7—4% = 3+ 52107 %1 + r1(O)rhy + 110 0)7 iz
+(—X1 + rl(O)Thll + r1(0)2£1(0)7‘3h12)h21.

Putting X, = 773Uy, y1 = 77U, yields
1
_Zgl(o)% = (T7 - T3U% + Cl(é)rl(O)T3U1U2 + T7h8 + T3U%hg + r1(0)81(0)73h10)(l + h21),
i (3.55)

1
—281(0) (—T3U1 + r1(0)77hll + r1(0)231(0)73h12)(1 + hyy).

dr
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Recall that h; is defined through (3.18), and thus
h7(X1, Y1,11, €1, (5) = h6(r1(0)3u1, r1(0)2u2, r1(0)4T4, r1(0)581(0), (5), (356)

which implies that h; is C* with respect to uy, Uy, r1(0), £1(0),6 and 7. Functions hg, - - - , hy,
and hy; have the same property. Hence the right hand side of EQ.(3.55) is C* with respect to
Uy, Uy, r1(0), 6 and 7, which proves that solutions u,(7) and uy(r) are C* with respect to r,(0), §
and r. ]

Next thing to do is to derive the center manifold and how x;(t) and y,(t) approach to it.
The local center manifold W¢(6) is given as a graph of C® functions x; = ¢41(r1,£1,9), Y1 =
¢2(r1, €1, 0). By using the standard center manifold theory, we can calculate ¢; and ¢, as

1
ng(r]_, &1, 6) = —581 + O(ri, &1, 8%), gDz(rl, &1, 6) =-1+ O(rf, &1, 8%) (357)

To see the behavior of solutions x; and y; near the center manifold W¢(6), we put x; and y; inthe
form

(1) = @a(r1(7), £1(7),8) + T3Wa(7),  Ya(7) = @2(r1(7), £1(7), 8) + T2V (7). (3.58)

Since r3x;(r) and 2y, (7) are C*™ in 7 for every solutions x; and y1, So are solutions r3¢; (r1(7), £1(7), 6)
and 72, (r1(7), £1(1), 6) on the center manifold multiplied by 7 and 2, respectively. Thisimplies
that v1(7) and vo(7) areaso C* in 7. Substituting Eq.(3.58) into (3.51) and expanding it in vy, v,
and &,(0), we obtain the system of the form

dVl
81@ = —87°V, + ACi1 7TV + riT7h22(r1, T,0)V1 + rfT7h23(r1, T,0)Vo + 01(V1, Vo, 1, €1, 6, T),
dv (3.59)
2
81@ = 4T3V1 + r‘1‘77h24(r1, T, (5)V1 + rf~r7h25(r1, T, (S)Vz + gz(Vl, Vo, l1,€1,0, T),
where g1, 02 ~ O(V4, V12, V3, £1) denote higher order terms, hyy, - - - , hys are C* functions, and

wherer1(0), £1(0) and c,(6) are denoted by r1, &1 and ¢y, respectively. Thisisasingular perturbed
problem with respect to ;.

Claim 2. Any nonzero solutions of this system are expressed as

d*(T, r, 5)]

V1 = Dj(r. 11, £1,6; Va0, Vzo) Xp| ———
1

, Vo = Di(7, 11, &1, 6; Vi, Vap) exp[_

d*(z,r1,9)
&1 ]’
(3.60)
where vip = v4(1) and vy = V,(1) are initial values, and where D3, D; and d* are C* in
7,11, V10, Voo @nd 6. Although D] and D} are not C™ in &, they are bounded and nonzero as
g1 — 0,6 — 0. If vyg, Voo, r1 and 7 are sufficiently small,

oD}
OVio

(T’ rla €1, 61 VlOa V20) * Oa (361)
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except for a countable set of values of ¢;.
Proof. At first, we consider the linearized system of (3.59) as

dv
Eld—Tl = —8T5V2 + 4C;|_r1T5V1 + rfT7h22(r1, T, 5)V;|_ + r§T7h23(r1, T, (S)Vz + 0(81),
3.62)
dv. (
81d—: = 4T3V1 + r‘117'7h24(r1, T, 5)V1 + r§T7h25(r1, T, 6)V2 + 0(81),

which yields the equation of v, as

dv
81@ - 81(4C1r1‘['5 + 4ri‘[’7h26 + 0(81))d_7il + (32‘1’8 - 4r%‘l’7h27 + O(81))V1 = O, (363)

where hyg(r1, 7, 0) and hy7(r1, 7, §) are C* functions. According to the WKB theory, we construct
asolution of this equation in the form

Substituting thisinto Eq.(3.63), we obtain the equation of Sy(7)

2
(%) - (4C1r1T5 + 4rfr7h26)% + 327'8 — 4rfr7h27 = 0,

whichissolved as Sp = S3(7) = V(1) + iW(7), where

8s8 — I’%S7h27
(Car1S° + r3s7hyg)?

V(1) = f(chrls5 + 2r3s'hye)ds, W(r) = f(2c1r155 + 2rfs7h26)\/ —1ds
1 1

are real-valued functions for small ry. If ry > Oissufficiently small and if ¢;(6) > 0,0 < 7 < 1,
thenV(r) < 0. For these S{(7) and S, (7), Si(7), S3(), - - - areuniquely determined by induction,
respectively. Thus ageneral solution vy(7) isof the form

vi(t) = K exp[V(r)/ei] expliW(r)/e1] exp[S; + &1S5 + - - - ]
+ k™ exp[V(7)/e1] exp[—iIW(7)/e1] exp[S] + 1S5 + -+ |,

where k*, k™ € C are arbitrary constants. Put
D1, = exp[iW(7)/e1] exp[Sy +&1S; + -], D1 = exp[-IW(7)/&1] exp[S] +&1S; + -+ ].
Then, v, isrewritten as

va(7) = K* exp[V/(7)/&1]Dj, + K™ exp[V(7)/e1]Dj .
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where D7, and D] are C™ in vy, Voo, 7,71 and 6. They are not C* in &, because of the factor
1/&1, however, they are bounded and nonzero ase; — 0. In asimilar manner, it turns out that v,
is expressed as

Vo(7) = K" exp[V(7)/£1] D3, + k™ exp[V(7)/&1] D5,

where D, and D;_ are C* in vy, Vo, 7, I'1, 8, and are bounded and nonzero ase; — 0. Therefore,
the fundamental matrix of the linear system (3.62) is given as

F0)= (Bt preslvieel (364

Now we come back to the nonlinear system (3.59). We rewrite it in the abstract form as

d
dr
wherev = (V1, V), g = (01, 92), and A(7) is a matrix defining the linear part of the system. To

estimate the nonlinear terms, the variation-of-constants formulais applied. Put v = F(7)c(r) with
c(r) = (c1(7), ca(7)) € C2. Then, c(r) satisfies the equation

e1oe = AV + g(V. 1),

de _ iF(T)-lg(F(T)c, 7). (3.65)
dr &
Let ¢ = c(, 1) beasolution of thisequation. Since F(7) ~ O(e¥("/?1) tendsto zero exponentially
ase; — 0and since g is nonlinear, the time-dependent vector field defined by the right hand side
of (3.65) tends to zero as e; — 0. Since solutions ¢(t, £1) are continuous with respect to the
parameter ¢, it turns out that c(r, £;) tends to a constant as e; — 0, which is not zero except
for the trivial solution c(r, 1) = 0. This proves EQq.(3.60) with the desired properties by putting
= -V(r)and D; = D, ¢, + D} ¢, (i = 1,2). Note that since the right hand side of (3.59) is not
zeroat(S:O,D*1$0 D*$0as(5—>0
Whenry = vig = Vyo = 0, the derivatives dv;/dvyg, (i = 1, 2) with respect to the initial value
Vo satisfy theinitial value problem

e LM (00 1.5:0,0) = —87° —(T 0,£1,6:0;0), %(1 0,£1,06:0;0) =
T s o i (269
Z(T 0,£1,6;0;0) = 4¢° —(T 0,6,6:0.0), —2(1,0,¢,,5,0;0) = 0.
dTa OV

Thisis exactly solved as

%(T 0.61,6:0;0) = COS[ﬂ(T - 1)) (3.67)
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In particular,

8710(0’ 0,&1,6;0;0) = cos

5e 1

isnot zero except for a countable set of values of ;. Thisand the continuity of solutions of ODE
prove Eq.(3.61). ]

Let us proceed the proof of Prop.3.6. For v,(7) and vx(7) in (3.60), X1(7) and y,(7) are given
as(3.58). Since T = (£1(0)/p2)Y°> whent = T, we obtain

o, ( 4 \/é] (3.69)

x(T) = e(r2(0)(er(0)/p2)"°. p2.9)

" (#(20))3/5 D3 ((1(0)/2)"", 11(0), £4(0), 5 o, Vo) exp| 2O 5;2;;5 n0.9)
V(™) = @ara(0)(er(0)/p2)". p2.9)

. (ﬁo))% D3((1(0)/2)"", 11(0), £4(0), 5 o, Vo) excp| ~ - ff();; o)
Put

D; ((£1(0)/p2)"°, r1(0), £1(0), &; V10, V20) = Di(%1(0), y1(0), 1(0), £1(0), p2. 6)

fori =1,2. Since D} isC™ in vy, Vo, r1(0) and 5, D; isalso C* in x;1(0), y1(0), r1(0) and 6. Since
D; isC* int, D; isbounded and nonzero as ¢1(0) — 0. Finally, let us calculate

1

d*((£1(0)/p2)"'°, 11(0),6) = f (2¢1(8)r1(0)7° + 2r1(0)°r"hpe(r1(0), 7, 6))dr.

(e2(0)/p2)/®

Due to the mean value theorem, there exists anumber 7* > 0 such that

E 6/5 3 ° 8/5
(0P 12019) = 5610 [1_( ) }*hze(rl(O),r*,a)”f) [1‘( ) ]
P2 02

By the assumption (C5), an orbit of (3.51) near the center manifold W¢(5) approaches to W¢(6)
with the rate O(e*"!). By the assumption (C6), such an attraction region (basin) of W°(6) exists
uniformly in ¢ > O at least near the branch S7(6). Thus hys(r1(0), 7*, 6) is of order O(5) aswell as
c1(0) if po > Oissufficiently small. Therefore, there exists afunction d, which is C* with respect
tory(0) and 6, such that

d*((£1(0)/p2)"°, r1(0), 6) = d(r1(0), £1(0), p2. 6) - 6.
Sinceu*(z 0) # 0, d(r1(0), £1(0), p2, 0) # 0. Since D; and d* are C* in 1 = (e1/p2)"°, they admit

the expansions (3.48, 3.49). This proves (I) of Prop.3.6. Proposition 3.6 (I1) is clear from the
definition of ¢4, ¢, and (111) follows from Eq.(3.61). |
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3.5 Analysisin the K3 coordinates

We come to the system (3.21). This system has the fixed point (s, ', Zs, £3) = (- V2/3,0,0,0)
(seeFig.8). To analyzethe system, wedividetheright hand side of Eq.(3.21) by —hyg(X3, '3, Z3, €3, 6)
and change the time scale accordingly. Note that this does not change the phase portrait. At first,
note that the equality

! - § [1 + g (X3 + \/g) + h31(X3 + 2/3, 3,23, &3, (5) (369)

hi6(X3, I3, Z3, £3,6) 2

holds, where hy; ~ O,(2) isaC* function. Using Eq.(3.69) and introducing the new coordinate
by x3 + V2/3 = %3, we eventually obtain

Xg = —3% + \/gza — C1(0)r3 + h3(Xa, '3, Zs, £3, 9),
f3= }rs,
2 3 (3.70)
23 = —273 - \/;83 + &3h33(Xs, 23, €3, 0) + £3r3N34(K3, 13, 23, £3,9),
) 5
&3 = —583,

where hz; ~ Op(2) and hgs, hss ~ Op(1) are C* functions. Note that hss is independent of r.
This system has a fixed point at the origin, and eigenvalues of the Jacobian matrix at the origin
of the right hand side of Eq.(3.70) are given by —3,1/2, -2, -5/2. In particular, the eigenvector
associated with the positive eigenvalue 1/2 is given by (—2c,1(6)/7,1, 0, 0) and the origin has a
1-dimensional unstable manifold which is tangent to the eigenvector. The asymptotic expansion
(3.27) of the solution y of the first Painlevé equation is rewritten in the present coordinates as

(% 13,23, £3) = (O((z2 - )", 0, O((z - ©2)"), O((z2 ~ Q)°)), (3.71)

which convergesto theoriginas z, — Q (see Fig.11).
Let p; and p3 be the small constants introduced in Sec.3.1 and Sec.3.3, respectively. Define
Poincaré sections =" and 3" to be

0 = {(Ka, 13, 23, £3) | |Ka] < p1, 0 < I3 < pa, |Z3] < p1, €3 = pa), (3.72)
I = {(Rs, 13, Z3, £3) | [Ka| < p1, T3 = p1, |28] < p1, 0 < &3 < pa}, (3.73)

respectively (see Fig.11). Note that Zi3” isincluded in the section 23" (see Eq.(3.28)) if writtenin
the K, coordinates and £3" in the section X¢, (see Eq.(3.7)) if writtenin the (X, Y, Z) coordinates.

out

Proposition 3.7. (1) If p; and ps are sufficiently small, the transition map IT° : T — x*
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Fig. 11: Poincaré sections to define the transition map ITi*.

along the flow of Eq.(3.70) is well-defined and expressed as

Bi(p1. 0) + r3B2(%s, I3, Zs, p3, p1., 6)
)h('3 pl4
r o r -
HI30c Zz = (23 - \/6,03 + p3B3(Xs, Z3, p3, (5)) (10_3) + rg -logrs - Ba(Xs, 3, Z3, 03, 01,0) |,
1
P3 (r3 )5
P3| —
P1

(3.74)
where 8, and 83 are C* in their arguments, 8, and 3, are C* with respect to X3, z3, p3 and § with
the property that 8, and 84 are bounded asr; — O.

(I) Asrz — 0, I1(Xs, I3, z3, p3) converges to the intersection point (3(o1, 6), p1, 0,0) of T3
and the unstable manifold of the origin.

Before proving Prop.3.7, we need to derive the normal form of Eq.(3.70).
Lemma 3.8. Inthevicinity of the origin, there exists a C* coordinate transformation

)?3 X3 + lﬂl(X3, Z3, €3, 5)
I3 s

= ®(X3,I3,7Z3,€3,0) = 3.75
Z3 ( 3,13, £3,€3 ) Z3 + 83¢2(X3, Z3’ €3, 5) ( )
E3 “3



such that Eq.(3.70) is transformed into

Xg = —3X3 + \/gzs — C1(0)r3 + rahss(Xs, I3, Z3, &3, 0),
f3= }f3,
7 3 (3.76)
Zy = —2Z5 - \/;83 + &3r3h3s(Xs, I3, Z3, €3, 9),
: 5
&3 = —583,
where 2, hgs, hgg ~ Op(1) and y1 ~ Oy(2) are C* functions.
Proof of Lemma 3.8. When r; = 0, Eq.(3.70) iswritten as
X3 = —3%; + \/gzg + hgp(%s, 0, 3, €3, 6),
73 = 275 - \Egg, + e3hus(%e, 23, €3, ), (3.77)
.5
&3 = —583.

Since eigenvalues of the Jacobian matrix at the origin of the right hand side of the above are
—-3,-2,-5/2 and satisfy the non-resonance condition, there exists a C* transformation of the
form (23, Z3, 83) o (X3+W1(X3, Z3, &3, (5), Zg-HZz(Xg, Z3, &3, 5), 83) such that EQ(377) islinearized
(see Chow, Li and Wang [4]). They, isof theformy, = esyr», wherey, isaC™ function, because
if e3 =0, EQ.(3.77) gives zz = —2z; and it follows that Zz = z3 when g3 = 0. Thistransformation
brings Eq.(3.70) into Eq.(3.76). ]

Proof of Prop.3.7. Notethat even in the new coordinates (Xs, I's, Zs, £3), the sections Zg‘ and Zg“‘
areincluded in the hyperplanes {e3 = p3} and {r3 = p;}, respectively.

Let us calculate the transition time T from =" to 3. Since ra(t) = r3(0)e”2 and &3(t) =
£3(0)e™>/2 from Eq.(3.76), T isgiven by

2
_ P1
T= Iog(r3(0)) . (3.78)

By integrating the third equation of Eq.(3.76), Zs(t) is calculated as
t
Zs(t) = Z5(0)e 2 + Veps(e 2 - e?) + 2 f p3r3(0)has(X3(9), 6)ds, (3.79)
0

where X3(s) = (X3(9), r3(9), Z3(S), £3(9)). Owing to the mean value theorem, thereexists0 < 7 =
7(t) < t such that Eq.(3.79) isrewritten as

Z3(t) = (Z5(0) — Vepz)e® + VBpse ™2 + psra(0)e ?hgs(Xa(7), S)t. (3.80)
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This and Eq.(3.78) are put together to yield

5
Z4(T) = (Z(0) - ‘/6,03)( j’fo)) + VEp (3(0)) “p 3[()0) s (Xa(r(T). )T, (381)

1

Next, let us estimate X3(T). Since (X3, rz)-plane is invariant, the unstable manifold of the
originisincluded in this plane and given as a graph of the C* function

Xa = 0(15,0) = ~2Ci(6)rs + (). (3.82)

To measure the distance between X3(t) and the unstable manifold, put X; = ¢(rs, ) + u. Then,
the first equation of (3.76) isrewritten as

U= (=3 + hgz(u, s, Zs, 3, 6))U + Zzhsg(U, I's, Z, €3, 6) + £3hzo(U, I3, Z3, £3,6),

where hg; ~ Op(1) and hgg, hgg are C™ functions. Thisisintegrated as
t
u(t) = e E(t) (U(O) + f e*E(9)*(Za(9)hzs(U(9), 6) + £3(9)hze(u(9), 6))ds|, (3.83)
0

where u(s) = (u(s), rs(s), Zs(9), e3(s)) and E(t) = exp[ foth37(u(s),5)ds]. Substituting Eq.(3.80)
and e3(t) = pze? and estimating with the aid of the mean value theorem, one can verify that
u(T) isof theform

u(T) = r3(0)*huo(X5(0), r3(0), Z5(0). ps. p1. 6). (3.84)

where hyg is bounded as r3(0) — 0 (the factor Z;(s) in Eq.(3.83) yields the factor r3(0)*, and
other terms are of O(r3(0)° logrs(0)). Since the transition time T isnot C™ in p;, and r3(0), hag is
C= only in X3(0), Z3(0), p3 and 6. Thus the transition map 1 from X' to =3 along the flow of
Eq.(3.76) is given by

¢(pl’ 5) + r§h40(x3a r3’ Z3’ P35 P01, 5)
X3 4 P1
~ioc] T r r
Hlaoc = (Zs- ‘/6/33) (—3) + ‘/6/03 (—3) - 2p3 i |Og( ) h41(Xs, I3, Z3, p3, 01, 6) |,
Z3 P1 P1 1 P1
P3 (r3)
P3 o

(3.85)
where hg(Xs, 3, Zs, 03, 01,0) = has(X3(r(T)), ) is bounded as r; — 0 because X3(7(T)) is
bounded. Since the transition time T is not C* in p; and r3(0), hy is C* in X3(0), Z3(0), p3
and 6. Now Eq.(3.74) is verified by calculating @ o [T o @1, Note that 3 in Eq.(3.74) isinde-
pendent of r; and p; because it comes from the inverse of the transformation (3.75), which is of
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the form

X3 + B5(Xs, 23, p3, 5)
rs
Z3 + p3B3(Xs, Zs, p3, 0)
P3

D (%a, I3, 23, p3) =

with C* functions 83 and Bs. The unstable manifold B1(o1,0) in (Xs,r3, Zs, £€3) coordinate is
obtained from that in (Xs, r3, Zs, €3) coordinate as 31(01, 6) = ¢(01,6) + ¥1(¢p(o1,9),0,0,6). This
proves Prop.3.7 (1). To prove (I1) of Prop.3.7, note that the hyperplane {r; = 0} isinvariant and
included in the stable manifold of the origin. Since a point (X3, 3, Z3, p3) converges to the stable
manifold asr; — 0, H'3°°(>~(3, rs, Z3, p3) converges to the unstable manifold asr; — 0 on account
of the A-lemma. This proves Prop.3.7 (l1). |

3.6 Proof of Theorem 3.2

We are now in a position to prove Theorem 3.2. Let 7y : (X, 1,2 &) — (X — V2/3,1,Z ¢) be the
trandation in the x direction introduced in Sec.3.5. EQ.(3.8) is obtained by writing out the map

IT = 7 0 1% 0 751 0 ka3 0 TTI 0 k15 o T and blowing it down to the (X, Y, Z) coordinates. At
first, IT® o k4, o IT\ is calculated as
X1 1+ Xy ,0;3/5901 + P£3/5X1
yi || @2+ Yy | ke | 0,7 %02 + 0,7V
> 1/5 -1/5 —> —4/5
L1 P1E€1 Po Po
&1 P2 plsi/s
-3/5 -3/5 -2/5 -2/5 1/5
Px + Hi(p, / Y1+ 0, / X1 = Ux, P, / Y2+ Py / Y1 - Qy,Pz,plb‘l/ ,P3,0)
e, e

3
P2+ Ha(o, %01 + p, X1 — CIx,PEZ/f/sgz +0,7°Y1 = Gy, p2. p187°, p3. ) |
p181

(3.86)

where o1 = 1(016y°0,"7°, 02, 6), @2 = @2(p16Y 05", p2, 6), and Xy, Yy are defined by Eq.(3.47).
In what follows, we omit the arguments of H; and H,. The last term in the above is further
mapped to

p5p, . é)gl/jsHl V273 +p2 f/rgx JSpg/ °H, %3
N 4//[&)31103 841/5 Ii 4,/051;03 i1/5 = ': : (3.87)

P3Pz +p3 Ho P3 Pz+p5 Hy =

P3 P3 ps
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L et us denote the resultant as (Xs, r3, Z3, p3) as above. Then, I provesto be given by

loc

—V2/3+ (o1, 0) + 13B2(%s, '3, Z3, p3, p1. 0)
X1 p]‘-1
~ y o r -
HF;JC p]J-. = (23 - \/6p3 + p3ﬁ3(x3a Z3’p3> 5)) (lo_i) + rg : Iog r3 ‘B4(X3, r3, Z3ap3’ P1, 6)
P3| —
P1
~2/3 + Bi(p1, 6) + pip5" % Ba(%a, p105 €1, 2, p3, 1, 5)
P1 o5
= i ¢ (3.89)
(za — V6ps + p3Ba(%a. 23, p3. 6)) (p—l) + O(e1loge1)
3
&1

By using the definition of p, in (3.29), the third component of the above is calculated as

4/5
N &
(zz — V6ps + p33(%a. Z3, p3. 6)) (p_;) + O(e1l0g &)

= (Q + O(p3) + Hao(X, Y, p2, p16/°, p3, 6) + pi/ *Ba(%a, 23, 3, 5)) gy° + O(e1log ey), (3.89)

where A A
X = p£3/5 o1 + p53/5X1 g V= pgz/s 03 + p;2/5Y1 —q.
From Egs.(3.32) and (3.41), Eq.(3.89) isrewritten as
(Q + O(p3) + Ha(X, ¥, p2) + O(03"°) + p3*Ba(%a. 23, p3, 5)) &7° + O(e1log ey). (3.90)
Since ﬁﬁ)c(xl, Y1, p1, €1) isindependent of p3, which isintroduced to define the intermediate sec-
tions 3" and X7, all termsincluding ps are canceled out and Eq.(3.90) has to be of the form

(Q+ Ha(X, Y. 02)) 67° + O(e1 log 1) (3.91)

Now we look into X and Y. Since ¢1(ry, 1,6) and ¢o(ry, £1,6) give the graph of the center
manifold W¢(5) and since the orbit y of the first Painlevé equation is attached on the edge of
WE(6), X1 = ¢1(0, £1,6) and y; = ¢,(0, £1, 6) coincide with y written in the K; coordinates. Thus
we obtain

X = p£3/5901(P181/5P§1/5,Pz, 0) + P£3/5X1 — Ox
- (p£3/5901(09 P2 6) - qx) + pES/le + p£3/5o((81/p2)1/5)
= Py X+ py PO((e1/p2) )

3/5
= Pgs/le(&) eXp[—%]+P£3/50((81/,02)1/5)
&1 &1
DB a9 4 %50 15 3.92
= Dug;”*ep[——| + 0,7 0(e1/p2) ") (3.92)
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The? is calculated in the same manner. Functions D,, D, and d are expanded as Eqs.(3.48, 3.49),
and H, is expanded as (3.42). Since Eq.(3.91) should be independent of p,, which is introduced
to define the intermediate sections £ and I, Eq.(3.91) is rewritten as

(Q T FAy(x, y)) 45 4 O(ey l0g ey). (3.93)

where

, Y = Da(Xa, Y1, o1, 81,5)812/

> - d(o1, 6)
X = D1(X1, Y1, 01, €1, 5)813/5 exp[_M]

&1

o] d(p;, 5)5]_

1

(3.94)
Similarly, since the first component of EQ.(3.88) is independent of p, and p3, we find that it is
expressed as

~2/3+ Balp1, 8) + G(X, Y, p1,6)e}® + O(er log 1) (3.95)

with some C> function G.

Our final task is to blow down Eq.(3.88) with Egs.(3.93, 3 95) to the (X, Y, Z) coordinates to
obtain Eq.(3.8). By the transformation (3.13), apoint (X, Y, p1, &) in (X, Y, Z, &)-space is mapped
to the point (Xp33, Yp12 p1, £07°) in Kq-space. Further, it is mapped by the transition map H+ to

~ V273 + B1(p1,6) + G(X, Y, p1, 6)e*5p7* + O(e log )
P1
(Q T Fy(X, y))s“/sp; + O(elog ) ’
gp1°
in Ks-space, in which

d(py, 6)6
X = 5,065 i i et 02

&p1°
d(p1,0)6 |
8p15

Y = Da(Xp1®, Ypi2. p1. 6p1°. 6)e %/ exp| -

Finally, it is blown down by (3.15) as

—V2/303 + B1(p1, )03 +1011G(X Y.p1.0)]° + O(e1 log 1)
pl
(Q + Ba(X, y)) 45 1 O(s, log &)

&

By changing the definitions of D1, D, and d appropriately, we obtain Theorem 3.2 (1) with
= /2/303 + Ba(p1. 6)p3. Gz = p1'G, H = H,.
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Theorem 3.2 (11) follows from the fact that the unstable manifold described in Prop.3.7 (11)
coincides with the heteroclinic orbit o*(6) if written in the (X, Y, Z) coordinates. Theorem 3.2
(1) follows from Lemma 3.4, and (1V) follows from EQ.(3.50) because &; in EQ.(3.50) is now
replaced by ep;°. This complete the proof of Theorem 3.2 |

4 Global analysis and the proof of main theorems

In this section, we construct a global Poincaré map by combining a succession of transition maps
(see Fig.5) and prove Theorems 1,2 and 3.

4.1 Global coordinate

Let us introduce a global coordinate to calculate the global Poincaré map. In what follows, we
suppose without loss of generality that the branch S* and S— of the critical manifold are convex
downward and upward, respectively, as is shown in Fig.1. Recal that (X,Y,Z) coordinate is
defined near the fold point L* and that the sections £ and X, are defined in Eq.(3.7). We define
a global coordinate transformation (x,y,2) — (X, Y, Z) satisfying following: We suppose that
in the (X,Y, Z) coordinate, L*(6) = (0,0,0), L=(6) = (0, Yo, 20) Withyy > 0,7y > 0, and that Y
coordinates of S; are larger than those of S} just as shown in Fig.12. Let z; > z, be a number
and put z, = p? + e /<", Define the new section

S =(Z=pf+ eV, (4.1)

which lies dlightly above % . Change the coordinates so that the segment of S7 in the region
Z < Z < zpisexpressed as
{x = 07 Y = -1, V) < Z < Zl}’ (42)

where np is a sufficiently small positive constant (if p; is sufficiently small). We can define such
a coordinate without changing the local coordinate near L* and the expression of II;7 . given in
Eq.(3.8) by using a partition of unity. We can change the coordinates near S; U {L~} in asimilar

manner without changing the coordinate expression near S} U {L*}. Let

Y = (X, Y, Z &,6), (4.3)

X = f1(X, Y, Z &,0),
Z=eg(X,Y,Z ¢,0),

be the system (1.8) written in the resultant coordinate, where the definitions of f;, f, and g are
accordingly changed.



+ 4
)y ——i
L Z
Zin
Y
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Fig. 12: Coordinate for calculating the global Poincaré map, and a slow manifold M, corre-
sponding to the segment S} (2, z1) = {(X,Y,Z) € S|z < Z < 7} of the critical manifold.

4.2 Flow near the slow manifold

Put Si(z,z) = {(X,Y,Z) € S} |z < Z < z}. Then, S}(z, ;) isacompact attracting normally
hyperbolic invariant manifold of the unperturbed system of (4.3), see Fig.12. In this subsection,
we construct an approximate flow around the slow manifold M, corresponding to Si(z,z).
If the parameter ¢ is a constant, the existence of the slow manifold immediately follows from
Fenichel’s theorem:

Theorem (Fenichel [8]).

Let N be a C" manifold (r > 1), and X"(N) the set of C" vector fields on N with the C?
topology. Let F be a C" vector field on N and suppose that M c N is a compact normally
hyperbolic F-invariant manifold. Then, there exists a neighborhood ¢/ < X"(N) of the origin
such that if £ isasmall positive number so that £G € U for agiven vector field G € X'(N), then
the vector field F + G hasalocally invariant manifold M, within an e-neighborhood of M. Itis
diffeomorphic to M and has the same stability as that of M.

Further, Fenichel [9, 10] proved that M, admits a fibration: there exists a family of smooth
manifolds {F(p)}pem, such that
(i) if p# p', then F.(p) N Fo(p) = 0.

(i) Fo(p) N M, = {p}.
(iii) the family {F.(p)} is invariant in the sense that ¢(7.(p)) < F.(oi(p)), where ¢; is a flow
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generated by F + G € X'(N).
(iv) there exist C > 0,4 > 0 such that for g € F.(p), ll¢(p) — ¢:(9)|| < Ce™, where we suppose
for smplicity that M (and thus M,) is attracting.

See also Wiggins [35] for Fenichel theory. These theorems are applied to fast-slow systems by
Fenichel [11] to obtain a slow manifold M, and a flow around M,. Roughly speaking, these
theorems state that for a fast-slow system, there is a locally invariant manifold M, called the
slow manifold, within an e-neighborhood of the critical manifold M if ¢ > Oissufficiently small.
A flow near M, is given as the sum of the slow motion (dynamics on M,) and the fast motion.
If M, is attracting, the fast motion decays exponentially to zero and eventually a flow is well
approximated by the dynamicson M,.

Applying these results to our fast-slow system (4.3), when ¢ is independent of &, we obtain
an attracting slow manifold M, and we can construct an approximate flow around M,. However,
if 6 depends on &, Fenichel theory is no longer applicable in general even if £ << §. To seetthis,
let us recall how the existence of M, is proved.

For simplicity of exposition, suppose that vector fields are defined on R™ x R". We denote
a point on this space as (x,2) € R™ x R". Suppose that a given unperturbed vector field F has
an attracting compact normally hyperbolic invariant manifold M on the subspace {x = 0}. We
denote aflow ¢, generated by the perturbed vector field F + £G by

#(x 2 €) = (4 (% 2 ), 67(x 2. €))
From the assumption of normal hyperbolicity, we can show that there exists a positive constant
T such that AL 2
b1 T -1 1
|Zrezof|ZF0z0 <3 for©em. (4.4)

because d¢;/9x decays faster than d¢?/0z. Since M c {x = 0} is F-invariant, we have

i

1 —
¢T (Oa Z? O) - 07 az

(0,20) =0, for (0,2 € M. (4.5)

Since the flow is continuous with respect to x, z and &, for given small positive numbers n; and
172, there exist &g > 0 and an open set V > M such that the inequalities

1 2
ez e ze) < 5. (4.6
gt (%, Z )l < 1, (4.7)
9% e 2.6) |< 7o (4.8)

0z’ ’

holdfor 0 < € < ggand (x,2) € V. Let S bethe set of Lipschitz functionsfrom M into the x-space
with asuitable norm. Let S¢ be the subset of S consisting of functions h such that (h(2),2) € V
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and their Lipschitz constants are smaller than some constant C > 0. We now define the map
G : S¢ — Sthrough

(Gh)(¢7(h(2. 2 ¢)) = ¢7(N(2), 2 2).

By using inequalities (4.6, 4.7, 4.8) (and several inequalities which trivially follow from com-
pactness of M), we can show that G is a contraction map from Sc into Sc. See Lemma 3.2.9
of Wiggins [35], in which all inequalities for proving Fenichel’s theorem are collected. Thus G
has a fixed point h, satisfying h.(¢2(h.(2),z €)) = ¢3(h.(2),z €). This proves that the graph of
X = h,(2), which defines M, is invariant under the flow ¢;(-, -, ). The existence of afibration
{F=(P)}pem, Can be proved in asimilar manner.

If the unperturbed vector field F = F; smoothly depends on 6 and if 6 depends on &, the
above discussion is not valid even if ¢ << 6. The inequality (4.4) for Fs does not imply the
inequality (4.6) for F; + £G in general. For example, consider the linear system X = AgX + 6A;X

with matrices
01 -1 0
n=(0 o) m=(0 5

Supposethat § = +/e. Eigenvaluesof Aq+6A; aregiven by —¢ (doubleroot), so that the derivative
of the flow at the origin is exponentially small for t > 0. Next, add the perturbation eA;x to this

system, where
00
- (29)

Although €A, is quite smaller than Ay + 6A; if € is sufficiently small, the eigenvalues of Aq +
oA + eA, are 6 and —36, so that the derivative of the flow of the perturbed system diverges as
t — co. Thisshows that Eq.(4.4) does not imply Eq.(4.6) in general if 6 depends on ¢. Further,
the open set V above aso depends on ¢ through 6 and it may shrink as e — 0. For this linear
system, it is easy to see that such a stability change does not occur if Aq has no Jordan block. For
our fast-slow system, the assumption (C5) alows us to prove that such a stability change does
not occur.

Lemma4.l. Let A(6, 2) and B(e, 6, 2) be 2x 2 matrices which are C* in their arguments. Suppose
that eigenvalues of A6, 2) are given by —6u(z 6) = V—1w(z, 6) with the conditions u(z, 6) > 0 and
w(z 6) # 0for § > 0. Further supposethat 6 dependsone ase ~ 0(6) (thatis, e << § ase — 0).
Then, eigenvalues of A(6, 2) + ¢B(e, 6, z) are given by

—5u(z,6) + V=1w(z,6) + O(¢) (4.9)

ase — 0.

Proof. Straightforward calculation. |



Now we return to our fast-slow system (4.3). Put X = (X,Y), f = (f, f2) and rewrite Eq.(4.3)
as
X =f(X,Z0), Z=eg(X,Ze,0). (4.10)

The flow generated by this system is denoted as
$(X,Z &,6) = (¢1(X, Z &,6), 67(X, Z, £, ). (4.11)

Recall that S}(z,z) isexpressedas X = 0,Y = —n; that is, f(0,-1,2Z,0,6) =0forz, < Z < z.
When & = 0, ¢?(X,Z,0,6) = Z, which proves that [|(0¢*(X,Z, 0,6)/0Z)7Y| = 1. Next, the
derivative of ¢! satisfies the variational equation

d dgq gy

OIt(,)X(X,Z,O,(S) (¢t(XZO<S)206) (XZO(S)
On S}(z, z;), thisis reduced to the autonomous system

d dgq

Giax O Z20.9) = —(0 77,205) (0 -1,Z,0,9).

The assumption (C5) implies that the eigenvalues of the matrix 2—:((0, -1n,Z,0,6) are given by
—6u*(z,6) + V=1w*(z 6). Thus

6¢t 5 (0.-1.2,0.5) ~ O™

on S} (z, z;). This provesthe inequality

H (o mZOé)HH (o “1,2,0,8) H (4.12)

1
4
for somelarge T > 0. In general, this does not imply Eq.(4.6) as was explained. However, in our
situation, by applying Lemma4.1 to

of
A0, 2) = 6_X(0’ -n,2Z,0,0),

. . . of
it turns out that eigenvalues of the matrix 8—(0, -n,Z ¢&,06) are of the form (4.9) for smal ¢ >

0. Therefore, 09t (O -1n,Z,&,6) adso decays with the rate O(e™') on S}(z,z). Further, the

assumption (C6) proveﬁ that there exists a neighborhood V* of S;(z, z;), which is independent
of ¢, such that real parts of eigenvalues of df /0X are also of order O(-6) on V*. Thisyields
the inequality (4.6) on V*. Inequalities (4.7) and (4.8) are easily obtained. In this manner, all
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inequalities for proving Fenichel’s theorem are obtained, and the existence of the slow manifold
M, and afibration on M, for our system are proved in the standard way aslong as ¢ << ¢ (To
prove Theorem 3, we will suppose that § ~ O(e(-log€)*?) >> &). Note that the existence of
a neighborhood V* of the critica manifold, on which eigenvalues of df /0X have negative real
parts, are also assumed in the classical approach for singular perturbed problems to estimate the
dynamics of fast motion, see O’ Malley [27] and Smith [31].

Remark. Another way to construct an approximate flow near S; isto use the blow-up method
near cylinders by adding the equation § = 0, which may allow one to obtain approximate solu-
tions even for 6 ~ O(g). In this paper, we adopt Fenichel’s argument by noting the assumption
& << 6 because the extension of Fenichel’s theorem itself is important.

We have seen that a solution of (4.10) on V* iswritten as the sum of the slow motion on the
slow manifold and the fast motion which decays exponentially. To calculatethem, it isconvenient
to introduce the slow time scale by t = &t, which provides

Sd—x = f(x, Z, &g, 6), d_Z = g(xa Z7 &, 5)' (413)
dr dr

A solution of this system is given by
X(r, &,06) = Xs(1,8,0) + X (1, &,0),
Z(t,&,0) = zs(1, &,0) + z:(1, £,0),
where Xs, Zs describe the slow motion and X;, z; describe the fast motion. They are C* in ¢

(see Fenichel [11]) and their expansions with respect to ¢ are obtained step by step according to
O’'Malley [27] asfollows. We expand them as

(o) (o8]

X(r,2,0) = > &xV(z,6),  xi(r,8,6)= > &xP(z,0),
k=0 k=0

(4.14)

(o) (o)

Zs(1,&,6) = Z 8kZ($k) (1,90), zi(r,&,0) = Z skz(fk) (7,9),

k=0 k=0
with theinitial condition

X(0,5,8) = X(6) + O(&),  Z(0, &,06) = 25(6) + O(e),
inVv+. At first, X9 and 29 are determined to satisfy the system (4.13) for £ = 0. Thus x¥ is
given by x© = (0, -n) and 22 is given as the solution of the equation

0
% = g(oa _77’ 2(30)7 07 6) (415)
dr
with theinitial condition Z2(0, 5) = z(6). This system is called the slow system. Next, from the
system (4.10) for & = 0, we obtain 2 = 0, and x!” is governed by the system

dx  dx dx©

R AR

& (r,6) = T((0,-n) + x?,29(x),0,6) (4.16)

45



with theinitial condition
x2(0, 6) = xo(8) = x(0,0,8) = Xo(8) — (0, —). (4.17)

Fenichel’s theorem (Part (iv) above) shows that if x”(0, 6) € V*, then x{ decays exponentially
ast — oo. Inthe classical approach [27], the existence of V* is used to estimate Eq.(4.16)
directly to prove that x(fo) decays exponentially, see also Smith [31]. To investigate behavior of a
solution ase — 0, we rewrite Eq.(4.16) as

dx®¥ 1o

1
=2 (0 .79 ©, = ©)
il ax(o’ n,29(7),0,6)x! +6Q1(xf ,0), (4.18)

where Q; ~ O((x!?)?) isaC* function.

Lemma4.2. A solution of the system (4.18) is given by
[Kl(‘l’, £) cos| 2W(1)| + Ko(r, £) Sin| 2W(7) | Ka(r, &) cog| 2W(7) | + Ka(r, &) sin[ 2W(7) |
Ks(r. £) cog| 2W(7) | + Ke(r, 8) SiN| 2W(7)| Ky (7. &) cog| 2W(7) | + Ke(, &) sin| 2W(7) |

oxp[-2 [ 1729, )| X0(0.) + u(r, 2.5 X2(0.)) (4.19)
€ Jo

where W(r) = [[o*(Z)(s),6)ds, K (i = 1,---,8) are C* functions, and u ~ O(x{’(0,6)?)
denotes higher order terms with respect to the initial value.

Proof. We use the WKB analysis. Put X' = (v1, v,) and

f T T
g—x(o, 0, 729(2),0,6) = (28 38 ) (4.20)

Let us consider the linearized system

d(w)_9f o o vi) _(a(r) b())(va

dT(VZ)—ax(O’ Uk (T)’O"”(vz)‘(c(r) d() )\ v ) (21
Then, vy(7) provesto satisfy the equation

/

gV — (s(a+ d) + 82%)\/1 + (ad - bc+ s(as

- a’)) v, = 0. (4.22)

We construct aformal solution of the form

SR

i s”Sn(T)].

n=0

vi(r) = exp|
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Substituting it into Eq.(4.22), we obtain an equation of Sy
(Sp)? — (a+d)S; + (ad — bc) = 0.
Thisis solved as
So(0) = [ 4.(9ds [ 4(9ds
where

2.(7) = —ou(Z2(1),6) + V-10*(Z2(x), )

are eigenvalues of the matrix (4.20). For each fOT/L(s)ds and fOT/l_(s)ds, S1,S,, -+ areuniquely
determined. Thus a general solution v;(7) isgiven by

vl(r):Clexp[:—gL fo T/l+(s)ds]K11(T,e)+C2eXp[:—8L fo T/l_(s)ds]Klz(T,g),

where C1,C, € C and K1, K1, are C® functions. In a similar manner, it turns out that v, is
expressed as

V2(T):Clexp[:—8L fo T/l+(s)ds]K21(T,e)+C2exp[:—8L fo T/l_(s)ds]Kzz(T,g).
Therefore, ageneral solution of the system (4.21) iswritten as
(vl) ) exp|2 [ A.(9ds|Ku(r.8) exp|? [FA_(9)ds|Kua(r. &) (Cl)
V2) | exp| [T2.(9dS|Ka(r.e) exp|d [ (9ds|Ka(r, ) J\C2)
The fundamental matrix of (4.21) is given by
exp|2 [ (9ds|Kn(r. &) exp|t [[1()ds|Kia(r. &) (Kﬂ(o,g) Klz(O,s))_l
exp|2 [ (9ds|Ka(r. &) exp|t [ (9ds|Ka(r.8) || Kar(0,8) Kze(0. ) '

This shows that each component of the fundamental matrix is alinear combination of

oxp| 6fofw(é")(s),a)dS]COS[i:LW(T)] and  exp| 6fOT““Z(SO)(S)"S)dS]S"”EW(T)]'

e e
Finally, the variation-of-constants formula is applied to the nonlinear system (4.18) to prove
Lemma4.2. ]
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With this x{?, the zeroth order approximate solution is constructed as

. (x(fO)(T gz;)r O(e) ) (4.23)

O(e)
-1+ O(e)
2)(r,6) + O(e),

as long as the orbit isin V*. The first term in the right hand side denotes the position on M,
and the second term denotes the deviation from M. It is known that al terms x%, 2 in the

expansions of the fast motion decay exponentially aswell as x{ ([11, 27, 31)).
Combining this approximate solution near the slow manifold with the transition map near the
fold point, Theorem 1 is easily proved.

X(r, &,9)
Z(t,&,0)

Proof of Theorem 1. To prove Theorem 1, 6 isassumed to be fixed. For the system (2.1), take an
initial value in V*. Then, a solution is given by (4.23) with (4.19). These expressions show that
whent > 0, the solution lies sufficiently close to the critical manifold S} if ¢ is sufficiently small.
Because of the assumption (A3), zs decreases (where we suppose that S* is convex downward)
with the velocity of order & (with respect to the original time scale t). Thus the solution reaches
the section X after some time, which is of order O(1/¢). The intersection point is mapped into
X2+ by thetransition map IT . givenin Thm.3.2, and it proves that after passing through X? , the

loc
distance between the solution and the orbit a* is of order O(s*/°). n

4.3 Global Poincarémap
In Sec.3, the transition map IT* _ around the fold point L*(6) had been constructed. The transition

map around the fold point L‘(g))C isobtained in the sameway. The sectionsX; and X, are defined
inasimilar way to X7 and X , (see Fig.5), respectively, and the transition map I, . from an open
setinX; into X, along theflow of (4.3) provesto take the same form asII;, , although functions
G, G, and higher order terms denoted as O(e log ) may be different from one another (note that
Q and H are common for IT;; . and IT;__ because they arise from the first Painlevé equation).

Since the unperturbed system has a heteroclinic orbit &~ connecting L=(6) with a point on
S7(6) and since S7(6) has an attraction basin V* which is independent of ¢, there is an open set
Uouw € Zou» Which isindependent of 6 and &, such that orbits of (4.3) starting from U, go into
V* and are eventually approximated by Eq.(4.23). Let 7, be the Z coordinate of L™(6). Define
the section X, to be

==V (X YD) Y = -, [Z- 2] < pal, (4.24)

where p4 is a small positive number so that a solution of (4.3) starting from Ug, intersects X
only once (see Fig.13).

The global Poincaré map is constructed as follows: Let IT}, ., I1,, ITj;,, be transition maps
fromUg, c Zo, into X}, X into X, X into X | respectively. Then, the transition map IT* from
Ug, INto XF; is given by

IT" = g o I o I07 o I,

I1,out*
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A

>

Fig. 13: The sections X, Z}; and an orbit of Eq.(4.3).

Thetransition map IT- fromanopensetin X, into X iscalculated in asimilar manner and it has
the same form as I1*. The global Poincaré map is given by IT* o IT~. However, it is sufficient to
investigate one of them by identifying X%, and X,.. If IT* : U, — Z¢; iSacontraction map, so
iISIT* oIl7, and if IT* hasahorseshoe, soisII* oI1~ because IT" and I1~ have the same properties.
To |dent|fy two sections X, and X ;, recall that L~ = (0, o, Zo) in the (X, Y, Z)-coordinate, and
deflne Zom to be {Y = yo — p3}. Let Uy, be an open set in I, such that the transition map

: Uy — X, iswell-defined. The set U, includes the point X, N a~. We identify Ug,

I |,out out

with an open set U s INZE, by thetrandation

X X
T 1| p? Yo—p? |. (4.25)
Z Z+ 7
Then, the transition map HII ot fromUg, c X8 into X isobtained by combining the translation

and IT, .- Since the velocity inthe Z direction is of order ¢, it is expressed as
) X X P*(X,Z ¢,06)
1_[IJrI Lout pi II out © T pl -n ’ (4-26)
z z Z+ 25+ O(e)
where P* isaC> function. Since T+, ot 1ISC™, we expand it as
X p(6) + O(X, Z, &)
HII out I -n ) (4.27)
Z Z+ 275+ O(e)
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To prove Theorem 3, we will use the fact that there exists a positive constant pp > 0 such that
Ip(6)] > po for 0 < & < &p, which is proved as follows. Since ¢ controls the strength of the
stability of S7, if ¢ is sufficiently small, orbits which converge to (0, -7, 7)) (the intersection
of the heteroclinic orbit @~ and S}) rotate around this point so many times. In particular, they
intersect with X, before reaching (0, -7, z). If p(6) were zero, the right hand side above tends
to (0, —n, z) as X, Z, & — 0, which yields a contradiction.

Next thing to do is to combine the above ﬁ|+|,0ut with IT} . By Eq.(4.23), the transition map
[0}, from X, into X" is given by

X O(e)
I, _77] =|-n+0() |+ (X('CO)(T(X’ = 866)’ 0)+O) , (4.28)
Z Z>

where X% = x9(z, 6) is given by (4.19) with the initia condition xX2(0,6) = (X,0), z = p? +
e ¢ isthe Z coordinate of the section X as defined before, and T = 7(X, Z, ¢, 6) isatransition
time (with respect to the slow time scale) from a point (X, -»,Z) to . This transition time
7 is determined as follows: Let Z2(z,§) be a solution of Eq.(4.15) with the initial condition
79(0,6) = Z. Then, Eq.(4.23) impliesthat T = (X, Z, &, ) is given as aroot of the equation

= z<3°>(r, 0) + O(e).

Let T be aroot of the equation z, = z(so)(r, 0). By virtue of the implicit function theorem, 7 is
written ast = 7 + O(e). Since EQ.(4.15) isindependent of X and ¢, sois7. Thuswe obtain

(X, Z, &,0) = 7(Z,6) + O(¢). (4.29)

Further, 7 is bounded as 6 — 0 because g # 0 on S} uniformly in 0 < 6 < do. Therefore, T},
proves to be of the form

X O(e)
1_I|+,|| —77] =| -n+ O(e)
Z Z>

X (Ka(7, &) cos 2W(F)| + Ka(. &) sin2W(@) ) exp[ -2 [ (@Z(9). 6)ds|(L + Oe. X))

| X (Ks(#, £) cos| LW(F) | + Ke(%, &) sin| 2W(#) |) exp| -2 gm(zgo)(s),@ds](u O(e, X)) |-
0
(4.30)

Thefirst line denotes the intersection point M, N X and thus it is independent of X and Z. The
second line denotes the deviation from the intersection. Note that the transition map IT! | from

in,l
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=} into =, is O(e™**)-close to the identity map. ThusIT!,, o IT;,, o IT}, ., o 7 is calculated as

in, I1,out

X O(e)
Hitl,l ° 1_I|+,|| ° H|+I,out oF Pi =| -n+O(e)
Z o7

p(6) (Ku(7, &) cos| 2W() | + Ka(, 8) sin[2W(7)|) exp| -2 fjm(z‘s")(s), 8)ds|(1+ O(e. X, 2))
+ | p(6) (Ks(7. ) cod 2W(D)] + Ko7, &) sin[2W(7)]) exp[ -2 [ (Z(9). 6)ds|(1 + Oe. X, 2)) |

0
(4.31)

where 7 = #(Z + 2, 6) and 22(z) is a solution of (4.15) satisfying the initial condition Z°(0) =
Z + z,. Finally, the transition map

+ Tt + + +
I1 olljn, oIy} oIl g 0 T

— Hoc

from U, into £, is obtained by combining the above map with IT}

out loc*

At this stage, we can prove Theorem 2.
Proof of Theorem 2. To prove Theorem 2, it is sufficient to show that the map IT* has a hyper-
bolically stable fixed point. Then, the global Poincaré map (without identifying =, and X)) has
the same property because I1~ takes the same form as IT*. Indeed, if ¢ is sufficiently small for
fixed 6, Them.3.2 and Eq.(4.31) show that the image of the map I1* is exponentially small, and
thus IT* is a contraction map. Further, eigenvalues of the derivative of IT* is of order O(e /%),

which proves that IT* has a hyperbolically stable fixed point. ]

4.4 Derivative of the transition map

If 5 isfixed, it isobviousthat the transition map IT* is of order O(e"Y/?) ase — 0. However, when
6 issmall aswell as ¢, the action of IT" becomes more complex. In what follows, we suppose
that 6 dependson € and & ~ 0(9) (¢ << ¢) ase — 0. A straightforward cal cul ation shows that the
derivative of IT* is of the form

Y [Li(XZe,6)es LyX Z & 6)e>

Xz ( L3(X, Z &,0)eY® La(X, Z &,6)e 5) x

NN 5 (f
exp|-d.0)2] -3 [ 4 (@190 + Ls(X Z.e.0). (432)
where Lij(i = 1,---,4) are bounded as ¢ — 0, and Ls denotes higher order terms such that

Ls ~0(1) asX,Z, e — 0.
Eigenvalues of the derivative are given by

A1 = Las™ exp|-d(p, 5)2] : exp[—g fo Ty*(z(so)(s),é)ds](l +o(1)), (4.33)
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and

= eol-de.0)2] -el-S [ W@ @.0d@row). @3

If 6 isfixed, they are exponentialy small ase — 0, dthough if ¢ is small aswell as ¢, |1;] may
becomelarge. For example, if 6 = Ce(~log &)Y/? with apositive constant C, andif L4(X, Z, &, 6) #
0, |4] is of order & 4/5eC-109"* \which is larger than 1 if ¢ is sufficiently small. On the other
hand, |1,| isaways smaller than 1. The function L, is given by

OH 2 ae a5 & o5 dsjes OD o .
Li(X.Z.e.0) = —o(De Y5gWle B,e /% dﬁ/)-a—;-p(a)-ﬁw«)x

(—Kl(%, €) sin[i:LW(%)] + Ko(%, €) cos[%W(%)]) , (4.35)

in which arguments of Iﬁi = f)i(~, -, p1,&,0) are given by the first and second components of
Eq.(4.31). From Thm.3.2 (111) and (1V), we obtain dH/0X # 0, dD1/0X # 0. The value p(6) is
also not zero as was explained above. Recall that 7(Z + z, 6) is defined as atransition time aong
the flow of Eq.(4.15). Sinceg < 0 uniformly on S} and 0 < ¢ < o, T is monotonically increas-
ing with respect to Z. Further, W(7) is monotonically decreasing or monotonically increasing
because w* # O uniformly. This proves 0W(7)/0Z # 0. Therefore, L, = O if and only if

~K1(F(Z + 20,6), &) sin[%W(%(z +2,0))| + Ko(F(Z + 2,6). &) cos[%W(%(Z +2,6))|
= —Ky(7(20,96), &) sin[%W(%(Z +2,0))| + Ka(#(20, 6), &) cos[%W(%(Z +20,0))| + O(2)

is zero. If there exists Z such that the above value is zero, then it is zero for a countable set of
values of Z because of the periodicity. For these “bad” Z, 1, degenerates and |1;| may become
smaller than 1. Now we have the same situation as the proof of the existence of chaos in Sil-
nikov’s systems. In the proof of Silnikov’s chaos, an eigenvalue of atransition map degenerates
if and only if an expression k; sin(log(z/¢)) + ko, cos(log(z/€)) is zero, where k; and k, are some
constants, see Wiggins[34].

45 Proof of Theorem 3

Now we are in a position to prove Theorem 3. The proof is done in the same way as the proof
of Silnikov’s chaos. At first, we show that the transition map IT* has a topologica horseshoe:
We show that an image of arectangle under IT* becomes a ring-shaped area and it appropriately
intersects with the rectangle. Next, to prove that the horseshoe is hyperbalic, we investigate the
derivative of IT*. We can avoid “bad” Z, at which the derivative degenerates, because they are at
most countable.

Proof of Thm.3. Suppose that § = C1&(—loge)Y/? with some positive constant C,. Recall that
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there exists a slow manifold within an e neighborhood of S}. Sinceit is one dimension, the slow
manifold is a solution orbit of the system (4.10). By virtue of Thm.3.2, this orbit intersects with
Xiinear a*. Let Q € X, betheintersection point of this orbit and ¢ ;. Take arectangle Ron
X, including the point Q, whose boundaries are parallel to the X axis and the Z axis (see Fig.5).
Let hg = C,e be the height of R, where C, is a positive constant to be determined. The image of
Runder the map ﬁgut,” =I5, o7 isadeformed rectangle whose “height” is also of order O(¢)
sincedZ/dt ~ O(g).

Next thing to consider is the shape of 1T, | o ﬁgut,l /(R). Itiseasy to show by using Eq.(4.30)
that the image of ﬁ;uu /(R) under the map IT}, ; becomes a ring-shaped area whose radius is of

order e/¢. Since the “height” of ﬁgut’”(R) is of order &, the rotation angle of the ring-shaped
areais estimated as

1 1 7(Z+2p+0(g))
gW(%(z + 25+ O(e))) — EW(%(Z +29) = - f w"(Z9(s),6)ds~ O(1).  (4.36)

7(Z+20)

Thus we can choose C, so that the rotation angle of the ring-shaped area is sufficiently close to
21 asisshownin Fig.14.

N 7N 7N
| g

0(6—6/5) 0(81/56—6/5)

Fig. 14: Images of the rectangle R under a succession of transition maps.

Finally, we consider the shape of IT"(R) by using Thm.3.2. Since dH/0X(0,0) # 0, the
expansion of H is estimated as

H(X, Y) ~ X&e~¥° exp[-ds/&] (1 + O(Y?)). (4.37)

This and Eq.(3.8) show that the radius of IT*(R) is of order O(s°e%/¢). Since we put § =
Cie(~log €)?, theinequality
hg = Coe << O(c"/5%e7%/%) (4.38)

holds if ¢ is sufficiently small. Further, the ring IT*(R) surrounds the point Q because the image
of the rectangle R under the flow rotates around the slow manifold when passing between the
section X} and X, This means that two horizontal boundaries of R intersect with the ring IT*(R)
asisshownin Fig.6 (b). Itisobviousthat the vertical boundaries of R are mapped to theinner and
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outer boundaries of the ring, and the horizontal boundaries are mapped to the other boundaries
in radial direction. This proves that the map I1* creates a horseshoe and thus has an invariant
Cantor set.

To provethat thisinvariant set ishyperbolic, it issufficient to show that there exist two digjoint
rectangles H; and H, in R, whose horizontal boundaries are parallel to the X axis and vertical
boundaries are included in those of R, such that the inequalities

IDLIT;]| < 1, (4.39)
I(DAT3) 7| < 1, (4.40)
1~ |[(DJ13) 7Y - IDITS ]| > 2\/||DZH1|| - IDLIZ - 11(DITE) 212, (4.42)

1 — (IDLIIF]] + [I(DATZ) M) + IDLII I - 11(DA13) Ml > IDLIL3]] - 1D - I(DA15) 71, (4.42)

hold on H; U Hy, where IT] and I} denote the X and Z components of I1*, respectively, and Dy
and D, denote the derivatives with respect to X and Z, respectively. See Wiggins [34] for the
proof. We can take such H; and H, so that “bad” Z, at which Ly = 0, are not included. Then,
inequalities above immediately follows from Eq.(4.32): [ID,I1]]| and ||[D,IL3|| are sufficiently
small, and ||D.IT7|| and ||D IT}|| are sufficiently large as e — 0. This proves Theorem 3. |

5 Concluding remarks

Our assumption of Bogdanov-Takenstype fold pointsis not generic in the sense that the Jacobian
matrix has two zero eigenvalues. However, this assumption is not essential for existence of
periodic orbits or chaotic invariant sets.

At first, weremark that Theorems 2 and 3 hold even if we add asmall perturbation to Eq.(1.8),
since hyperbolic invariant sets remain to exist under small perturbations.

Second, we can consider the case that one of the connected components of critical manifolds
consists of stable nodes, stable focuses and a saddle-node type fold point (i.e. a saddle-node
bifurcation point of a unperturbed system), as in Fig.15. In this case, Theorem 2 is proved
in a similar way and Theorem 3 still holds if the length of the subset of the critica manifold
consisting of stable focusesis of order O(1). However, analysis of saddle-node type fold points
iswell performed in [20, 25, 12] and thus we do not deal with such a situation in this paper.

We can aso consider the case that one of the connected components S of critical manifolds
has no fold points but consists of saddles with heteroclinic orbits a*, see Fig.16. In this case,
analysis around the S is done by using the exchange lemma (see Jones [18]) and we can prove
theorems similar to Theorems 2 and 3. Such a situation arises in an extended prey-predator
system. In [23], a periodic orbit and chaos in an extended prey-predator system are numerically
investigated with the aid of the theory of the present paper.



saddles

stable nodes

stable focuses

Fig. 15: Critical manifold consisting of a saddle-node type fold point, stable nodes, and stable
focuses and an orbit near it.
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