
The third, fifth and sixth Painlevé
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Abstract

The third, fifth and sixth Painlevé equations are studied by means of the weighted
projective spaces CP 3(p, q, r, s) with suitable weights (p, q, r, s) determined by the
Newton polyhedrons of the equations. Singular normal forms of the equations,
symplectic atlases of the spaces of initial conditions, Riccati solutions and Boutroux’s
coordinates are systematically studied in a unified way with the aid of the orbifold
structure of CP 3(p, q, r, s) and dynamical systems theory.
Keywords: the Painlevé equations; weighted projective space

1 Introduction

The first to sixth Painlevé equations written in Hamiltonian forms are given by

(PJ) :
dx

dz
= −∂HJ

∂y
,

dy

dz
=

∂HJ

∂x
, (1.1)

J = I, II, IV, III(D8), III(D7), III(D6),V,VI, with the Hamiltonian functions defined
as

HI =
1

2
x2 − 2y3 − zy,

HII =
1

2
x2 − 1

2
y4 − 1

2
zy2 − αy,

HIV = −xy2 + x2y − 2xyz − 2αx+ 2βy,

zHIII(D8) = x2y2 − z

2y
− 1

2
y,

zHIII(D7) = x2y2 + zx+ y + αxy,

zHIII(D6) = x2y2 − xy2 + zx+ (α + β)xy − αy,

zHV = x(x+ z)y(y − 1) + α2yz − α3xy − α1x(y − 1),

z(z − 1)HVI = y(y − 1)(y − z)x2 + α2(α1 + α2)(y − z)

− (α4(y − 1)(y − z) + α3y(y − z) + α0y(y − 1))x,
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where αi, β ∈ C are arbitrary parameters. Parameters of HVI satisfy the constraint
α0+α1+2α2+α3+α4 = 0. The third Painlevé equation is divided into three cases
III(D8), III(D7), III(D6) due to the geometry of the spaces of initial conditions [8, 7].
See [9] for the list of Hamiltonians and Bäcklund transformations written in these
coordinates, although HIII(D8) here is obtained by putting x 7→ x − 1/(2y) for that
in [9].

Among these Hamiltonians, only (PI), (PII) and (PIV) are polynomials with re-
spect to both of the dependent variables x, y and the independent variable z. In
Chiba [2, 3], (PI), (PII) and (PIV) are studied by means of a weighted projective
space CP 3(p, q, r, s), whose weight (p, q, r, s) is one of the invariants of the equation
determined by the Newton polyhedron. In particular, the Painlevé property, the
spaces of initial conditions and Kovalevskaya exponents are investigated in detail.
The purpose in this paper is to extend the previous result to the third, fifth and
sixth Painlevé equations, whose Newton polyhedrons are degenerate.

According to [2, 3], let us recall the definition of the Newton diagram of a poly-
nomial differential system. Consider the system of polynomial differential equations

dxi

dz
= fi(x1, · · · , xm, z), i = 1, · · · ,m. (1.2)

The exponent of a monomial xµ1

1 · · · xµm
m zη included in the right hand side fi is

defined as (µ1, · · · , µi−1, µi−1, µi+1, · · · , µm, η+1). Each exponent specifies a point
of the integer lattice in Rm+1. The Newton polyhedron of (1.2) is the convex hull
of the union of the positive quadrants Rm+1

+ with vertices at the exponents of the
monomials which appear in the system. The Newton diagram of the system is the
union of the compact faces of its Newton polyhedron.

We also consider the perturbative system

dxi

dz
= fi(x1, · · · , xm, z) + gi(x1, · · · , xm, z), i = 1, · · · ,m, (1.3)

where fi and gi are polynomials. We suppose that

(A1) the Newton polyhedron of the truncated system (1.2) has only one compact
face and all exponents of monomials included in (1.2) lie on the face.

In this case, there is a tuple of relatively prime positive integers (p1, · · · , pm, r, s)
and a hyperplane p1x1+ · · ·+ pmxm+ rz = s in Rm+1 such that all exponents lie on
the plane; i.e. any monomials xµ1

1 · · · xµm
m zη included in fi satisfy

p1µ1 + · · ·+ pi(µi − 1) + · · ·+ pmµm + r(η + 1) = s. (1.4)

In [3], we further suppose that s− r = 1 though it is not so essential. To regard gi
as a perturbation, we suppose that

(A2) any monomials xµ1

1 · · · xµm
m zη included in gi satisfy

p1µ1 + · · ·+ pi(µi − 1) + · · ·+ pmµm + r(η + 1) < s, (1.5)
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(this implies that the exponents of gi lie on the lower side of the hyperplane).
Due to the property of the Newton diagram, it is easy to verify that the truncated

system (1.2) is invariant under the Zs-action given by

(x1, · · · , xm, z) 7→ (ωp1x1, · · · , ωpmxm, ω
rz), ω := e2πi/s. (1.6)

We require the same for Eq.(1.3):

(A3) Eq.(1.3) is invariant under the Zs-action (1.6).

A tuple of positive integers (p1, · · · , pm, r, s) is called the weight of the system
(1.3). It is known that there is a one-to-one correspondence between nondegenerate
Newton diagrams and toric varieties. If exponents lie on the unique plane p1x1 +
· · · + pmxm + rx = s (assumption (A1)), then the associated toric variety is the
weighted projective space CPm+1(p1, · · · , pmr, s), which is an m + 1 dimensional
orbifold, see Sec.2.1 for the definition.

The first, second and fourth Painlevé equations satisfy the above assumptions.
For the first Painlevé equation x′ = 6y2 + z, y′ = x, put f = (6y2 + z, x) and
g = (0, 0). The Newton diagram is determined by three points (−1, 2, 1), (−1, 0, 2)
and (1,−1, 1). They lie on the unique plane 3x+2y+4z = 5. For the second Painlevé
equation x′ = 2y3+yz+α, y′ = x with a parameter α, put f = (2y3+yz, x) and g =
(α, 0). The Newton diagram is determined by points (−1, 3, 1), (−1, 1, 2), (1,−1, 1),
which lie on the plane 2x + y + 2z = 3. For the fourth Painlevé equation, put
f = (−x2 + 2xy + 2xz,−y2 + 2xy − 2yz) and g = (−2β,−2α). The Newton di-
agram is given by the unique face on the plane x + y + z = 2 passing through
the exponents (1, 0, 1), (0, 1, 1) and (0, 0, 2). Hence, the weighted projective spaces
associated with them are given by CP 3(3, 2, 4, 5),CP 3(2, 1, 2, 3) and CP 3(1, 1, 1, 2),
respectively. Note that g consists of terms including arbitrary parameters α, β for
these systems.

The orbifold CPm+1(p1, · · · , pm, r, s) is regarded as a compactification of the
phase space Cm+1 = {(x1, · · · , xm, z)} of the system (1.3). In [2, 3], the system
(1.3), in particular the first, second and fourth Painlevé equations, are studied with
the aid of the geometry of CPm+1(p1, · · · , pm, r, s). In this paper, the third, fifth
and sixth Painlevé equations will be investigated, for which the Newton polyhedrons
are degenerate and do not satisfy (A1).

The third Painlevé equation of type D6 is explicitly given by

(PIII(D6)) :

{
zx′ = −2x2y + 2xy − (α + β)x+ α,
zy′ = 2xy2 − y2 + z + (α + β)y.

(1.7)

Put f = (−2x2y+2xy, 2xy2−y2+z) and g = (−(α+β)x+α, (α+β)y). Exponents
of f are given by (1, 1, 0), (0, 1, 0), (0,−1, 1). The Newton polyhedron generated by
them has no compact faces because the positive quadrant R3

+ with a vertex at (0, 1, 0)
includes (1, 1, 0); the Newton diagram is empty. Nevertheless, these three points lie
on the plane y + 2z = 1. Hence, we define the weight of (PIII(D6)) by (0, 1, 2, 1) and
use the weighted projective space CP 3(0, 1, 2, 1), which is not compact because of
the nonpositive weight.
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The third Painlevé equation of type D7 is given by

(PIII(D7)) :

{
zx′ = −2x2y − 1− αx,
zy′ = 2xy2 + z + αy.

(1.8)

Put f = (−2x2y − 1, 2xy2 + z) and g = (−αx, αy). Exponents of f are given by
(1, 1, 0), (−1, 0, 0), (0,−1, 1). The Newton diagram is again empty, however, these
three points lie on the plane −x+2y+3z = 1. Thus we define the weight of (PIII(D7))
by (−1, 2, 3, 1) and use the weighted projective space CP 3(−1, 2, 3, 1).

The third Painlevé equation of type D8 is given by

(PIII(D8)) :

 zx′ =
1

2
− 2x2y − z

2y2
,

zy′ = 2xy2.
(1.9)

There are no parameters and put g = (0, 0). Exponents of the system are given
by (1, 1, 0), (−1, 0, 0), (−1,−2, 1). The Newton polyhedron is degenerate, however,
these three points lie on the plane −x+ 2y + 4z = 1. Thus we define the weight of
(PIII(D8)) to be (−1, 2, 4, 1) and use the weighted projective space CP 3(−1, 2, 4, 1).

The fifth Painlevé equation is given by

(PV) :

{
zx′ = −2x2y + x2 + xz − 2xyz + (α1 + α3)x− α2z,
zy′ = 2xy2 − 2xy − yz + y2z − (α1 + α3)y + α1.

(1.10)

Put f = (−2x2y + x2 + xz − 2xyz, 2xy2 − 2xy − yz + y2z) and g = ((α1 + α3)x −
α2z,−(α1 + α3)y + α1). Exponents of f are (1, 1, 0), (1, 0, 0), (0, 0, 1) and (0, 1, 1).
Although there are four exponents, they lie on the unique plane x + z = 1. Thus
we define the weight of (PV) by (1, 0, 1, 1) and use the weighted projective space
CP 3(1, 0, 1, 1).

The sixth Painlevé equation is given by

(PVI) :

{
z(z − 1)x′ = −3x2y2 + 2x2y + 2x2yz − x2z + g1,
z(z − 1)y′ = 2xy3 − 2xy2 − 2xy2z + 2xyz + g2,

(1.11)

where (g1, g2) consists of terms including parameters. Exponents of the other terms
are given by (1, 2, 0), (1, 1, 0), (1, 1, 1) and (1, 0, 1), which lie on the unique plane
x = 1. Thus we define the weight of (PVI) as (1, 0, 0, 1) and use the weighted
projective space CP 3(1, 0, 0, 1).

In this paper, the third, fifth and sixth Painlevé equations are studied with the
aid of the weighted projective spaces CP 3(p, q, r, s) and dynamical systems theory.
The weighted projective space is decomposed into the disjoint sum CP 3(p, q, r, s) ≃
CP 2(p, q, r) ∪ C3. This implies that the natural phase space C3 = {(x, y, z)} of the
Painlevé equations is embedded in CP 3(p, q, r, s) and the two dimensional manifold
CP 2(p, q, r) is attached at infinity. We regard the Painlevé equation as a three
dimensional autonomous vector field defined on CP 3(p, q, r, s). Then, the vector
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(p, q, r, s) deg(H) κ λ1, λ2, λ3 l c

PI (3, 2, 4, 5) 6 6 6, 4, 5 1 2
PII (2, 1, 2, 3) 4 4 4, 2, 3 2 3
PIV (1, 1, 1, 2) 3 3 3, 1, 2 3 4

PIII(D8) (−1, 2, 4, 1) 2 2 2, 4, 1 2 3
PIII(D7) (−1, 2, 3, 1) 2 2 2, 3, 1 2 3
PIII(D6) (0, 1, 2, 1) 2 2 2, 2, 1 3 4
PV (1, 0, 1, 1) 2 2 2, 1, 1 4 5
PVI (1, 0, 0, 1) 2 2 2, 0, 1 5 6

Table 1: deg(H) denotes the weighted degree of the Hamiltonian function with re-
spect to the weight deg(x) = p, deg(y) = q, deg(z) = r. κ denotes the Kovalevskaya
exponent defined in Sec.2.2. (λ1, λ2, λ3) is the weight for the weighted blow-up,
which coincides with the eigenvalues of the Jacobi matrix at the singularity. In
Chiba [3], it is proved that deg(H) = κ = λ1 and r = λ2, s = λ3. l gives the number
of types of Laurent series solutions given in Sec.2.2, and c is the number of local
charts for the space of initial conditions. We always have c = l + 1.

field has several fixed points on the infinity set CP 2(p, q, r). These fixed points
describe the asymptotic behavior of solutions. Some of these fixed points correspond
to movable singularities, and the other correspond to the irregular singular point.

The dynamical systems theory is applied to these fixed points to investigate the
Painlevé equations. The singular normal form of the Painlevé equation [2, 6], which
is a local integrable system around a movable singularity, is obtained by applying
the normal form theory around fixed points. The space of initial conditions and
its symplectic atlas are constructed by the weighted blow-up at these fixed points.
The weight for the weighted blow-up, which is also an invariant of the Painlevé
equation related to the Kovalevskaya exponent [2, 3], is determined by eigenvalues
of the Jacobi matrix of the vector field at the fixed points. It is known that the
Painlevé equations are reduced to the Riccati equations when the parameters take
certain specific values. Such Riccati solutions are characterized as a center (un)stable
manifold at the fixed point on CP 3(p, q, r, s). Although some of these results are well
known for experts, our new approach based on the weighted projective space and
dynamical systems theory provides a systematic way to investigate them. From our
analysis, it turns out that the weights and the Kovalevskaya exponents are important
invariants of the Painlevé equations. In particular, the Painlevé equations may be
classified by these invariants, which will be reported in a forthcoming paper.

Our method will be explained in detail for the third Painlevé equation of type D6

in Section 3. Since the strategy for the other Painlevé equations (PIII(D7)), (PIII(D8)),
(PV) and (PVI) is completely the same as that for (PIII(D6)), we only show a sketch
and several formulae for them after Section 4. See [2] for (PI), (PII) and (PIV).
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2 Settings

2.1 Weighted projective spaces

For a tuple of integers (p1, · · · , pm, r, s), consider the weighted C∗-action on Cm+2

defined by

(x1, · · · , xm, z, ε) 7→ (λp1x1, · · · , λpmxm, λ
rz, λsε), λ ∈ C∗ := C\{0}. (2.1)

The quotient space

CPm+1(p1, · · · , pm, r, s) := Cm+2\{0}/C∗

gives an m + 1 dimensional orbifold called the weighted projective space. In this
paper, we only use a three dimensional space. When (p, q, r, s) are positive integers,
the orbifold structure of CP 3(p, q, r, s) is obtained as follows:

The space CP 3(p, q, r, s) is defined by the equivalence relation on C4\{0}

(x, y, z, ε) ∼ (λpx, λqy, λrz, λsε).

(i) When x ̸= 0,

(x, y, z, ε) ∼ (1, x−q/py, x−r/pz, x−s/pε) =: (1, Y1, Z1, ε1).

Due to the choice of the branch of x1/p, we also obtain

(Y1, Z1, ε1) ∼ (e−2qπi/pY1, e
−2rπi/pZ1, e

−2sπi/pε1),

by putting x 7→ e2πix. This implies that the subset of CP 3(p, q, r, s) such that x ̸= 0
is homeomorphic to C3/Zp, where the Zp-action is defined as above.

(ii) When y ̸= 0,

(x, y, z, ε) ∼ (y−p/qx, 1, y−r/qz, y−s/qε) =: (X2, 1, Z2, ε2).

Because of the choice of the branch of y1/q, we obtain

(X2, Z2, ε2) ∼ (e−2pπi/qX2, e
−2rπi/qZ2, e

−2sπi/qε2).

Hence, the subset of CP 3(p, q, r, s) with y ̸= 0 is homeomorphic to C3/Zq.
(iii) When z ̸= 0,

(x, y, z, ε) ∼ (z−p/rx, z−q/ry, 1, z−s/rε) =: (X3, Y3, 1, ε3).

Similarly, the subset {z ̸= 0} ⊂ CP 3(p, q, r, s) is homeomorphic to C3/Zr.
(iv) When ε ̸= 0,

(x, y, z, ε) ∼ (ε−p/sx, ε−q/sy, ε−r/sz, 1) =: (X4, Y4, Z4, 1).

The subset {ε ̸= 0} ⊂ CP 3(p, q, r, s) is homeomorphic to C3/Zs.
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This proves that the orbifold structure of CP 3(p, q, r, s) is given by

CP 3(p, q, r, s) = C3/Zp ∪ C3/Zq ∪ C3/Zr ∪ C3/Zs.

The local charts (Y1, Z1, ε1), (X2, Z2, ε2), (X3, Y3, ε3) and (X4, Y4, Z4) defined above
are called inhomogeneous coordinates as the usual projective space. Note that they
give coordinates on the lift C3, not on the quotient C3/Zi (i = p, q, r, s). Therefore,
any equations written in these inhomogeneous coordinates should be invariant under
the corresponding Zi actions.

In what follows, we use the notation (x, y, z) for the fourth local chart instead of
(X4, Y4, Z4) because the Painlevé equation will be given on this chart. The trans-
formations between inhomogeneous coordinates are give by

x = ε
−p/s
1 = X2ε

−p/s
2 = X3ε

−p/s
3

y = Y1ε
−q/s
1 = ε

−q/s
2 = Y3ε

−q/s
3

z = Z1ε
−r/s
1 = Z2ε

−r/s
2 = ε

−r/s
3 .

(2.2)

The same transformation rule holds even if p, q, r, s include negative integers. If
there are 0 among them, for example if p = 0, then we have CP 3(0, q, r, s) ≃
C× CP 2(q, r, s). CP 3(p, q, r, s) is compact if and only if all p, q, r, s are positive.

2.2 Laurent series solutions and Kovalevskaya exponents

To construct the space of initial conditions, we need the expressions of the Laurent
series of solutions. Let (p, q, r, s) be the weight of a given system determined by the
Newton polyhedron. Suppose that the system has a Laurent series solution of the
form 

x =
∞∑
n=0

An(z − z0)
−p+n,

y =
∞∑
n=0

Bn(z − z0)
−q+n,

(2.3)

where (A0, B0) ̸= (0, 0) and z0 is a movable pole. Such a Laurent series solution is
called regular. A Laurent series solution is called exceptional if it is not expressed in
this form; i.e. (A0, B0) = (0, 0) or the order of a pole of either x or y is larger than
p or q, respectively. If a regular Laurent series represents a general solution of the
system, it includes an arbitrary parameter, which depends on initial conditions, other
than z0. The smallest integer κ such that (Aκ, Bκ) includes an arbitrary parameter
is called the Kovalevskaya exponent. In [3], it is proved that the Kovalevskaya
exponent of the regular Laurent series solution is invariant under a certain class
of coordinates transformations including the automorphism group of CP 3(p, q, r, s).
For the first, second and fourth Painlevé equations, all Laurent series solutions are
regular because they satisfy the assumptions (A1) and (A2). The third, fifth and
sixth Painlevé equations have exceptional Laurent series solutions, however, they
can be converted into the regular series by the Bäcklund transformations. Hence,
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the Kovalevskaya exponents κ of exceptional Laurent series solutions are well-defined
and given as in Table 1. In what follows, denote T := z − z0.

(PIII(D6)): The third Painlevé equation of type D6 has three types of Laurent
series solutions given by

(i)


x = 1 +

β

z0
· T + A2 · T 2 +O(T 3),

y = −z0 · T−1 +
1

2
(−1− α + β) +B2 · T +O(T 2),

(ii)

 x = 0 · T 0 − α

z0
· T + A2 · T 2 +O(T 3),

y = z0 · T−1 +
1

2
(1− α+ β) + B2 · T +O(T 2),

(iii)

 x = −z0 · T−2 + 0 · T−1 + A2 +O(T ),

y = −T +
−2 + α+ β

2z0
· T 2 +B2 · T 3 +O(T 4),

where A2 is an arbitrary constant and B2 is a certain function of A2. Since (p, q) =
(0, 1), the first two series are regular, while the last one is exceptional. The Ko-
valevskaya exponents of all series are κ = 2.

(PIII(D7)): The third Painlevé equation of type D7 has two types of Laurent series
solutions given by

(i)

 x =
1

z0
· T +

α− 1

2z20
· T 2 + A2 · T 3 +O(T 4),

y = −z20 · T−2 − z0 · T−1 +B2 +O(T ),

(ii)

 x = −z0 · T−2 + 0 · T−1 + A2 +O(T ),

y = −T 1 +
α− 2

2z0
· T 2 +B2 · T 3 +O(T 4),

where A2 is an arbitrary constant and B2 is a certain function of A2. Since (p, q) =
(−1, 2), the former series is regular, while the latter one is exceptional. The Ko-
valevskaya exponents of both series are κ = 2.

(PIII(D8)): The third Painlevé equation of type D8 has two types of Laurent series
solutions given by

(i)

 x = − 1

2z0
· T +

1

4z20
· T 2 +

2B2 − 1

4z20
· T 3 +O(T 4),

y = 2z20 · T−2 + 2z0 · T−1 +B2 +O(T ),

(ii)

 x = 2z20 · T−3 + 2z0 · T−2 + 0 · T−1 +O(1),

y =
1

2z0
T 2 + 0 · T 3 +B2 · T 4 +O(T 5),

where B2 is an arbitrary constant. Since (p, q) = (−1, 2), the former series is regular,
while the latter one is exceptional. The Kovalevskaya exponents of both series are
κ = 2.
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(PV): The fifth Painlevé equation has four types of Laurent series solutions given
by

(i)

 x = z0 · T−1 +
1

2
(1− z0 + α1 − α3) + A2 · T +O(T 2),

y = 1 +
α3

z0
· T +B2 · T 2 +O(T 3),

(ii)

 x = −z0 · T−1 +
1

2
(−1− z0 + α1 − α3) + A2 · T +O(T 2),

y = 0 · T 0 − α1

z0
· T +B2 · T 2 +O(T 3),

(iii)

 x = −z0 + (α1 + α2 + α3 − 2) · T + A2 · T 2 +O(T 3),

y = T−1 +
z0 + α1 + 2α2 + α3 − 2

2z0
+B2 · T +O(T 2),

(iv)

 x = 0 · T 0 + α2 · T + A2 · T 2 +O(T 3),

y = −T−1 +
z0 + α1 + 2α2 + α3

2z0
+B2 · T +O(T 2),

where A2 is an arbitrary constant and B2 is a certain function of A2. Since (p, q) =
(1, 0), (i) and (ii) are regular, while (iii) and (iv) are exceptional. The Kovalevskaya
exponents of all series are κ = 2.

(PVI): The sixth Painlevé equation has five types of Laurent series solutions
given by

(i)

 x = T−1 +
2− 4z0 + α0 − 2z0α0 + z0α3 − α4 + z0α4

2z0(z0 − 1)
+ A2 · T +O(T 2),

y = z0 + (2 + α0) · T +B2 · T 2 +O(T 3),

(ii)


x = −z0 · T−1 +

1− z0 − α0 + 2α3 − z0α3 − α4 + z0α4

2(z0 − 1)
+ A2 · T +O(T 2),

y = 1− α3

z0
· T +B2 · T 2 +O(T 3),

(iii)


x = (z0 − 1) · T−1 +

z0 − α0 − z0α3 + α4 + z0α4

2z0
+ A2 · T +O(T 2),

y = 0 · T 0 +
α4

z0 − 1
· T +B2 · T 2 +O(T 3),

(iv)


x = −α1(α1 + α2)

z0(z0 − 1)
· T +O(T 2),

y =
z0(z0 − 1)

α1

· T−1 +O(1),

(v)


x =

α1α2

z0(z0 − 1)
· T +O(T 2),

y = −z0(z0 − 1)

α1

· T−1 +O(1),

where A2 is an arbitrary constant and B2 is a certain function of A2. Since (p, q) =
(1, 0), (i), (ii) and (iii) are regular, while (iv) and (v) are exceptional. The Ko-
valevskaya exponents of all series are κ = 2.
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For all Painlevé equations, the number of types of Laurent series solutions is
smaller than the number of local charts of the space of initial conditions by one, see
Table 1.

3 The third Painlevé equation of type D6

3.1 PIII(D6) on CP 3(0, 1, 2, 1)

The orbifold structure of CP 3(0, 1, 2, 1) is given by

CP 3(0, 1, 2, 1) = C× CP 2(1, 2, 1)

= C×
(
C2 ∪ C2/Z2 ∪ C2

)
= C3 ∪ (C× C2/Z2) ∪ C3.

Thus, the space is covered by three inhomogeneous coordinates (X2, Z2, ε2), (X3, Y3, ε3)
and (x, y, z) related as 

x = X2 = X3,
y = ε−1

2 = Y3ε
−1
3 ,

z = Z2ε
−2
2 = ε−2

3 ,
(3.1)

(the first local chart (Y1, Z1, ε1) does not appear because p = 0).
We give the third Painlevé equation of type D6 on the local chart (x, y, z). On

the other local charts, (PIII(D6)) is expressed as
dX2

dε2
=

2X2 − 2X2
2 + ε2(α− αX2 − βX2)

ε2(1− 2X2 − Z2 − αε2 − βε2)
,

dZ2

dε2
=

2Z2 − 4X2Z2 − 2Z2
2 + ε2Z2(1− 2α− 2β)

ε2(1− 2X2 − Z2 − αε2 − βε2)
,

(3.2)


dX3

dε3
= − 2

ε23

(
2X3Y3 − 2X2

3Y3 + ε3(α− αX3 − βX3)
)
,

dY3

dε3
= − 2

ε23

(
1− Y 2

3 + 2X3Y
2
3 + ε3Y3(−

1

2
+ α + β)

)
.

(3.3)

In order to apply dynamical systems theory later, it is convenient to rewrite them
as 3-dim autonomous vector fields of the form

Ẋ2 = 2X2 − 2X2
2 + ε2(α− αX2 − βX2),

Ż2 = 2Z2 − 4X2Z2 − 2Z2
2 + ε2Z2(1− 2α− 2β),

ε̇2 = ε2(1− 2X2 − Z2 − αε2 − βε2),

(3.4)

and 
Ẋ3 = 2X3Y3 − 2X2

3Y3 + ε3(α− αX3 − βX3),

Ẏ3 = 1− Y 2
3 + 2X3Y

2
3 + ε3Y3(−

1

2
+ α + β),

ε̇3 = −ε23
2
,

(3.5)
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where (˙) = d/dt and t ∈ C parameterizes each integral curve.
We also have the decomposition

CP 3(0, 1, 2, 1) = CP 2(0, 1, 2) ∪ C3 (disjoint).

Since CP 2(0, 1, 2) = C× CP 1(1, 2) and CP 1(1, 2) is the usual projective line,

CP 3(0, 1, 2, 1) = (C× CP 1) ∪ C3, (3.6)

where C3 = {(x, y, z)} and C × CP 1 = {(X2, Z2, 0)} ∪ {(X3, Y3, 0)} in coordinates.
This implies that the set C×CP 1 is attached at infinity of the natural phase space
C3 = {(x, y, z)} of (PIII(D6)), and the asymptotic behavior of solutions can be studied
by the limit ε2 → 0 or ε3 → 0.

The vector fields (3.4) and (3.5) have exactly four fixed points on the infinity set
{ε2 = 0} ∪ {ε3 = 0} given by

(X2, Z2, ε2) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (1,−1, 0). (3.7)

The Jacobi matrices of (3.4) at the fixed points are 2 0 α
0 2 0
0 0 1

 ,−

 2 0 β
0 2 0
0 0 1

 ,

 2 0 α
−4 −2 γ
0 0 0

 ,−

 2 0 β
−4 −2 γ
0 0 0

 , (3.8)

respectively, where γ = 1− 2α− 2β. The latter two points, for which Z2 ̸= 0 ⇒ z =
∞, correspond to the irregular singular point. Since the Jacobi matrix has a zero
eigenvalue, there exists a one dimensional center manifold at each fixed point. The
asymptotic expansion of the center manifold [5] yields the asymptotic expansion of
(x(z), y(z)) as |z| → ∞.

On the other hand, the former two fixed points correspond to movable poles.
Indeed, it is easy to verify by using (3.1) that the regular Laurent series solutions (ii)
and (i) given in Sec.2.2 converge to the points (X2, Z2, ε2) = (0, 0, 0) and (1, 0, 0),
respectively, as z → z0. The exceptional Laurent series solution (iii) does not
converge to some point on CP 3(0, 1, 2, 1) as z → z0; the space CP 3(0, 1, 2, 1) is not
compact.

To treat the Laurent series (iii), we use the Bäcklund transformations. See [9]
for the complete list of the Bäcklund transformations of two dimensional Painlevé
equations. It is known that the transformation groups of the Painlevé equations are
isomorphic to the extended affine Weyl groups. For a classical root system R, the
affine Weyl group and the extended affine Weyl group are denoted by W (R(1)) and

W̃ (R(1)), respectively. Let G = Aut(R(1)) be the Dynkin automorphism group of

the extended Dynkin diagram. We have W̃ (R(1)) ∼= G ⋉ W (R(1)). For the third
Painlevé equation of type D6, R = 2A1 and

W̃ ((2A1)
(1)) ∼= G⋉W ((2A1)

(1)),

W ((2A1)
(1)) = ⟨s0, s1, s′0, s′1⟩,

G = Aut(D
(1)
6 ) = Aut((2A1)

(1)) = ⟨π1, π2, σ1⟩.
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α β y x z

s0 2− α β y +
1− α

f0 − 1
x− (1− α)(f3 − 2y)

f1
− (1− α)2z

f 2
1

z

s1 −α β y +
α

x
x z

s′0 α 2− β y +
1− β

f0
x− (1− β)f3

f2
− (1− β)2z

f 2
2

z

s′1 α −β y +
β

x− 1
x z

π1 1− α β −z

y

y

z
(xy − y + β) + 1 z

π2 α 1− β
z

y
−y

z
(xy + α) z

σ1 β α −y 1− x −z

Table 2: The action of the extended affine Weyl group for (PIII(D6)) .

The action of each element is given in Table 2, where f0 = x + (α + β − 1)/y +
z/y2, f1 = βy + (x− 1)y2 + z, f2 = αy + xy2 + z and f3 = 2xy + α + β − 1.

Let us consider another space CP 3(0, 1, 2, 1) with inhomogeneous coordinates

(X̃2, Z̃2, ε̃2), (X̃3, Ỹ3, ε̃3) and (x̃, ỹ, z̃) satisfying the same formula as (3.1). We glue
two copies of CP 3(0, 1, 2, 1) by the transformation π2

(x̃, ỹ, z̃, α̃, β̃) = π2(x, y, z, α, β)

=

(
−y

z
(xy + α),

z

y
, z, α, 1− β

)
, (3.9)

which defines a manifold denoted by M1. Since (PIII(D6)) is invariant under the

action of π2, the system written in the (X̃2, Z̃2, ε̃2)-chart also satisfies Eq.(3.4), in

which (α, β) is replaced by (α̃, β̃) = (α, 1− β). By the formula (3.9) or
X̃2 = −(xy2 + αy)/z,

Z̃2 = y2/z,
ε̃2 = y/z,

(3.10)

it is easy to show that the exceptional Laurent series (iii) is converted to the regular

series (i) in the (x̃, ỹ, z̃)-chart, and it approaches to the fixed point (X̃2, Z̃2, ε̃2) =
(1, 0, 0) as z → z0.

We have proved that Laurent series solutions (i), (ii) and (iii) of (PIII(D6)) con-

verge to the fixed points (X2, Z2, ε2) = (1, 0, 0), (0, 0, 0) and (X̃2, Z̃2, ε̃2) = (1, 0, 0) on
M1, respectively, as z → z0. Hence, the study of movable poles are reduced to the
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study of the fixed points and dynamical systems theory is applicable to investigate
them.

As a simple application, we can prove the next theorem.

Theorem 3.1. There exists a local analytic transformation (X2, Z2, ε2) 7→ (u, v, w)
defined near (X2, Z2, ε2) = (0, 0, 0) such that Eq.(3.4) is transformed into the lin-
earized system 

u̇ = 2u+ αw,
v̇ = 2v,
ẇ = w.

(3.11)

Similarly, the vector field is locally linearized around (X2, Z2, ε2) = (1, 0, 0) and

(X̃2, Z̃2, ε̃2) = (1, 0, 0).
This result implies that (PIII(D6)) is locally transformed to the integrable sys-

tem around each movable singularity. A proof is a straightforward application of
Poincaré’s linearization theorem [5] in dynamical systems theory. See [2] for the
detail, in which a similar result is proved for the first, second and fourth Painlevé
equations, and also [3], in which it is proved that any differential equations having
the Painlevé property is locally linearizable. Such a local integrable system for the
Painlevé equation is called the singular normal form in [2, 6].

3.2 The space of initial conditions

A purpose in this section is to construct the space of initial conditions for (PIII(D6)).
On the manifold M1, there are three singularities of the foliation of integral curves;

(X2, Z2, ε2) = (1, 0, 0), (0, 0, 0) and (X̃2, Z̃2, ε̃2) = (1, 0, 0). They correspond to mov-
able poles of the Laurent series solutions (i), (ii) and (iii), respectively. We will
resolve these singularities by weighted blow-ups. On the blow-up space, (PIII(D6)) is
again written in a Hamiltonian system, whose Hamiltonian function is polynomial
in dependent variables. This implies that singularities of the foliation are resolved
and the space of initial conditions is obtained by three times blow-ups of M1. This
strategy is applicable to the other Painlevé equations, even for higher dimensional
Painlevé equations.

(i) blow-up at (X2, Z2, ε2) = (0, 0, 0).
For the vector field (3.4), put

u = X2 + αε2,
v = Z2,
w = ε2.

Then, the linear part is diagonalized and we obtain
u̇ = 2u− 2u2 + w(αu− αv − βu),
v̇ = 2v + v(w − 4u− 2v + 2αw − 2βw),
ẇ = w − w(2u+ v − αw + βw).
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The origin (u, v, w) = (0, 0, 0) is a singularity of the foliation of integral curves. To
resolve it, we introduce the weighted blow-up defined by

u = u2
1 = v22u2 = w2

3u3,
v = u2

1v1 = v22 = w2
3v3,

w = u1w1 = v2w2 = w3.
(3.12)

The weight (2, 2, 1), the exponents in the right hand sides, is taken from the eigenval-
ues of the Jacobi matrix at the singularity. The exceptional divisor {u1 = 0}∪{v2 =
0} ∪ {w3 = 0} is the weighted projective space CP 2(2, 2, 1). The relation between
the original coordinates (x, y, z) and the new coordinates (u3, v3, w3) is given by

x = u3w
2
3 − αw3,

y = 1/w3,
z = v3,


u3 = xy2 + αy,
w3 = 1/y,
v3 = z.

(3.13)

Note that eventually the independent variable z is not changed and (3.13) defines
a fiber bundle over z-space, whose fiber is a (x, y)-space and (u3, w3)-space glued
by the above relation. In the new coordinates, (PIII(D6)) is transformed into the
Hamiltonian system

dw3

dz
= −∂H1

∂u3

,
du3

dz
=

∂H1

∂w3

,

with the Hamiltonian function

zH1 = −u+ u2w2 + uw2z − αwz − (α− β)uw, (3.14)

(here, the subscript is omitted for simplicity). Since H1 is polynomial in (u3, w3),
there are no singularities of the foliation in this chart; the singularity associated
with the Laurent series solution (ii) is resolved. Furthermore, we can verify that

dx ∧ dy = dw3 ∧ du3, dx ∧ dy + dH ∧ dz = dw3 ∧ du3 + dH1 ∧ dz. (3.15)

(ii) blow-up at (X2, Z2, ε2) = (1, 0, 0).

Putting X2 − 1 = X̂2 and u = X̂2 + βε2, v = Z2, w = ε2 for the vector field (3.4)
results in 

u̇ = −2u− 2u2 − w(αu− βu+ βv),
v̇ = −2v + v(w − 4u− 2v − 2αw + 2βw),
ẇ = −w − w(2u+ v + αw − βw).

To resolve the singularity at (u, v, w) = (0, 0, 0), we introduce the weighted blow-up
with the weight (2, 2, 1)

u = u2
4 = v25u5 = w2

6u6,
v = u2

4v4 = v25 = w2
6v6,

w = u4w4 = v5w5 = w6.
(3.16)
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The relation between the original coordinates (x, y, z) and the new coordinates
(u6, v6, w6) is given by

x = u6w
2
6 − βw6 + 1,

y = 1/w6,
z = v6,


u6 = xy2 + βy − y2,
w6 = 1/y,
v6 = z,

(3.17)

which defines a fiber bundle over z-space. In the new coordinates, (PIII(D6)) is written
as the Hamiltonian system

dw6

dz
= −∂H2

∂u6

,
du6

dz
=

∂H2

∂w6

,

with the Hamiltonian function

zH2 = u+ u2w2 + uw2z − βwz + (α− β)uw, (3.18)

(here, the subscript is omitted for simplicity). Since H2 is polynomial in (u6, w6),
the singularity associated with the Laurent series solution (i) is resolved. As before,
we can verify the symplectic relation (3.15).

(iii) blow-up at (X̃2, Z̃2, ε̃2) = (1, 0, 0).
This singularity is resolved by the same way as above by the weighted blow-

up with the weight (2, 2, 1). The final result is easily obtained by the Bäcklund
transformation (3.9) as follows. Define the new coordinates (u9, v9, w9) by u9 = x̃ỹ2 + β̃ỹ − ỹ2,

w9 = 1/ỹ,
v9 = z̃,

(3.19)

which is the same formula as (3.17). Substituting (3.9) yields
u9 = −z2/y2 − xz − (α + β − 1)z/y,
w9 = y/z,
v9 = z.

(3.20)

By this coordinates change, (PIII(D6)) is transformed into the Hamiltonian system of
(u9, w9), whose Hamiltonian function has the same form as (3.18), though (α, β) is

replaced by (α̃, β̃) = (α, 1− β).
In this manner, all singularities are resolved and we have

Theorem 3.2. The space of initial conditions E(z) of (PIII(D6)) is given by C2
(x,y) ∪

C2
(u3,w3)

∪ C2
(u6,w6)

∪ C2
(u9,w9)

glued by the symplectic transformations (3.13), (3.17)

and (3.20). The space E(z) is a nonsingular symplectic surface parameterized by
z ∈ C\{0}, on which (PIII(D6)) is expressed as a polynomial Hamiltonian system.

15



3.3 The Riccati solutions

It is known that when the parameter α is an integer or β is an integer, there exists a
one-parameter family of solutions of (PIII(D6)) satisfying the Riccati equation, which
is equivalent to the Bessel equation. For example, when α = 0 (resp. β = 0), the
Riccati equation is given by

z
dy

dz
= −y2 + βy + z, (resp. z

dy

dz
= y2 + αy + z). (3.21)

The Bäcklund transformations yield the Riccati equations for a general case α ∈ Z
or β ∈ Z. Let us prove this fact from a view point of dynamical systems theory.

Recall that there are two fixed points (X2, Z2, ε2) = (0, 1, 0), (1,−1, 0) of the
vector field (3.4) corresponding to the irregular singular point. The Jacobi matrices
at these points are shown in (3.8), and eigenvalues of them are 2,−2, 0. Hence, there
exist a center-stable manifold and a center-unstable manifold at these points. Let
us calculate them explicitly.

For the point (X2, Z2, ε2) = (0, 1, 0), put Ẑ2 = Z2 − 1 and
u = X2 + Ẑ2 +

1

2
ε2(α + 2β − 1),

v = −X2 −
1

2
αε2,

w = ε2.

Then, the linear part of Eq.(3.4) is diagonalized around (0, 1, 0) and we obtain

u̇ = −2u+ u

(
−2u− 1

2
w − α

2
w + βw

)
+ (1− α)

(
1

2
vw +

1

4
w2 − β

2
w2

)
,

v̇ = 2v + v
(
2v +

α

2
w − βw

)
+

1

2
α

(
uw +

1

2
w2 − βw2

)
,

ẇ = w

(
v − u− 1

2
w

)
.

(3.22)
The stable, unstable, center subspaces are u, v, w-directions, respectively. In partic-
ular, the center-unstable manifold (resp. the center-stable manifold) is expressed as
the graph of some function v = ϕ(u,w) (resp. u = φ(v, w)).

It is obvious that when α = 0, the center-unstable manifold is exactly given by
v = 0. This implies X2 = x = 0. When α = 0 and x = 0, Eq.(1.7) is reduced to the
Riccati equation (3.21). Similarly, when α = 1, the center-stable manifold is exactly
given by u = 0. This implies

0 = X2 + Ẑ2 + βε2 = x+ z/y2 + β/y − 1.

Substituting this relation to Eq.(1.7) yields the Riccati equation for α = 1, though
it is also obtained by the Bäcklund transformation to that for α = 0. The same
argument at the point (X2, Z2, ε2) = (1,−1, 0) provides the Riccati equation for
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β = 0.

Theorem 3.3. When α ∈ Z or β ∈ Z, there exists a one-parameter family
of solutions of (PIII(D6)) governed by the Riccati equation of Bessel type. The
one-parameter family of solutions forms a center-(un)stable manifold of (3.4) in
CP 3(0, 1, 2, 1).

The same argument is applicable to the other Painlevé equations, even for higher
dimensional Painlevé equations. For two dimensional equations, it is well known that
when parameters take certain specific values, the Painlevé equations are reduced to
Riccati-type equations except for (PI), (PIII(D7)) and (PIII(D8)). For such specific
values of parameters, center-(un)stable manifolds in CP 3(p, q, r, s) are exactly cal-
culated and the Riccati equations are obtained by restricting the equations to the
center-(un)stable manifolds.

The result is summarized in Table 3. The third column shows one of the param-
eters for which equations are reduced to the Riccati equations. The other possible
parameters are obtained by the Bäcklund transformations. The fourth column de-
notes the name of the Riccati equation when it is written as a second order linear
equation. Note that the weight of the Riccati equation is also defined through the
Newton polyhedron. For example, the Riccati equation of Airy type is defined by

dy

dz
= y2 + z. (3.23)

The exponents of monomials in the right hand side are (1, 1) and (−1, 2). Since
they are on the line y + 2z = 3, the weighted projective space for the equation is
CP 2(1, 2, 3). See [4] for the analysis of the Airy equation by means of the weighted
projective space. The last column of Table 3 gives the weight of each Riccati equa-
tion. It is interesting to note that these weights are obtained by deleting the first or
second numbers from the weights of the corresponding Painlevé equations.

weight parameter Riccati weight

PII (2, 1, 2, 3) α = 1/2 Airy (1, 2, 3)
PIV (1, 1, 1, 2) α = 0 Hermite (1, 1, 2)

PIII(D6) (0, 1, 2, 1) α = 0 Bessel (1, 2, 1)
PV (1, 0, 1, 1) α1 = 0 CHG (1, 1, 1)
PVI (1, 0, 0, 1) α1 = 0 HG (1, 0, 1)

Table 3: The type of Riccati equations and their weights. CHG and HG denote the
confluent hypergeometric and hypergeometric equations, respectively.

3.4 Boutroux’s coordinates

For the first and second Painlevé equations, the third local chart (X3, Y3, ε3) of
CP 3(p, q, r, s) defined by Eq.(2.2) is equivalent to Boutroux’s coordinates introduced
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in [1] to investigate the irregular singular point z = ∞. For the other Painlevé
equations, the chart (X3, Y3, ε3) plays the same role as Boutroux’s coordinates; as
ε3 → 0, Eq.(3.5) is reduced to the autonomous Hamiltonian system{

Ẋ3 = 2X3Y3 − 2X2
3Y3,

Ẏ3 = 1− Y 2
3 + 2X3Y

2
3 ,

(3.24)

which is often called the autonomous limit. Since a generic integral curve given by
HIII(D6) = X2

3Y
2
3 −X3Y

2
3 +X3 = const. is an elliptic curve, a general solution can

be expressed by Weierstrass’s elliptic functions. Then, the system (3.5) with small
ε3 can be studied by a perturbation method.

Let us calculate the action of the extended affine Weyl group W̃ ((2A1)
(1)) re-

stricted on the set {ε3 = 0}, which leaves the autonomous limit (3.24) invariant.

Proposition 3.4. The birational transformation group W̃ ((2A1)
(1)) is extended

to the birational transformation group acting on CP 3(0, 1, 2, 1). The transforma-
tion group which leaves the autonomous limit (3.24) invariant is given by Z2 ⋉
Aut((2A1)

(1)) = Z2 ⋉ ⟨π1, π2, σ1⟩.
Proof. The first part of Proposition is verified by a straightforward calculation. To
show the second part, we should write down the actions in the (X3, Y3, ε3)-chart.
For example, the action of s1 in the (X3, Y3, ε3)-chart is given by

(X3, Y3, ε3, α, β) 7→ (X3, Y3 + α
ε3
X3

, ε3,−α, β).

On the set {ε3 = 0}, it is reduced to

(X3, Y3, α, β) 7→ (X3, Y3,−α, β).

Since the autonomous limit (3.24) is independent of the parameters α, β, the action
of s1 to (3.24) is trivial. Similarly, the actions of s0, s

′
0 and s′1 to (3.24) are reduced

to the trivial one. On the other hand, it is easy to confirm that the restriction of
the actions of π1, π2, σ1 are not trivial, which are explicitly given by

π1 : (X3, Y3) 7→ (X3Y
2
3 − Y 2

3 + 1, −1/Y3),

π2 : (X3, Y3) 7→ (−X3Y
2
3 , 1/Y3),

σ1 : (X3, Y3) 7→ (1−X3,
√
−1Y3).

Furthermore, (3.24) is invariant under the Z2 action Y3 7→ −Y3 due to the orbifold
structure of CP 3(0, 1, 2, 1). Since r = deg(z) = 2, (X3, Y3, ε3) are coordinates on
the lift C3 of the quotient C3/Z2, where Z2 action is defined by (X3, Y3, ε3) 7→
(X3,−Y3,−ε3). This is reduced to the action Y3 7→ −Y3 on the set {ε3 = 0}. □

A similar result also holds for the other Painlevé equations except for (PVI) and
summarized in Table 4. If r = deg(z) = 1, the symmetry group of the autonomous
limit is given by the Dynkin automorphism group G = Aut(R(1)) because the action
of W (R(1)) on the set {ε3 = 0} is reduced to the trivial action as above. If r > 1, the
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weight HJ symmetry

PI (3, 2, 4, 5) X2 − 4Y 3 − 2Y Z4

PII (2, 1, 2, 3) X2 − Y 4 − Y 2 Z2 ⋉ Aut(A
(1)
1 )

PIV (1, 1, 1, 2) X2Y −XY 2 − 2XY Aut(A
(1)
2 )

PIII(D8) (−1, 2, 4, 1) X2Y 2 − 1
2
Y − 1

2Y
Z4 ⋉ Z2

PIII(D7) (−1, 2, 3, 1) X2Y 2 +X + Y Z3 ⋉ Aut(A
(1)
1 )

PIII(D6) (0, 1, 2, 1) X2Y 2 −XY 2 +X Z2 ⋉ Aut((2A1)
(1))

PV (1, 0, 1, 1) X2Y 2 −X2Y +XY 2 −XY Aut(A
(1)
3 )

Table 4: Hamiltonian functions of the autonomous limit defined on the set {ε3 = 0}.
(X3, Y3) is denoted by (X, Y ) for simplicity.

autonomous limit is further invariant under the Zr action arising from the orbifold
structure of CP 3(p, q, r, s). The autonomous limit on the set {ε3 = 0} is not defined
for (PVI) in this way because r = 0.

In the rest of this paper, the other Painlevé equations (PIII(D7)), (PIII(D8)), (PV)
and (PVI) are studied with the aid of the weighted projective spaces and dynamical
systems theory (see [2] for (PI), (PII) and (PIV)). Since the strategy is completely
the same as that for (PIII(D6)), we only show important steps and formulae.

4 The third Painlevé equation of type D7

The orbifold CP 3(−1, 2, 3, 1) for (PIII(D7)) is covered by four inhomogeneous coordi-
nates (Y1, Z1, ε1), (X2, Z2, ε2), (X3, Y3, ε3) and (x, y, z) related as

x = ε1 = X2ε2 = X3ε3
y = Y1ε

−2
1 = ε−2

2 = Y3ε
−2
3

z = Z1ε
−3
1 = Z2ε

−3
2 = ε−3

3 .
(4.1)

We give the third Painlevé equation of type D7 on the local chart (x, y, z). On
the other local charts, (PIII(D7)) is expressed as rational differential equations. By
rewriting them as 3-dim autonomous vector fields, we obtain

Ẏ1 = 2Y1 + 2Y 2
1 − Z1 + αε1Y1,

Ż1 = 3Z1 + 6Y1Z1 − ε1Z1 + 3αε1Z1,
ε̇1 = ε1(1 + 2Y1 + αε1),

(4.2)


Ẋ2 = 2 + 2X2

2 −X2Z2 + αε2X2,

Ż2 = 6X2Z2 + 3Z2
2 + 3αε2Z2 − 2ε2Z2,

ε̇2 = ε2(2X2 + Z2 + αε2),

(4.3)
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and 
Ẋ3 = −1− 2X2

3Y3 + ε3(
1

3
X3 − αX3),

Ẏ3 = 1 + 2X3Y
2
3 + ε3(−

2

3
Y3 + αY3),

ε̇3 = −1

3
ε23.

(4.4)

We have the decomposition

CP 3(−1, 2, 3, 1) = CP 2(−1, 2, 3) ∪ C3 (disjoint).

where C3 = {(x, y, z)} and CP 2(−1, 2, 3) = {ε1 = 0} ∪ {ε2 = 0} ∪ {ε3 = 0} in
coordinates. This implies that the set CP 2(−1, 2, 3) is attached at infinity of the
phase space C3. Thus, the asymptotic behavior of solutions can be studied by the
limit ε1 → 0 or ε2 → 0 or ε3 → 0.

The autonomous limit is a Hamiltonian system obtained by putting ε3 = 0
for Eq.(4.4). On the set ε3 = 0, the action of the extended affine Weyl group

W̃ (A
(1)
1 ) ≃ Aut(A

(1)
1 )⋉W (A

(1)
1 ) is reduced to the action of Aut(A

(1)
1 ) ≃ Z2 defined

by (X3, Y3) 7→ (Y3, X3). Further, the autonomous limit is invariant under the Z3

action (r = 3) induced by the orbifold structure, see Table 4.
The vector field (4.2) has fixed points on the infinity set CP 2(−1, 2, 3) given by

(Y1, Z1, ε1) = (−1, 0, 0) and (−1/2,−1/2, 0). The Jacobi matrices of (4.2) at the
fixed points are

−

 2 1 α
0 3 0
0 0 1

 , −

 0 1 α/2
3 0 (3α− 1)/2
0 0 0

 , (4.5)

respectively. The latter fixed point having a zero eigenvalue corresponds to the
irregular singular point, and the former one corresponds to a movable singularity
associated with the regular Laurent series solution (i) given in Sec.2.2; The Laurent
series (i) converges to the point (Y1, Z1, ε1) = (−1, 0, 0) as z → z0. The exceptional
Laurent series solution (ii) does not converge to some point on CP 3(−1, 2, 3, 1) as
z → z0.

Remark 4.1. These fixed points are also included in the chart (X2, Z2, ε2). How-
ever, it is better to use the first chart (Y1, Z1, ε1) because the second chart has to be
divided by the Z2 action due to the orbifold structure.

To treat the Laurent series (ii), we use the Bäcklund transformation σ defined
by

(x̃, ỹ, z̃, α̃) = σ(x, y, z, α) =
(
−y

z
, zx, −z, 1− α

)
. (4.6)

We consider another space CP 3(−1, 2, 3, 1) with inhomogeneous coordinates denoted
by (x̃, ỹ, z̃) etc. We glue two copies of CP 3(−1, 2, 3, 1) by the transformation σ.
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Then, it is easy to show that the exceptional Laurent series (ii) is converted to
the regular series (i) in the (x̃, ỹ, z̃)-chart, and it approaches to the fixed point

(Ỹ1, Z̃1, ε̃1) = (−1, 0, 0) as z → z0.
To construct the space of initial conditions of (PIII(D7)), we perform the weighted

blow-ups at the points (Y1, Z1, ε1) = (−1, 0, 0) and (Ỹ1, Z̃1, ε̃1) = (−1, 0, 0).
(i) blow-up at (Y1, Z1, ε1) = (−1, 0, 0).

For the vector field (4.2), put Ŷ1 = Y1 + 1 and

u = Ŷ1 − Z1 + αε1, v = Z1, w = ε2.

Then, the linear part is diagonalized around (−1, 0, 0) and we obtain
u̇ = 2u− 2u2 + 2uv + 4v2 − vw + α(uw − 2vw),
v̇ = 3v + v(w − 6u− 6v + 3αw),
ẇ = w − w(2u+ 2v − αw).

The origin (u, v, w) = (0, 0, 0) is a singularity of the foliation of integral curves. To
resolve it, we introduce the weighted blow-up defined by

u = u2
1 = v22u2 = w2

3u3,
v = u3

1v1 = v32 = w3
3v3,

w = u1w1 = v2w2 = w3.
(4.7)

The weight (2, 3, 1) is taken from the eigenvalues of the Jacobi matrix at the singular-
ity. The relation between the original coordinates (x, y, z) and the new coordinates
(u3, v3, w3) is given by

x = w3,
y = u3 + v3w3 − α/w3 − 1/w2

3,
z = v3,


u3 = y − xz + α/x+ 1/x2,
w3 = x,
v3 = z.

(4.8)

In the new coordinates, (PIII(D7)) is transformed into the Hamiltonian system

dw3

dz
= −∂H1

∂u3

,
du3

dz
=

∂H1

∂w3

,

with the polynomial Hamiltonian function

zH1 = −u+ u2w2 − 1

2
w2z + 2uw3z + w4z2 − α(uw + w2z), (4.9)

(here, the subscript is omitted for simplicity). Furthermore, we can verify the sym-
plectic relation (3.15).

(ii) blow-up at (Ỹ1, Z̃1, ε̃1) = (−1, 0, 0).
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This singularity is resolved by the same way as above by the weighted blow-up
with the weight (2, 3, 1). The result is easily obtained by the Bäcklund transforma-
tion σ as follows. Define the new coordinates (u6, v6, w6) by

u6 = ỹ − x̃z̃ + α̃/x̃+ 1/x̃2,
w6 = x̃,
v6 = z̃.

(4.10)

Substituting (4.6) yields
u6 = xz + xy − (1− α)z/y + z2/y2,
w6 = −y/z,
v6 = −z.

(4.11)

By this coordinates change, (PIII(D7)) is transformed into the Hamiltonian system
of (u6, w6), whose Hamiltonian function has the same form as (4.9), for which α is
replaced by α̃ = 1− α.

In this manner, all singularities are resolved and the space of initial conditions of
(PIII(D7)) is given by C2

(x,y)∪C2
(u3,w3)

∪C2
(u6,w6)

glued by the symplectic transformations

(4.8), (4.11).

5 The third Painlevé equation of type D8

The orbifold CP 3(−1, 2, 4, 1) for (PIII(D8)) is covered by four inhomogeneous coordi-
nates related as 

x = ε1 = X2ε2 = X3ε3
y = Y1ε

−2
1 = ε−2

2 = Y3ε
−2
3

z = Z1ε
−4
1 = Z2ε

−4
2 = ε−4

3 .
(5.1)

We give the third Painlevé equation of type D8 on the local chart (x, y, z). On
the other local charts, (PIII(D8)) is expressed as rational differential equations. By
rewriting them as 3-dim autonomous vector fields, we obtain

Ẏ1 = Y 3
1 − 2Y 4

1 − Y1Z1,

Ż1 = 2Y 2
1 Z1 − 2Z2

1 − 8Y 3
1 Z1 + ε1Y

2
1 Z1,

ε̇1 = ε1(
1

2
Y 2
1 − 2Y 3

1 − 1

2
Z1),

(5.2)


Ẋ3 = −2X2

3Y3 +
1

2
− 1

2Y 2
3

+
1

4
ε3X3,

Ẏ3 = 2X3Y
2
3 − 1

2
ε3Y3,

ε̇3 = −1

4
ε23.

(5.3)

We will not use the vector field written in (X2, Z2, ε2)-chart.
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The autonomous limit is a Hamiltonian system obtained by putting ε3 = 0 for
Eq.(5.3). It is known that (PIII(D8)) is invariant under the transformation π defined
by

(x̃, ỹ, z̃) = π(x, y, z) =

(
−xy2

z
+

y

2z
,
z

y
, z

)
. (5.4)

On the set ε3 = 0, this action is reduced to the Z2 action given by (X3, Y3) 7→
(−X3Y

2
3 , 1/Y3). Further, the autonomous limit is invariant under the Z4 action

(r = 4) induced by the orbifold structure, see Table 4.
The vector field (5.2) has the fixed point (Y1, Z1, ε1) = (1/2, 0, 0). The Jacobi

matrix of (5.2) at the fixed point is

−1

8

 2 4 0
0 4 0
0 0 1

 . (5.5)

The regular Laurent series solution (i) given in Sec.2.2 converges to this point as
z → z0, while the exceptional Laurent series solution (ii) does not converge to
some point on CP 3(−1, 2, 4, 1). To treat the Laurent series (ii), consider another
space CP 3(−1, 2, 4, 1) with inhomogeneous coordinates denoted by (x̃, ỹ, z̃) etc. We
glue two copies of CP 3(−1, 2, 4, 1) by the transformation (5.4). Then, it is easy to
show that the exceptional Laurent series (ii) is converted to the regular series (i) in

the (x̃, ỹ, z̃)-chart, and it approaches to the fixed point (Ỹ1, Z̃1, ε̃1) = (1/2, 0, 0) as
z → z0.

To construct the space of initial conditions of (PIII(D8)), we perform the weighted

blow-ups at the points (Y1, Z1, ε1) = (1/2, 0, 0) and (Ỹ1, Z̃1, ε̃1) = (1/2, 0, 0).
(i) blow-up at (Y1, Z1, ε1) = (1/2, 0, 0).

For the vector field (5.2), put Ŷ1 = Y1 − 1/2 and

u = Ŷ1 − 2Z1, v = Z1, w = ε2.

Then, the linear part is diagonalized around (−1, 0, 0). To resolve the singularity
(u, v, w) = (0, 0, 0) of the resultant equation, we introduce the weighted blow-up
defined by 

u = u2
1 = v22u2 = w2

3u3,
v = u4

1v1 = v42 = w4
3v3,

w = u1w1 = v2w2 = w3.
(5.6)

The relation between the original coordinates (x, y, z) and the new coordinates
(u3, v3, w3) is given by

x = w3,

y = u3 + 2v3w
2
3 +

1

2w2
3

,

z = v3,


u3 = y − 2x2z − 1

2x2
,

w3 = x,
v3 = z.

(5.7)
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In the new coordinates, (PIII(D8)) is transformed into the Hamiltonian system with
the Hamiltonian function

zH1 =
u

2
+ u2w2 + w2z − 2

3
w3z + 4uw4z + 4w6z2 − w2z

1 + 2uw2 + 4w4z
, (5.8)

(here, the subscript is omitted for simplicity). Furthermore, we can verify the sym-
plectic relation (3.15).

The blow-up at (Ỹ1, Z̃1, ε̃1) = (−1, 0, 0) is done in the same way and the Hamil-
tonian function is easily obtained by applying the transformation (5.4) to the above
H1. In this manner, we can obtain the space of initial conditions.

6 The fifth Painlevé equation

The orbifold CP 3(1, 0, 1, 1) for (PV) is covered by three inhomogeneous coordinates
(Y1, Z1, ε1), (X3, Y3, ε3) and (x, y, z) related as

x = ε−1
1 = X3ε

−1
3

y = Y1 = Y3

z = Z1ε
−1
1 = ε−1

3 .
(6.1)

The second chart does not appear because q = 0. We give the fifth Painlevé equation
on the local chart (x, y, z). On the other local charts, (PV) is expressed as rational
differential equations. By rewriting them as 3-dim autonomous vector fields, we
obtain 

Ẏ1 = −2Y1 + 2Y 2
1 − Y1Z1 + Y 2

1 Z1 + α1ε1 − (α1 + α3)Y1ε1,

Ż1 = −Z1 + 2Y1Z1 − Z2
1 + ε1Z1 + 2Y1Z

2
1 − (α1 + α3)Z1ε1 + α2ε1Z

2
1 ,

ε̇1 = ε1(−1 + 2Y1 − Z1 + 2Y1Z1 − (α1 + α3)ε1 + α2Z1ε1),

(6.2)


Ẋ3 = X3 +X2

3 − 2X3Y3 − 2X2
3Y3 − α2ε3 + (α1 + α3 − 1)ε3X3,

Ẏ3 = −Y3 + Y 2
3 − 2X3Y3 + 2X3Y

2
3 + α1ε3 − (α1 + α3)ε3Y3,

ε̇3 = −ε23.

(6.3)

The autonomous limit is a Hamiltonian system obtained by putting ε3 = 0 for
Eq.(6.3). On the set {ε3 = 0}, the action of the extended affine Weyl group

W̃ (A
(1)
3 ) ≃ Aut(A

(1)
3 ) ⋉ W (A

(1)
3 ) is reduced to the action of Aut(A

(1)
3 ) generated

by (X3, Y3) 7→ (Y3 − 1,−X3) and (X3, Y3) 7→ (X3, 1− Y3).
The vector field (6.2) has fixed points on the infinity set CP 2(1, 0, 1) given by

(Y1, Z1, ε1) = (0, 0, 0), (1, 0, 0), (0,−1, 0), (1/2,−2, 0), (1,−1, 0). (6.4)

The Jacobi matrices of (6.2) at these fixed points are

−

 2 0 −α1

0 1 0
0 0 1

 ,

 2 0 −α3

0 1 0
0 0 1

 ,

−1 0 α1

0 1 ∗
0 0 0

 ,

 0 −1/4 ∗
4 0 ∗
0 0 0

 ,

 1 0 −α3

0 −1 ∗
0 0 0

 ,

(6.5)
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respectively, where ∗ denotes certain long numerical expressions. The latter three
fixed points having zero eigenvalues correspond to the irregular singular point. The
center-(un)stable manifolds at these points can be exactly calculated for certain
specific values of parameters, which give the Riccati equations of confluent hyperge-
ometric type (Table 3). The former two points correspond to movable singularities
associated with the regular Laurent series solutions (ii) and (i) given in Sec.2.2. The
Laurent series (ii) and (i) converge to the points (Y1, Z1, ε1) = (0, 0, 0) and (1, 0, 0)
as z → z0, respectively. The exceptional Laurent series solutions (iii) and (iv) do
not converge to some point on CP 3(1, 0, 1, 1) as z → z0.

To treat the Laurent series (iii) and (iv), we use the Bäcklund transformation π
defined by

(x̃, ỹ, z̃, α̃1, α̃2, α̃3) = π(x, y, z, α1, α2, α3)

=
(
z(y − 1), −x

z
, z, α2, α3, 1− α1 − α2 − α3

)
. (6.6)

We consider another space CP 3(1, 0, 1, 1) with inhomogeneous coordinates denoted
by (x̃, ỹ, z̃) etc. We glue two copies of CP 3(1, 0, 1, 1) by the transformation π.
Then, the exceptional Laurent series (iii) and (iv) are converted to the regular series
(i) and (ii), respectively, in the (x̃, ỹ, z̃)-chart. They converge to the fixed points

(Ỹ1, Z̃1, ε̃1) = (1, 0, 0) and (0, 0, 0) as z → z0, respectively.
To construct the space of initial conditions of (PV), we perform the weighted

blow-ups at these four points.

(i) blow-up at (Y1, Z1, ε1) = (0, 0, 0).
For the vector field (6.2), put u = Y1 − α1ε1, v = Z1, w = ε1. Then, the linear

part is diagonalized. For the system of (u, v, w), we introduce the weighted blow-up
defined by 

u = u2
1 = v22u2 = w2

3u3,
v = u1v1 = v2 = w3v3,
w = u1w1 = v2w2 = w3.

(6.7)

The weight (2, 1, 1) is taken from the eigenvalues of the Jacobi matrix at the singular-
ity. The relation between the original coordinates (x, y, z) and the new coordinates
(u3, v3, w3) is given by

x = 1/w3,
y = u3w

2
3 + α1w3,

z = v3,


u3 = x2y − α1x,
w3 = 1/x,
v3 = z.

(6.8)

In the new coordinates, (PV) is transformed into the Hamiltonian system, whose
Hamiltonian function is

zH1 = u−u2w2−u2w3z+(z−α1+α3)uw−(2α1+α2)uw
2z−α1(α1+α2)wz, (6.9)
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(here, the subscript is omitted for simplicity). Furthermore, we can verify the sym-
plectic relation (3.15).

(ii) blow-up at (Y1, Z1, ε1) = (1, 0, 0).

For the vector field (6.2), put Ŷ1 = Y1 − 1 and u = Ŷ1 − α3ε1, v = Z1, w = ε1.
Then, the linear part is diagonalized around (1, 0, 0). For the system of (u, v, w), we
introduce the weighted blow-up defined by

u = u2
4 = v25u5 = w2

6u6,
v = u4v4 = v5 = w6v6,
w = u4w4 = v5w5 = w6.

(6.10)

The relation between the original coordinates (x, y, z) and the coordinates (u6, v6, w6)
is given by 

x = 1/w6,
y = u6w

2
6 + α3w6 + 1,

z = v6,


u6 = x2y − x2 − α3x,
w6 = 1/x,
v6 = z.

(6.11)

In the new coordinates, (PV) is transformed into the Hamiltonian system, whose
Hamiltonian function is

zH1 = −u− u2w2 − u2w3z + (−z + α1 − α3)uw− (2α3 + α2)uw
2z − α3(α2 + α3)wz,

(6.12)
(here, the subscript is omitted for simplicity). Again, we can verify the symplectic
relation (3.15).

The singularities (Ỹ1, Z̃1, ε̃1) = (1, 0, 0) and (0, 0, 0) are resolved by the same way
as above by the weighted blow-up with the weight (2, 1, 1). The result is easily ob-
tained by the Bäcklund transformation π as in the previous sections. In this manner,
all singularities are resolved and it turns out that the space of initial conditions of
(PV) is given by five copies of C2 glued by the symplectic transformations.

7 The sixth Painlevé equation

The orbifold CP 3(1, 0, 0, 1) for (PVI) is covered by two inhomogeneous coordinates
(Y1, Z1, ε1) and (x, y, z) related as

x = ε−1
1

y = Y1

z = Z1.
(7.1)

We give the sixth Painlevé equation on the local chart (x, y, z). On the other local
chart (Y1, Z1, ε1), (PVI) is expressed as a rational differential equation. As before,
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we rewrite it as a 3-dim autonomous polynomial vector field, whose expression is
too long and omitted here. This vector field has fixed points

(Y1, Z1, ε1) = (0, c, 0), (1, c, 0), (c, c, 0), (7.2)

where c ∈ C is an arbitrary constant. The Jacobi matrices at these fixed points are

c

 2 0 −α4

0 0 c− 1
0 0 1

 , (1− c)

 2 0 −α3

0 0 −c
0 0 1

 , c(c− 1)

 2 −2 1− α0

0 0 1
0 0 1

 , (7.3)

respectively. These fixed points correspond to movable singularities associated with
the regular Laurent series solutions (iii), (ii) and (i) given in Sec.2.2. The Laurent
series (iii), (ii) and (i) converge to these points as z → z0, respectively. The ex-
ceptional Laurent series solutions (iv) and (v) do not converge to some point on
CP 3(1, 0, 0, 1) as z → z0.

To treat the Laurent series (iv) and (v), we use the Bäcklund transformation π1

defined by

(x̃, ỹ, z̃, α̃0, α̃1, α̃2, α̃3, α̃4) = π1(x, y, z, α0, α1, α2, α3, α4)

=

(
−y

z
(xy + α2),

z

y
, z, α3, α4, α2, α0, α1

)
. (7.4)

We consider another space CP 3(1, 0, 0, 1) with inhomogeneous coordinates denoted
by (x̃, ỹ, z̃) etc. We glue two copies of CP 3(1, 0, 0, 1) by the transformation π1. Then,
the exceptional Laurent series (iv) becomes the regular series (iii) in the (x̃, ỹ, z̃)-

chart. It converges to the fixed point (Ỹ1, Z̃1, ε̃1) = (0, c, 0) as z → z0. On the other
hand, the exceptional Laurent series (v) is expressed as x̃(z) ∼ O(1), ỹ(z) ∼ O(T ) in
the (x̃, ỹ, z̃)-chart. Since the solution is holomorphic at z = z0, we need not resolve
the singularity.

To construct the space of initial conditions of (PVI), we perform the weighted
blow-ups at four points.

(i) blow-up at (Y1, Z1, ε1) = (0, c, 0).
For the vector field written in (Y1, Z1, ε1)-chart, put u = Y1 −α4ε1, v = Z1, w =

ε1. Then, we introduce the weighted blow-up with the weight (2, 0, 1) defined by
u = u2

1 = w2
2u2,

v = v1 = v2,
w = u1w1 = w2.

(7.5)

This is a blow-up along the line {v = const}. The relation between the original
coordinates (x, y, z) and the new coordinates (u2, v2, w2) is given by

x = 1/w2,
y = u2w

2
2 + α2w2,

z = v2,


u2 = x2y − α2x,
w2 = 1/x,
v2 = z.

(7.6)
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In the new coordinates, (PVI) is transformed into the Hamiltonian system, whose
Hamiltonian function is

z(z − 1)H1 = u3w4 + uz − u2w2(1 + z)

+(1− α0 − α3 + 2α4)u
2w3 + (α0 − α4 + zα3 − zα4 − 1)uw

+α4

(
α1α2 + α2

2 + (1− α0 − α3)α4

)
w

+
(
α1α2 + α2

2 + 2α4 − 2α0α4 − 2α3α4 + α2
4

)
uw2.

(here, the subscript is omitted for simplicity). Furthermore, we can verify the sym-
plectic relation (3.15).

The other singularities (Y1, Z1, ε1) = (1, c, 0), (c, c, 0) and (Ỹ1, Z̃1, ε̃1) = (0, c, 0)
are resolved by the same way as above by the weighted blow-up with the weight
(2, 0, 1). In this manner, all singularities are resolved and the space of initial con-
ditions of (PVI) is obtained by six copies of C2 glued by the symplectic transfor-
mations; i.e. (x, y), (x̃, ỹ) and four charts arising from blow-ups at four points. We
need (x̃, ỹ)-chart for the exceptional Laurent series (v).
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