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Abstract

When the natural frequencies are allocated symmetrically in the Kuramoto model there exists an invariant torus of
dimension [N/2] 4+ 1 (N is the population size). A global phase shift invariance allows to reduce the model to N — 1
dimensions using the phase differences, and doing so the invariant torus becomes [N/2]-dimensional. By means of
perturbative calculations based on the renormalization group technique, we show that this torus is asymptotically
stable at small coupling if N is odd. If N is even the torus can be stable or unstable depending on the natural
frequencies, and both possibilities persist in the small coupling limit.

Key words: Kuramoto model, Renormalization group method, Quasiperiodicity
PACS: 05.45.Xt, 02.30.Mv

1. Introduction

The Kuramoto model [1-3] has become the basic framework for the description of macroscopic synchro-
nization; a phenomenon observed in a variety of natural and artificial systems [4,5]. Kuramoto [1] considered
a population of all-to-all weakly coupled oscillators such that their interaction could be reduced to their
phases:

N

. £ i
Hj:wj—l—N;f(Gl—Gj), ]:1,27“'7]\7, (1)

where 0; and w; are, respectively, the phase and the natural frequency of the j-th oscillator, and ¢ is the
coupling strength. Kuramoto adopted a sinusoidal coupling function f(-) = sin(-) together with a symmetric
frequency distribution of the natural frequencies, what resulted very useful for the theoretical analysis of
the model.

Originally, it was useful and instructive to consider the thermodynamic limit of (1), N — oo. Finite-size
effects have remained unsolved for a long time and only recently significative advances have been achieved
[6-10]. Also some attention has been recently devoted to the small-N behavior of the Kuramoto model by
Maistrenko and coworkers from the point of view of dynamical systems theory [11-13].
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In this paper we study the Kuramoto model with a finite population, and with the natural frequencies
allocated symmetrically around the mean frequency. One of the reasons that motivates this problem is the
fact that most works on the Kuramoto model have assumed that the natural frequencies are distributed
according to a symmetric probability density, and as a consequence it is usual that numerical simulations
are carried out selecting frequencies not at random, but reflecting the inherent symmetry of the frequency
distribution. In particular, several works [11-14] have recently investigated phase diagrams of the Kuramoto
model with a finite population N under the assumption that the natural frequencies are allocated symmet-
rically. It has been shown that under these assumptions, finite N and symmetry of the natural frequencies,
model (1) exhibits a peculiar type of chaos dubbed ‘phase chaos’.

Of more importance for this work is the finding in [14] that the phase space contains an [N/2]-dimensional
invariant torus. This torus has been thought to be unstable (i.e. repelling) when ¢ — 0 [12-14]. This belief
is probably motivated by the difficulty of investigating numerically the phase diagram for small € due to the
extremely weak (in)stability of invariant sets in that limit. One of the purposes of this paper is to reveal the
phase diagrams of the Kuramoto model at small coupling and different values of N. Our analytical results
are obtained by using the renormalization group (RG) method, which is one of the singular perturbation
methods. Our results firmly establish the stability of the mentioned invariant torus on rigorous mathematical
grounds. In particular, we give general results for any finite N, and some small populations (N = 3,..,7)
are investigated in more detail.

2. Basic definitions

Due to the mean-field character of the Kuramoto model we may arbitrarily label the natural frequencies
from the smaller to the larger: w; < wy < --+ < wy. Moreover, by going into a suitable rotating framework
we set the mean frequency equal to zero without loss of generality. For the discussion to follow it is worth
to note that if there are not coincident natural frequencies (i.e. w3 < wy < -+ < wy), some degree of

synchronization, <6)2> = <0]> for some (or all) i # 7, is only achieved for a coupling strength larger than

some positive constant ..
Next, we rewrite the Kuramoto model for the convenience of our analysis. Due to the invariance of the
global quantity ©® = leil 0;, the Kuramoto model can be reduced in one dimension by changing to a

new set of coordinates: ¢; = 0;,1 — 0,5 = 1,---,N — 1. It is also useful to define “frequency gaps”
Aj =wjy1 —wj, j=1,---,N — 1. In the new variables the Kuramoto model has this structure
(pj:Aj‘i’EEj((Pl,(PQ,---,SDN—l), j=1,--- ,N-1 (2)

Maistrenko and coworkers [12-14] found that if the natural frequencies are symmetrically selected (w; =
—wN—i+1 = Aj; = Ay_;) the Kuramoto model has an invariant manifold M, namely a torus of dimension
[N/2], which is given by M = {¢; = ¢n_i}. (In the original coordinates, M is any of the tori that —
parameterized by the invariant ©— foliate an ([N/2] 4+ 1)-dimensional torus; thus if one selects © = 0,

M={0; =—0n_i11}.)
3. Main results

In Refs. [12-14] it was shown that for some values of the parameters w; and e, the dynamics approaches
the invariant torus M or an attractor A C M. They reported that the regions of parameters with stable M
or A are close to, or inside, synchronization regions (what implies that e is larger than some positive number
if w; # wj+;). Thus, there is a common belief that far from synchronization, as the coupling strength goes
to zero (¢ — 0), the dynamics fills the whole phase space, the N — 1 dimensional torus {¢;}. So far, many
numerical results confirmed this expectation [12-14]. However, we show in this paper that this is not true.
We have found that in the limit e — 0:

(i) If N is odd the (N —1)/2-dimensional invariant torus M is, unless there are special resonant conditions

among the natural frequencies, asymptotically stable.
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(ii) If N is even the N/2-dimensional invariant torus M can be stable or unstable depending on the
particular disposition of the natural frequencies.

Statements (i) and (ii) are consequence of three Theorems to be proved by using the RG method, which is a
powerful singular perturbation method for differential equations proposed in [15,16]. Recently, mathematical
foundation of the RG method was given in [17,18] showing that the RG method is useful as well to investigate
existence and stability of invariant manifolds. We present a brief review of the RG method in Section 7.1,
and the proofs of the main theorems in this paper are included in Sections 7.2 to 7.4.

4. Odd N

In this section, we investigate the stability of the invariant torus M for odd N. For two particular cases,
N = 3 and 5, the phase diagrams are completely uncovered.
One of the main theorems in this paper is as follows:

Theorem 1. Suppose that N = 2M —1 is an odd number. If the natural frequencies satisfy the following
nonresonance condition:

w; = wj if andonlyif i = j,

wr +wj = 2w; ifandonlyif i =k=jorj=2M —k,i = M,

w, +wj =wp +w; ifandonlyif i=j=k=1orj=2M —i,l=2M —k, (3)
3w =wj +wp +w ifandonlyif i=j=k=1,

w; + 2wy, = wj + 2wy ifandonlyif i =j,k=1lor j=2M —i,k=M,l =1,

then there exists a positive constant £y, which depends on the natural frequencies, such that if 0 < & < €y,
the invariant torus M is asymptotically stable and the transverse Lyapunov exponents of M are of O(g?).

Equation (3) can be rewritten as a condition for A;’s by using the relation w; = — Qi;l Ayg. The proof
of this theorem is given in Sec. 7.2.

As e — 0, [N/2]-frequency quasiperiodic dynamics on M is stable for almost all {A;}. Parameter regions
on which ¢;’s are (partially) phase-locked on M are very narrow. On such regions, there exist a k-dimensional
stable torus on M filled by k-frequency quasiperiodic orbits (k < [N/2]). Further, we can prove that regions
with phase-locking are narrower when the nonresonance condition is fulfilled than when it is not.

Below we test the validity of Theorem 1 for N = 3, 5, and 7. Focusing on particular cases will allow
us to understand better how Theorem 1 applies in practical terms. For instance, for N = 5 we make a
complete analysis of the stability of M, showing what happens when the natural frequencies do not satisfy
the nonresonance condition of Theorem 1.

41. N=3

For N = 3 it is particularly simple to prove the stability of M using basic theory of dynamical systems.
The ODEs ruling the dynamics in {¢;} coordinates [Eq. (2)] are:

. g . . .
¥1 = A+ — [singy — 2sinp; — sin(p1 + ¢2)],
N (4)

) € .. . :
Py = A+ N [sin 1 — 28in s — sin(p1 + ¢2)],

where we are already assuming the symmetry A; = As = A. The dynamics inside the invariant 1-torus M
(i.e. a circle defined by ¢1 = w2 = @) obeys

o=A-— %[sin © + sin(2¢p)] (5)



and a transverse perturbation dp = s — @7 is governed by
dp = —ecospdp + O(6p%). (6)
The transverse Lyapunov exponent (TLE) is hence:

2

A=< [ Plo)cos s, (7)
0

with P(p) = C/¢ for ¢ smaller than the synchronization threshold e, ~ 1.704 A. C is a normalization

constant such that fo% P(p)dp = 1. Making an expansion of P(y) in terms of the small quantity /A, it
turns out that A becomes negative with a cubic dependence on e:

1 &3 1 /e\2 £\4
e L2y ()] ;
+ 18A2[+6A +<A ®)
This result agrees ! with Theorem 1. Finally, it must be noted that the invariant torus exists for any odd

interacting function f(¢) = —f(—¢) and not only for the particular choice f(¢) = sin(¢). The transverse
Lyapunov exponent is then:

A —_i§7f’< ) [2/(0)F(20) + £2(20)] dip + O(”) ®)
L= T8 A v)121(9) ] (29 P de T EE
0

with f'(¢) = df () /de.
42. N=5
If N =5, Eq. (2) reads

$1 =41+ % <—2 sin @1 + sin @y — sin(p1 + @2) + sin(pz + 3)

—sin(p1 + 2 + ¢3) +sin(p2 + @3 + @4) —sin(p1 + @2 + @3 + @4)),
o = Ao + % (—2 sin @9 + sin 1 + sin 3

—sin(p1 + p2) — sin(pz + ¢3) + sin(pz + @4) — sin(p2 + @3 + <P4)),
p3 = Ao + % (—2 sin @3 + sin 4 + sin o

—sin(ps + 1) — sin(pa + ¢3) + sin(p1 + p2) —sin(p1 + @2 + @3)),
Y4 = A1+ % (—2 sin ¢y + sin 3 — sin(ps + @) + sin(ps + ¢3)

—sin(pz + @3 + @a) + sin(p1 + @2 + @3) —sin(p1 + g2 + p3 + @4)).

Again, symmetry is assumed (A; = Ay, Ay = Ag3), and hence there is an invariant 2-torus M = {p; =
Y4, P2 = p3}. Since M is 2-dimensional, dynamics on M is nontrivial. Depending on values of A;, Ay and
g, the asymptotic dynamics on M can be quasiperiodic or periodic (fixed points only exist above a finite &
value unless A; = As = 0). Quasiperiodic motion is generic when € — 0. Periodic motion exist inside open
sets in the phase diagram (so-called Arnold tongues) whose widths shrink to zero as ¢ — 0. Inside an Arnold
tongue there is (at least) one pair of stable-unstable (along the torus surface) periodic orbits whose average
frequencies are related by a rational rotation number: (1) : (¢2) = n : m. We call a periodic orbit of that

1 The nonresonance condition is not fulfilled if and only if A = 0, and in that case the TLE has a linear dependence on ¢:
A1 = —e. Indeed, it is easy to see that the fixed point ¢ = 0 of Eq. (5) is stable for any e > 0.
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Fig. 1. A schematic view of the phase diagram for N = 5 and small ¢. Inside the hatched regions M is unstable; and the dotted
regions intend to represent finitely many disjoint hatched regions. Shaded regions are Arnold tongues with rotation numbers
n:m=1:21:1,2:1and 3:1 from left to right.

type an n : m locking solution. Arnold tongues touch the axis ¢ = 0 at the points where the ratio A : Ag is
rational. Major Arnold tongues are born at (rational) A; : Ay ratios corresponding to frequencies that do
not fulfill the nonresonance condition of Theorem 1.

In what follows, we assume? Ay # 0. By rescaling time and ¢, we are allowed to divide Eq. (10) by
A, to assume that Ay = 1 without loss of generality. Then, the nonresonance condition for N = 5 gives
Ay #£0,1/2,1,2,3,4. We can prove the next theorem.

Theorem 2. There exists a non-negative number £y = £¢(A1) such that the invariant torus M is asymp-
totically stable if 0 < € < 9. €9(A1) tends to zero as A; — 1/2,1,2,3.

A sketch of the strategy for proving this theorem is given in Sec. 7.3. And in Sec. 7.4 we show explicitly
how the proof yields the phase diagram near A; = 1/2 (the most intricate case). We note that Th. 2 asserts
that the cases A; = 0 and 4 do not yield transversal instability of M despite of violating the nonresonance
condition of Th. 1. A schematic view of the phase diagram of Eq. (10) for small ¢ is represented in Fig. 1, in
which the invariant torus M is unstable in the tongue-shaped hatched regions. The n : m locking solutions
forn:m=1:2,1:1,2:1and 3: 1 exist in the gray regions. In particular, in the gray regions that are not
hatched there are transversally stable n : m locking solutions. Asymptotic expansions with respect to €/N of
boundaries (a) to (h) and (a’) to (h’) in Fig. 1 are shown in the Appendix (the expansion for each line is done
up to an order that completely unfolds the phase diagram). In two dotted regions emerging from A; = 1/2,
there are many disjoint unstable tongue-shaped regions, while exactly one unstable region emerges from each
of the other resonances: A; = 1,2, 3. The existence of such many unstable regions emerging from A; = 1/2
is shown in Section 7.4 resorting to the RG method and with aid of numerical simulations.

Next, we present numerical results corroborating our theoretical results for N = 5. The dynamics of
infinitesimal perturbations transversal to the torus (dp; = p1 — @4, dpa = w2 — 3) is governed by two linear
equations:

. £ S

Sp1 = N cos(p1 + ¢2)(1 + 4 cos p2)dpr + N [cos pa — cos(p1 + ¢2)] dpa, a1
. € . €

dpg = N cos(ip1 + p2) sin®(p2/2)dp1 — N [3 cos 2 + 2 cos(p1 + p2))] dpa.

From these equations we calculate the TLEs ()\(j) > )\(f)) using the popular method by Benettin et al. [19].
In Fig. 2(a) we plot the TLEs for two values of € observing that: (i) TLEs are almost everywhere negative
as expected from Theorem 1, (ii) TLEs for ¢ = 0.2 and 0.4 collapse when divided by &3, except if one
enters in a locking region nor fulfilling the nonresonance condition in Th. 1 (0 : 1 locking in the leftmost

2 In the degenerate case Az = 0 the nonresonance condition of Th. 1 is violated if and only if w; = w2 =0 (A1 =A2=0).In
this case, Eq. (10) has a stable fixed point ¢; =0, 4= 1,...,4 with TLEs )\(ll) = )\(f) = —¢.
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Fig. 2. (a) Transverse Lyapunov exponents scaled by €3 as a function of A; for e = 0.2,0.4 (N = 5, Ag = 1). (b-e) Regions
where the largest TLE becomes positive. (It is instructive to compare the panel (b) with the result in Fig. 9(a) obtained by
the RG method.)
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Fig. 3. TLEs as a function of € for N = 5,Aa = 1 and A; = (1 +/5)/2 (the golden mean).

part of the panel). Figure 3 shows a log-log plot of the TLEs as a function of € for a specific value of Ay
(arbitrarily chosen with the constraint that the nonresonance condition is satisfied). We find a nice power
law )\11’2) = —|)\(j’2)| o €3, as expected from Theorem 1. In Figs. 2(b-e) we depict the largest TLE in four
regions about lockings 1 : 2, 1:1, 2 : 1, and 3 : 1, finding that it becomes positive in short intervals as
advanced in Theorem 2. These intervals match with the analytical expressions in Appendix.

43. N=7

For N = 7 the system’s dimension is too large to perform a detailed analysis around all relevant resonances.
But still the dimension is small enough to carry out intensive numerical simulations. We fixed Az = 1 and
measured the largest TLE at different values of A; and As. The initial condition in M was random (what
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Fig. 4. A1-Ag plane for N = 7 with Az =1 and € = 0.3(IN/2) min; A,. In the green regions the dynamics in M is transversally
stable (i.e. there is an attractor A C M). Inside the black regions M is transversally unstable. (Red) lines indicate the loci of
the most important resonances among {A;}.

should not be a problem if as we expect multistability is not common at small ¢). In our simulations the
coupling strength was ¢ = 0.3(N/2) min; A;. This value of € is small enough to ensure the systems is far
from synchronization, and at the same time large enough to make convergence times not exceedingly long for
our computational resources. We may expect this value of € to capture the fundamental phenomenology as
€ — 0. The result is presented in Fig. 4, and shows that the dynamics on M is transversally stable in almost
all the A1-As plane, except close to some resonances. These resonances should correspond to combinations
of A;’s not fulfilling the nonresonance condition of Th. 1 (but also one may not exclude finite-¢ effects).
The result is very much equivalent to the result for N = 5, but with unstable regions organized around
resonances involving three instead of two frequencies.

5. Even N

In the symmetric Kuramoto model at small coupling the invariant torus M is almost always stable if the
population size is odd. However, we show in this section that if V is an even number M can be both stable
and unstable in large regions of the parameter space spanned by the natural frequencies. We analyze the
case N = 4 in detail by means of the renormalization group (RG) method, and the case N = 6 is studied
using numerical calculations. Both cases share features that should be common to any even number N > 4.

51. N=4

When N =4, Eq. (2) with Ay = Ag is written as
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Fig. 5. A schematic view of the phase diagram of Eq. (12) for small €. There are no attractors A C M in the hatched regions,
and gray regions indicate the Arnold tongues.

o1 =A1+ %(—ZSingol + sin o
—sin(p1 + @2) + sin(p2 + ¢3) — sin(p1 + 2 + @3)),
= Ay + % (—2 sin ¢y + sin 1 + sin 3 — sin(p1 + @2) — sin(ps + gog,))7 (12)
=A + % (—2 sin @3 + sin o

—sin(pa + @3) +sin(p1 + @2) — sin(e1 + 2 + ¢3))-

In this case, the invariant torus is given by the 2-dimensional torus M = {1 = @3, ¥2}. Note that there
will exist n : m lockings on M like for N = 5.
The linear ODE governing infinitesimal deviations off the torus (dp = @1 — @3) is

. 9
0p = —7 [cos o1 + cos(p1 + 2)] O, Y

and it determines the TLE.
In what follows, we suppose® Ay # 0. By dividing Eq. (12) by Ag, we can assume Ay = 1 without loss
of generality.

Theorem 3. There exists a non-negative number €9 = £9(A;) such that if 0 < € < g, the invariant
torus M is asymptotically stable for A; > 1 and unstable for A; < 1. go(A;) tends to zero as Ay —
0,1/3,1/2,1,2,3,4. The transverse Lyapunov exponent of M is of O(e®) if 0 < & < &.

A sketch of the strategy for proving this theorem is given in Sec. 7.3, while the detailed calculation is
omitted. A schematic view of the phase diagram of Eq. (12) for small € is depicted in Fig. 5, in which there
are no attractors A C M in the hatched regions, and the n : m locking solutions forn:m=0:1,1:3, 1:
2,1:1,2:1,3:1and 4 : 1 exist in the gray regions. In particular in the regions that are gray but not
hatched, there are stable periodic orbits on M. Asymptotic expansions with respect to /N of boundary
curves (i) to (u) and (i’) to (w’) in Fig. 5 are shown in Appendix.

We numerically calculated the TLE from Eq. (13), and Figs. 6 and 7 demonstrate that the TLE is O(e®)
as stated in Theorem 3. M is mainly stable when A; > 1. Like for N = 5 there are “switching tongues” in
which the stability of M is different from the dominant stability in its neighborhood. We do not show them

3 If Ay = 0 there are two situations: (i) If A; = 0, Eq. (12) has a stable fixed point ¢; = 0, (i = 1,2,3) with \| = —e. (ii)
If A1 # 0 there is a stable periodic orbit (1 : 0 locking solution). Dynamics for ¢2 is well described by averaging the second
equation of Eq. (12) with respect to @1 and ¢3: p2 = 72% sin ¢g. It proves that @2 = 0 is stable. Substituting ¢2 = 0 into
Eq. (12), we obtain the equation for ¢ = ¢1 = ¢3: ¢ = A1 — (¢/N)(2sin ¢ + sin(2¢)). The transverse Lyapunov exponent is
calculated using Eq. (13) in the same way as that of N = 3, obtaining A\ | = —&3/(16A2).

8



V) T
O e=0.2
A e=0.4
o 1F A i
w
~
% o
< 05} 2000000 |
-0.5F0O @@@@@@@@@@@@@@@@@ooagaoaooaagz
¢}
_1 | | | | 1 L
0 05 1 15 2 25 3 35 4
A1

Fig. 6. Transverse Lyapunov exponent scaled by €® as a function of A; for two values of ¢ (N = 4, Ay = 1). The scale of the
y-axis is nonlinear to better discern the sign of the TLE. There is a perfect overlap of both data sets (¢ = 0.2 and 0.4), except

at frequency lockings 0 : 1 and 1 : 1. The stability change at A1 = 11 is very sharp but continuous.
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Fig. 7. TLEs as a function of € for N = 4, As = 1 and (a) A1 = (—1++/5)/2 (the inverse of the golden mean) (b) A; = (1++/5)/2
(the golden mean). For the case (a) the invariant torus M is unstable while it is stable for (b) as stated in Theorem 3.

in Fig. 6 not to overwhelm the reader with details. We note nevertheless that the analytical expressions (see
Appendix) of boundary curves (i) to (u) have been corroborated by our numerical simulations.

5.2. N>6

We resort to extensive numerical simulations to study the case N = 6, as we did already in Sec. 4.3 for
N = 7. Figure 8 summarizes the result of our simulations. There are regions with stable M, and regions
with unstable M. Some low order resonances give rise to the border among these regions (analogously to the
A1 = Ay border in the N = 4 case). Other resonances give rise to thin strips where the stability switches
(again in good analogy to the N = 4 case).

If A, is sufficiently large, oscillators 6; and 6 rotate so fast (Jwi| > |we 3|) that their influence on the other
oscillators averages out. In this regime, (in)stability of the invariant torus is ruled by the four oscillators
with the central frequencies. It may be perceived in Fig. 8 that for Ay > Ay 3 there is a switch of stability
at Ay Z Az = 1 in qualitative agreement with the A; = Ay +O(e?) border in the N = 4 case (the transition
is not closer to As =1 due to the finiteness of € and Ay).

This simple argument based on the averaging method can be extended to an arbitrary (even) population
size: In the limit A; — oo, Eq. (2) for N = 2M + 2 becomes equivalent to Eq. (2) for N = 2M because
influence of ¢ and wapr41 on the other oscillators averages out. Thus by induction, we conclude that the
situation of N = 4 is typical for general even IV; that is, regions of frequency space where M is stable and
regions where it is unstable coexist in parameter space, none of them disappearing as € — 0. This property
quite differs from the phase diagrams for odd N.



Fig. 8. A1-Ag plane for N = 6 with Az =1 and € = 0.3(N/2) min; A;. In the green regions the dynamics in M is transversally
stable (i.e. there is an attractor A C M). Inside the black regions M is unstable. (Red) lines indicate the loci of the most
important resonances among {A;}. In the regions with small Ay or Ay the convergence was too slow to guarantee accurate
results (we have indications that typically the TLEs are O(g%) as for N = 4).

6. Discussion

One of the important results of our paper is the rather surprising fact that qualitative properties of the
Kuramoto model (with symmetrically allocated natural frequencies) depend crucially on whether N is odd
or even. We establish precise mathematical criteria for the stability of the invariant torus M. It is remarkable
that in many cases this torus is asymptotically stable at arbitrarily small coupling. For N = 4,5, we have
completely uncovered stability changes caused by resonances.

The renormalization group method has been successfully used in this paper. In the literature, first- and
second-order RG equations have been employed for constructing approximate solutions to weakly perturbed
ODEs. In this paper, we have used this technique in the Kuramoto model up to third and fifth order for
odd N and for N = 4, respectively. RG equations are quite helpful for studying the stability of invariant
manifolds, and they provide as well the orders of magnitude of the transverse Lyapunov exponents.

In the context of coupled oscillators, the phenomenon known as ‘phase chaos’ consist in the appearance
of a high-dimensional chaotic attractor [20,21,14] due to the interaction of phase variables (neutrally stable
variables in the uncoupled limit). For the Kuramoto model it has been reported in [14] that (with a symmetric
allocation of the natural frequencies) when increasing the coupling from zero the Lyapunov exponents split
from a degenerate set at zero to a set of [N/2] — 1 positive, [N/2] — 1 negative, and 2 (3 if N odd) zero
Lyapunov exponents. In this paper we show that the invariant torus M is often stable in the small coupling
limit. In contrast it is not proven yet that phase chaos indeed persists in the € — 0 limit. Here we note that
our Theorem 1 applies in a finite range 0 < € < ¢¢ irrespective of how large N is. Notice nevertheless that
co — 0 as N — oco.

Other implications of our paper refer to numerical simulations. In this context our paper is particularly
relevant because the Kuramoto model has been usually considered together with a symmetric frequency
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distribution of the natural frequencies, and in turn simulations, with a finite population size, are often
carried out selecting frequencies that reflect the inherent symmetry of the frequency density. Our results
also evidence the important role of resonances among the natural frequencies for the stability of the invariant
torus M. This must serve as a warning about the risks of using highly resonant frequencies when tackling
generic properties of the system. In particular, it has become popular to consider evenly spaced natural
frequencies (A; = A; for all 4, j), which is probably the most resonant case.

We may conjecture that the results reported here for the Kuramoto model (with a sinusoidal coupling
function) should also be observed in a family of odd coupling functions. In fact, in the N = 3 case, see
Eq. (9), a family of functions shares stability and scaling of the transverse Lyapunov exponent. Nonetheless
in what concerns the unstable regions (tongue-shaped for N = 5) and their scaling one may expect important
differences depending on the coupling function f. (We suspect this should be the case because of the similarity
with the phase-locking regions, which depend on the harmonics of the interaction function [22].)

Finally, note that under a small enough symmetry-breaking perturbation M will get deformed into an
invariant torus M’ with the same stability. Therefore our results may apply to situations where the symmetry
is weakly broken.

7. Outline of the proofs of theorems
7.1. Brief review of the RG method

The renormalization group (RG) method is one of the singular perturbation methods for differential equa-
tions which provides approximate solutions as well as approximate invariant manifolds and their stability.
Recently, it is shown that the RG method unifies and extends traditional singular perturbation methods, such
as the averaging method, the multi-time scale method, the normal forms theory and so on. In this section,
we give a brief review of the RG method following [17,18] to prove Theorems 1 in the next subsection.

Consider the system of differential equations on a compact manifold M of the form

Cc% =i =cqgi(t,x) +2go(t,x) +3g3(t,x) +---, x € M, (14)
where € € R is a small parameter. For this system, we make the following assumption (A):

(A) The vector fields g;(t,z), i = 1,2,--- are C! with respect to time ¢ € R and C* with respect to
x € M. Further, g; are almost periodic functions with respect to ¢ uniformly in z € M, the set of whose
Fourier exponents has no accumulation points on R.

In the case of the Kuramoto model (1), M is an N-dimensional torus. Note that under the change of
coordinates 0; = x; + w;t and ¢; = x; + Ajt systems (1) and (2), respectively, are transformed into the
form of Eq. (14) with g; = 0 for i > 2, and satisfying the assumption (A).

Substitute @ = x¢ + exy + €229 + - - - into the right hand side of Eq. (14) and expand it with respect to .
We write the resultant as

Zskgk(t,xo +exy +erg ) = Zeka(t,xo,ml, C Tg—1). (15)
k=1 k=1

For instance, Gy, G2 and G3 are given by

Gl(tvxo) :gl(t7x0)a (16)
0
Ga(t,zo,21) = %(h zo)z1 + g2(t, o), (17)
102 7] 0
Ga(t,z0, m1,2) = 5 5 (b wo)af + G (b o)+ 52 (w0 + galt, o), (1)

respectively. With these G;’s, we define the C'*° maps R;, ugi’) : M — M to be
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and

1 / . L oulP
Ri(y) = Jim < [(Gils,y.uM @), ul ™) = Y W) Rio(y) )ds, (21)

— 00 et y

" t X - i1 g,
Uy (y) = /(Gz(svya ’U,g )(y)a T ’ugl— )(y)> - Z ay (y)lekr<y) - Rl(y))d87 (22)
k=1

for i = 2,3,---, respectively, where [ * denotes the indefinite integral, whose integral constants are fixed

arbitrarily. We can prove that R; are well-defined (i.e. the limits exist) and ugi) are bounded in ¢ € R. Along

with R; and ugi), we define the m-th order RG equation for Eq. (14) to be
g =eRi(y) +*Raly) + -+ ™ Ru(y), y € M, (23)

and the m-th order RG transformation agm) to be

agm) (y)=y+ sugl)(y) +o 4 E’”ugm) (y), y € M. (24)

Roughly speaking, we can show that the m-th order RG transformation x = aﬁ’”) (y) brings the system

(14) into the system of the form § = eR1(y) + -+ - + ™ Ry (y) + ™S (¢, 2, €), where S is bounded in t € R.
It means that the m-th order RG equation is e™*!-close to the original system (14) and thus it is useful to
construct the flow of (14) approximately. Since the RG equation is an autonomous system while the original
system (14) is not, to analyze the RG equation is easier than that of the original system. The next theorem
is one of the fundamental theorems of the RG method.

Theorem A [17,18]. Suppose that Ri(y) = -+ = Ri_1(y) = 0 and ¥Ry (y) is the first non-zero term
in the RG equation. If the vector field Ry (y) has a boundaryless compact normally hyperbolic invariant
manifold A/, then for sufficiently small € > 0, Eq. (14) has an invariant manifold A;, which is diffeomorphic
to N. In particular, stability of A coincides with that of A/.

This theorem is used to investigate the stability of the invariant torus M and the n : m locking solutions
of the Kuramoto model.

7.2. Proof of Theorem 1

In this section, we give the proof of Theorem 1.

Proof of Theorem 1. Suppose that N = 2M —1 is an odd number and w;’s are allocated symmetrically
as was assumed. Put 6; = x; + w;t and rewrite Eq. (1) of the form of Eq. (14). If the natural frequencies
satisfy the nonresonance condition (3), its third-order RG equation is given by
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) 16¢3 1 .
I =~ —5 sin(2yar — Yr — Y2 —k),
v Ck
. 82 1 1
Ui = Nz 2’;’5,%7@6 — w—zcos( Yi — 2ynr + Yani—i)
2

16¢3 1 '
+ ( Z Z2 w,% sin(y; — Yk — Yoar—k + Y2n1—i)
1 .
—2 Z m sin(y; — Yr — YoM —k + Y201 —i)
+2 Z wr(wr — o) sin(2ym — Yk — Yam—k)

1 .
- Z o (@ +on) Sin(y; — yr — Yam—k + Y2ni—i)
ktM,i2M—i CE\I k

-2 Z ;sm( i — 2Ym + Yoni— Z)) (1 # M).

k#£M,2M —i wi(wi +wr)

Note that the first order term vanishes and the expansion begins with the second order term. Since the
invariant torus M corresponds to the solution y; + yapr—; = ¢ (constant), we put ¢; = y; + yanr—; and

oém = 2ypn. Then we obtain the system of ¢; :

. 64e3 = 1
bm = — — sin(én — @),

N3 = w?
L3281 =
b = ~F (_F sin(¢; Z 2 sin(¢; — édar)

i ki z
M-l
+4 Z ngsm((bM —¢k)>7 (i=1,---,M —1).

(26)

Now that the second order term vanishes and Theorem A for k = 3 is applicable to this system. We can

prove that the eigenvalues of the Jacobian matrix of the r.h.s. of (26) at the fixed point ¢; =c (i =1,---,

M)

have negative real parts, except a zero eigenvalue that results from the rotation invariance of Eq. (1) (or the

degree of freedom of the constant ¢). A proof of this fact is outlined as follows:

Let J be the Jacobian matrix of the r.h.s. of (26) at the fixed point ¢; = ¢ (i = 1,---, M). By using the

cofactor expansion, it is easy to show that the characteristic polynomial of 7 is calculated as

N3

T) = A-det (AT + Ap_y),

where the matrix Ap;_1 is given as

3 4 4 2 4 2
FtLa-a F-ata e
4 2 3 &g 4 2
Ayaz| G- E BTEE-RT B-G il
4 2 4 2 3 = 4

Ao At Aa AT d AL

(27)

(28)



Eq. (27) shows that J has a zero eigenvalue A = 0. Now it is sufficient to prove that all eigenvalues of A1
have positive real parts. To prove it, let

MU I 4 PN e A A =0 (29)
be the Characterlstlc equation det(A — Apr—1) = 0 of Apr—1. We show the inequalities f(M 2), fjéw 14) <
0 and (M 3) . > 0 by induction on M. Since ' 1s invariant under the permutation of

) M 1 Y M 1 p
a1, ,0p—1, we can show that fz(\?q is of the form
2 2 2
@ =) Z“<“'<“° Tuia % i eR (30)
- T R P
. Ap—2 0 (1) (i—1) . .
Since Ap_1 — as ap—1 — 0, fo/_1 — fi—s as ap—1 — 0. Now induction on M proves the
* 0

desired inequalities.

Thus, the solution ¢; = y; + yapr—s = ¢ (i = 1,---, M) of the RG equation is asymptotically stable and
this proves that the invariant torus M is asymptotically stable for small € > 0. Note that the degree of
freedom of ¢ does not appear in the ¢; coordinates [Eq. (2)]. [ |

If N = 3(M = 2), the nonresonance condition (3) is reduced to A; # 0 and Theorem 1 recovers the results
obtained in Section 4.1.

7.3. Sketch of the proofs of Theorems 2 and 3

Theorems 2 and 3 are also proved by using the RG method though we need much harder analysis to
obtain asymptotic expansions of the boundary lines in Figs. 1 and 5. In this section, we offer the strategy
to prove Theorems and to derive the asymptotic expansions, which is also valid for any N.
In what follows, we assume As = 1 in Egs. (10), (12) as was mentioned. Our strategy to prove Theorems
2 and 3, and to obtain boundary lines, is summarized as follows:
(i) Put ¢; = z; + A;t and rewrite Eqgs. (10) and (12) into the form of Eq. (14).
(ii) Derive the RG equations up to third-order for N = 5 and to fifth-order for N = 4. The forms of RG
equations depend on A;. Find the set of values A7, which gives the nonresonance condition, at which
RG equations take different forms from the others. We find that the nonresonance conditions are given
by Ay #0,1/2,1,2,3,4 for N =5 and Ay #0,1/3,1/2,1,2,3,4 for N = 4.

(iii) Investigate the stability of the invariant torus for the RG equation satisfying the nonresonance condition
as was done in Sec. 7.2. In this step, the proof of Theorems 2 and 3 ends.

(iv) To find the Arnold tongues in Figs. 1 and 5, let ¢o be a resonance value obtained in step (ii). Put

A1:CQ+61€/N+CQ€2/N2+”~ (31)

in Egs. (10) and (12), and derive the RG equations.

(v) Investigate the stability of the invariant torus for the resultant RG equations and find values ¢y, cg, - - -
at which the stability changes. Then, Eq. (31) gives an asymptotic expansion of a boundary line of the
Arnold tongue emerging from A; = ¢y in the phase diagram.

In the next subsection, we calculate asymptotic expansions of boundary lines (a), (b), (a’) and (b’) in
Fig. 1 to confirm this strategy for N = 5 and A; near 1/2. Other expansions of boundary lines (c) to (u)
and (¢’) to (u’) in Figs. 1 and 5 are obtained analogously, and their derivation is omitted; the results are
given in the Appendix.

7.4. Phase diagram near Ay =1/2 for N =5

In this section, we derive asymptotic expansions of lines (a) and (b), as well as asymptotic expansions of
lines (a’) and (b’), which are boundaries of the 1 : 2 Arnold tongue for N = 5. We also show that there are
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many disjoint unstable regions of M emerging from A;/As =1/2 as is shown in Fig. 1.
To investigate the phase diagram of N = 5 near Ay /Ay = 1/2, put Ay =1, Ay = 1/2+c16/N +c2e? /N2 +
-and put ¢1 = x1 +1/2, 3 = x2 +t, 3 = w3+t and @4 = x4 + /2 in Eq. (10). Then Eq. (10) takes the
form of Eq. (14) and the RG method is applicable. The third-order RG equation for the system is given by

(4] ‘1
dlva| €10
dt Ys Nlo
Ya ‘1
7 1 1
—3 +co — 3 cos(y2 — y3) + 3 cos(y1 +y2 — Y3 — Ya)
1 1
22 o3 cos(y2 — y3)
e Ll ( )
07 3 Cos(Y2 — Y3
7 1 1
-5 + ¢y — 3 cos(yg — yg) + g COS(yl +y2 —ys — y4)
26c 2c L.
3 LIS c3 — ?1 cos(y1 + Y2 — Y3 — ya) — B sin(2y1 — y2)
27 1 i
- 30 sin(yz — ys)l 1 sin(ye — 23/4)1— 5 sin(y1 +y2 — Y3 — ya)
_—251 - 2sm(12y1 )t 512(2211 y3) + 20 S;Ig(yg —y3)
&3 +6 sin(ye — 2y4) — 5 sin(ys — 2y4) + T sin(y; +y2 — Y3 — ya)
L& : (32)
N3 _%4_%5111(2 — )—lsm(2 — )—ism( )
25 5 Y1 — Y2 6 Y1 —Ys 20 Y2 — Y3
1 . ) 26
73 Sin(yz — 2ya) + 2sin(ys — 24a) 15 S0 + 2 —ys — )
26¢ 2c L.
Tl +c3— ?1 cos(y1 +y2 — Y3 — ya) + 12 sin(2y1 — y3)
27( )+1.( 2)+77.(+ )
20 sin(ys — ys 5 sin(ys Ya 15 SI(Yr ~ Y2 — Y3 — Y4

This system has the solution y; = y4, y2 = y3, which corresponds to the invariant torus M. The linearized
equation for Eq. (32) along the solution y; = y4, y2 = y3 is given as

7 551, 5
d [ én &3 (44 + 15cosy) cosy 1
7 =N 599 13 cos y 113 15 iy : (33)
0y2 — — 0y2
15 2 0 T

where dy1 = y1 — ya, 0y2 = y2 — y3, and where y = y(¢) is a solution of the equation

d 2 2 11 3 (4664 1
_y:_501+5_<22 9>+E—<66 Cl+203__Siny>v (34)

dt N N2 15 N3 \ 225 4

which is obtained by putting 2y1 — y2 = ¥, ¥4 = y1, y3 = y2 in Eq. (32). The existence of 1 : 2 locking
corresponds to the existence of a stable fixed point of y, and the stability of the invariant torus M is maps
to the stability of the trivial solution dy; = dy2 = 0 in Eq. (33). Stability depends on the coefficients ¢; in
Eq. (34).
(i) When ¢; # 0, then we can apply the averaging method to Egs. (33, 34). Averaged with respect to y,
Eq. (33) is rewritten as
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Fig. 9. (a) Lyapunov exponents (A1 > A2) of system (33) forced by (36) (¢/N = 1 is arbitrarily adopted). In the interval

0.125552.. ..

< 3 < 5.3695..., A1 is mostly positive except at hundreds of narrow windows where it becomes negative (to

coincide with A2). (b) In this panel we see how A1 presents dips that accumulate at c3 = 1/8; the dips are so narrow that the
sampling is not able to resolve the intervals where A1 = Aa.

d [ oy g3

dt e

—154/45 —551/90
52/45  113/90

on (35)

0Ya dy2

It is easy to verify that the trivial solution of this system is stable because the eigenvalues of the matrix

in the right hand side are given by (—13 +

2317)/12. It proves that the invariant torus M is stable

if C1 7& 0.

(ii) When ¢; = 0 and ¢o # 119/30, we can apply the averaging again to obtain Eq. (35) what proves that
M is stable in the same way as (i).

(iii) When ¢; = 0 and ¢ = 119/30, Eq. (34) becomes

(iii-a)

(iii-b)

dy 2 ( 1 (36)

E—F 03—§siny).

If |es| < 1/8, the above equation has a stable fixed point y = y. such that siny. = 8cs, cosyx
(1—64c3)'/2. Tt corresponds to the 1 : 2 locking solution because y = 2y; —yo. The disappearance of
the fixed point at |c3| = 1/8 marks the boundaries of the Arnold tongue: asymptotic expansions
(a’) and (b’) in Appendix. It is easy to investigate the stability of the trivial solution of the
linearized equation (33) with constant coefficients. Indeed, we can show that the trivial solution
is unstable if and only if

1 8681209
( (37)

1/2
c3l < = =0.124838...
ea 17391218 + 5894\/8738809>

4

And this proves that the invariant torus M is unstable in the region surrounded by the lines (a)
and (b) given in Appendix.
If |cg| > 1/8, the linearized equation (33) is a linear system with a time periodic coefficient. It
is well known that stability of a trivial solution of such a system is determined by the Floquet
exponents although we can not calculate them analytically in general. We examine the stability
of the trivial solution of Eq. (33) by calculating the Lyapunov exponents numerically.

Figure 9 shows that there are many disjoint intervals of c¢3 on which the trivial solution of
Eq. (33) is unstable. It proves that there are many disjoint unstable regions of the invariant

torus M emerging from A; = 1/2. These unstable regions are inside the region limited by A; =
L4925 4 012555255 4+ O(e*) and A, = & + 1925 4 536955, + O(e*); and inside a twin
region with opposite signs in the cubic terms (dotted regions in Fig. 1).
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Appendix : Asymptotic expansions of boundary curves in Fig. 1 (IN = 5) and Fig. 5 (N = 4)

Asymptotic expansions in € of lines (a) to (h) in Fig. 1, which divide stable regions and unstable regions
of the invariant torus M for N = 5, are

1/2
(a,b) A = % * %;—Z i i (17391218??813%/%) Jf/'_33 +0(,
IPNENEN e
(d) Ar=1+ g;—z + (%;623; +k1> 5—44 +0(e%),
() Ay =2- g;—z _ %;—2 +0(e),
f) Ay =2- ;;—2 + (—% +k2) Jf]—t +O(g%),
1/2
1) Ay = _%;_22¥ <191%()—24281> / ;_2+0(54),

where k1 and ko are some positive constant which are not obtained analytically.
Asymptotic expansions of boundaries (a’) to (h’) of the n : m Arnold tongues in Fig. 1 are

(6) A1 = 5+ s s + OE)
2 4
2 4

(d) A1:1+§% %% O(e%),
2 4

(1) Ai=2-315 — Jger i + 0,

(g/’h/)A1:3*%;—Z¢§;—Z+O(e4).

Asymptotic expansions of the lines (i) to (u) in Fig. 5, which divide stable regions and unstable regions
of the invariant torus M for N = 4, are

. 58 ¢
(1) Al = \/ﬁﬁ +O(€2)7
) A = 1193 €2 6767219 e 102057740948201549 & L O
JoSTT TR0 N2 T T R4000 NA 59535676200000 N© ’
1 193 &2 145573959475337 &4
K) Aj =4 ———_ _ . 5
() Av=3+ 35 N2 ~ 330863332000 N T O )
1 23¢2 €3 202777 &4 72568 &° .
O Ar=5+ N2 t2m ~ 7m0 N1 155 v T 06D
1 593 &2
(In) Al = 5 + ﬁﬁ + 0(83),
42 24289 &* 5
) B =1+ 352~ 390 w1 O
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168449 i

(p) A1 =2- 215 + 0,

(@) Ar=2- ;1_;;_22 izgv_33 N ?éigg% 5163;)090;—55 +0(),

() Ar=3- %;_22 N 151835;152494594122649 Jif_44 +0(),

(5) Ar=3- %;_22 a 131225799807623 15v_44 a 1(323()514928077363592928644()6010809 15v_66 (e,
(tu) Ay =4 - %;—Z a 1266558345760050301 Jff_44 W;—i +0().

Asymptotic expansions of boundaries (i’) to (u’) of the n : m Arnold tongues in Fig. 5 are

Ay
Ay
Ay
Ay
Ay
Ay

Ay

Ay

Ay =

Ay =

g

= 2N + 0(82)7
1 193 €2 8249819 &
STk B | (2
5+t 30 82~ saoo0 va T OED)
1193 6767219 ' 1286745722182601 £
3730 N2 84000 N4 ' 742041300000 N°©
1 23 ¢2 g3 1
= 54’3@*2@4’0(6 ),
1 232 3 202777 & 7752 €5 .
=5t ez T2 ~i 775 v o6
276 N2 TNS T 7560 N4 175 N
2 ¢? 4
42 17029 ;
=1t aNE " g v O
472 1 &8 4
2~ 1N T awe TOE)
47 2 1e* 241399 et 5027 &5
S P - — <109,
15N2 T 4N3 378000 N* ' 6300 N
239 ¢ 12004031 * ;
3= 12 N2 3asosm2 Nt O
. 2392 11279063 * 68218740201013 &0
27 12 N2 3250872 N4 50833661598720 NO
719 €2 1658470531 ¢ 5 &
SRR N O(e%).
90 N2 ~ 265356000 NT  oa s T )
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