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Abstract

Formal series solutions and the Kovalevskaya exponents of a quasi-homogeneous
polynomial system of differential equations are studied by means of a weighted
projective space and dynamical systems theory. A necessary and sufficient condition
for the series solution to be a convergent Laurent series is given, which improve the
well known Painlevé test. In particular, if a given system has the Painlevé property,
an algorithm to construct Okamoto’s space of initial conditions is given. The space of
initial conditions is obtained by weighted blow-ups of the weighted projective space,
where the weights for the blow-ups are determined by the Kovalevskaya exponents.
The results are applied to the first Painlevé hierarchy (2m-th order first Painlevé
equation).
Keywords: quasi-homogeneous vector field; weighted projective space; Kovalevskaya
exponent; the first Painlevé hierarchy

1 Introduction

A system of polynomial differential equations

dxi
dz

= fi(x1, · · · , xm, z) + gi(x1, · · · , xm, z), i = 1, · · · ,m, (1.1)

is considered, where (x1, · · · , xm, z) ∈ Cm+1, and fi and gi satisfy certain con-
ditions on the quasi-homogeneity (see assumptions (A1) to (A3) in Sec.2.1), for
which Kovalevskaya exponents are well defined. The first, second, fourth Painlevé
equations and the first Painlevé hierarchy satisfy these conditions. This system
is investigated with the aid of the m + 1 dimensional weighted projective space
CPm+1(p1, · · · , pm, r, s) with the positive weight (p1, · · · , pm, r, s) ∈ Zm+2

>0 deter-
mined by the quasi-homogeneity of the system. The space CPm+1(p1, · · · , pm, r, s)
is decomposed as

CPm+1(p1, · · · , pm, r, s) = Cm+1/Zs ∪ CPm(p1, · · · , pm, r), (disjoint).
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This implies that the space is a compactification of Cm+1/Zs obtained by attach-
ing the m-dim weighted projective space CPm(p1, · · · , pm, r) at infinity. The lift
Cm+1 = {(x1, · · · , xm, z)} of the quotient Cm+1/Zs is a natural phase space, on
which the system (1.1) is given. The system is also well defined on the quotient
Cm+1/Zs because it is invariant under the Zs action due to the quasi-homogeneity
assumptions. Then, the system is continuously extended to the codimension one
space CPm(p1, · · · , pm, r) attached at infinity. The asymptotic behavior of solutions
of the system will be captured by investigating behavior around the “infinity set”
CPm(p1, · · · , pm, r); The space CPm+1(p1, · · · , pm, r, s) gives a suitable compactifi-
cation of the phase space of the system.

A formal series solution of the form

xi(z) = ci(z − z0)
−pi + ai,1(z − z0)

−pi+1 + ai,2(z − z0)
−pi+2 + · · · (1.2)

will be considered, where z0 is an arbitrary constant (movable singularity), ci is a
constant and ai,n may include log(z − z0). If ai,n is independent of z and the series
is convergent, it provides a Laurent series solution. If coefficients ci and ai,n include
n arbitrary parameters other than z0, it represents an n + 1-parameter family of
solutions. It will be shown that there exists a singularity (in the sense of a foliation
defined by integral curves) of the system on the “infinity set” CPm+1(p1, · · · , pm, r),
to which the family (1.2) of formal series solutions approaches as z → z0 (Lemma
3.3). Hence, the asymptotics of (1.2) as z → z0 can be investigated by local analysis
around the singularity. In particular, the normal form theory of dynamical systems
will play an important role. It will be proved in Thm.3.4 that the eigenvalues of the
Jacobi matrix at the singularity coincide with the Kovalevskaya exponents, which im-
plies that the Kovalevskaya exponents are invariant under smooth coordinate trans-
formations. By combining the weighted projective space CPm+1(p1, · · · , pm, r, s),
the Kovalevskaya exponents and the normal form theory, a necessary and sufficient
condition for the series solutions (1.2) to be a convergent Laurent series will be given,
which refines the classical Painlevé test [1, 14]. To give the necessary and sufficient
condition, it will be shown that the system (1.1) has formal solutions of the form

xi(z) = ciT
−pi(1 + h̃i(α2T

λ2 , · · · , αmT
λm , z0T

r, ε0T
s)), T := z − z0, (1.3)

where h̃i is a formal power series in the arguments, whose coefficients are polynomial
in log T , α2, · · · , αm, z0, ε0 are arbitrary parameters and λ2, · · · , λm are Kovalevskaya
exponents other than the trivial exponent λ1 = −1 (Lemma 3.6). Suppose that
Re(λi) ≤ 0 for i = 2, · · · , k and Re(λi) > 0 for i = k + 1, · · · ,m. The unstable
manifold theorem proves that

xi(z) = ciT
−pi(1 + h̃i(0, · · · , 0, αk+1T

λk+1 , · · · , αmT
λm , z0T

r, ε0T
s)), (1.4)

is a convergent series. Further, the normal form theory provides a necessary and
sufficient condition for it to be the Laurent series without log T (Prop.3.5). One of
the necessary condition is that all Kovalevskaya exponents λi with Re(λi) > 0 are
positive integers, as is well known as the Painlevé test.
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As mentioned, the family of series solutions (1.2) tends to the singularity on the
“infinity set” as z → z0. If the series is a convergent Laurent series, an algorithm
to resolve the singularity by a weighted blow-up will be given. The weight for
the weighted blow-up is determined by the Kovalevskaya exponents. In particular,
if a given system has the Painlevé property in the sense that any solutions are
meromorphic, our method provides an algorithm to construct the space of initial
conditions. For a polynomial system, a manifold M(z) is called the space of initial
conditions if any solutions of the system give global holomorphic sections of the fiber
bundle P = {(x, z) | x ∈ M(z), z ∈ C} over C. If the system has n-types of Laurent
series solutions, then the space of initial conditions is obtained by n-times weighted
blow-up, which proves that M(z) is a smooth algebraic variety obtained by gluing
the spaces of the form Cm/Zpj with some integers pj.

In our previous papers [3, 4], weighted projective spaces and dynamical systems
theory are applied to the study of the 2-dim Painlevé equations (the first to sixth
Painlevé equations). In particular, it is shown that these equations are linearized
by a local analytic transformation around a movable pole z = z0 (see Prop.3.5),
and the spaces of the initial conditions are obtained by the weighted blow-ups. In
the present paper, the previous result is extended to a general quasi-homogeneous
system (1.1). In Sec.4, our theory is applied to the first Painlevé hierarchy, which
is a 2m-dimensional system of equations (m = 1, 2, · · · ). The 2m-dimensional first
Painlevé equation has m-types of Laurent series solutions. A complete list of the
Kovalevskaya exponents of Laurent series solutions are given (Thm.4.1). Further,
how to construct the space of initial conditions is demonstrated for the 4-dim first
Painlevé equation.

2 Settings

2.1 Kovalevskaya exponent

Let us consider the system of differential equations

dxi
dz

= fi(x1, · · · , xm, z) + gi(x1, · · · , xm, z), i = 1, · · · ,m, (2.1)

where fi and gi are polynomials in (x1, · · · , xm, z) ∈ Cm+1. We suppose that

(A1) (f1, · · · , fm) is a quasi-homogeneous vector field satisfying

fi(λ
p1x1, · · · , λpmxm, λrz) = λpi+1fi(x1, · · · , xm, z) (2.2)

for any λ ∈ C and i = 1, · · · ,m, where (p1, · · · , pm, r) ∈ Zm+1
>0 is a positive weight.

The positive integers pi and r are called the weighted degrees of xi and z, respectively.
Put fA

i (x1, · · · , xm) := fi(x1, · · · , xm, 0) and fN
i := fi − fA

i (i.e. fA
i and fN

i are
autonomous and nonautonomous parts, respectively). Obviously they satisfy

fA
i (λ

p1x1, · · · , λpmxm) = λpi+1fA
i (x1, · · · , xm),

fN
i (λp1x1, · · · , λpmxm, z) = o(λpi+1), |λ| → ∞.
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We assume that (g1, · · · , gm) is also small with respect to the above weight;

(A2) Suppose (g1, · · · , gm) satisfies

gi(λ
p1x1, · · · , λpmxm, λrz) = o(λpi+1), |λ| → ∞.

We also consider the truncated system

dxi
dz

= fA
i (x1, · · · , xm), i = 1, · · · ,m. (2.3)

Lemma 2.1. The truncated system is invariant under the scaling

(x1, · · · , xm, z) 7→ (λp1x1, · · · , λpmxm, λ−1z). (2.4)

Further, if the equation

−pici = fA
i (c1, · · · , cm), i = 1, · · · ,m (2.5)

has a root (c1, · · · , cm) ∈ Cm, xi(z) = ci(z − z0)
−pi is an exact solution of the

truncated system for any z0 ∈ C.

The variational equation of dxi/dz = fA
i (x1, · · · , xm) along the solution xi(z) =

ci(z − z0)
−pi is given by

dyi
dz

=
m∑
k=1

∂fA
i

∂xk
(c1(z − z0)

−p1 , · · · , cm(z − z0)
−pm)yk, i = 1, · · · ,m.

Substituting yi = γi(z − z0)
λ−pi with the aid of Eq.(2.2) provides

m∑
k=1

∂fA
i

∂xk
(c1, · · · , cm)γk + piγi = λγi.

Hence, λ is an eigenvalue of the matrix DfA(c1, · · · , cm) + diag(p1, · · · , pm).
Definition 2.2. Fix a root {ci}mi=1 of the equation −pici = fA

i (c1, · · · , cm). The
matrix

K =
{∂fA

i

∂xj
(c1, · · · , cm) + piδij

}m

i,j=1
(2.6)

and its eigenvalues are called the Kovalevskaya matrix and the Kovalevskaya expo-
nents, respectively, of the system (2.1) associated with {ci}mi=1.

Consider a formal series solution of Eq.(2.1) of the form

xi = ci(z − z0)
−pi + ai,1(z − z0)

−pi+1 + ai,2(z − z0)
−pi+2 + · · · (2.7)

Coefficients ai,j are determined by substituting it into Eq.(2.1). The column vector
aj = (a1,j, · · · , am,j)

T satisfies

(K − jI)aj = (a function of ci and ai,k with k < j). (2.8)
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If a positive integer j is not an eigenvalue of K, aj is uniquely determined. If
a positive integer j is an eigenvalue of K and (2.8) has no solutions, we have to
introduce a logarithmic term log(z − z0) into the coefficient aj. In this case, the
system (2.1) has no Laurent series solution of the form (2.7) with a given {ci}mi=1.
If a positive integer j is an eigenvalue of K and (2.8) has a solution aj, then aj + v
is also a solution for any eigenvectors v. This implies that the series solution (2.7)
includes a free parameter in (a1,j, · · · , am,j). If it includes k−1 free parameters other
than z0, (2.7) represents a k-parameter family of Laurent series solutions. Hence, the
classical Painlevé test [1, 14] for the necessary condition for the Painlevé property
is stated as follows;

Classical Painlevé test. If the system (2.1) satisfying (A1) and (A2) has the
Painlevé property in the sense that any solutions are meromorphic, then there exist
numbers {ci}mi=1 such that all Kovalevskaya exponents except for −1 (see below)
are positive integers, and the Kovalevskaya matrix is semisimple. In this case, (2.7)
represents an m-parameter family of Laurent series solutions.

In Prop.3.5, we will give a necessary and sufficient condition for the series (2.7)
to be a convergent Laurent series. The next lemmas are well known [2, 9].

Lemma 2.3. (i) λ = −1 is always a Kovalevskaya exponent with the eigenvector
(−p1c1, · · · ,−pmcm)T .
(ii) λ = 0 is a Kovalevskaya exponent associated with {ci}mi=1 if and only if {ci}mi=1

is not an isolated root of the equation −pici = fA
i (c1, · · · , cm).

Lemma 2.4. Consider the Hamiltonian system

dxi
dz

= −∂H
∂yi

,
dyi
dz

=
∂H

∂xi
, (i = 1, · · · ,m) (2.9)

with a holomorphic Hamiltonian satisfying

H(λp1x1, λ
q1y1, · · · , λpmxm, λqmym) = λh+1H(x1, y1, · · · , xm, ym). (2.10)

If λ is a Kovalevskaya exponent, so is µ given by λ+ µ = h.

In what follows, a Kovalevskaya exponent is called a K-exponent for simplicity.
Let us consider the system (2.1) with the assumptions (A1) and (A2). We show that
the K-exponents are invariant under a certain class of coordinate transformations.

Consider a holomorphic transformation

xi = φi(y1, · · · , ym), (i = 1, · · · ,m), (2.11)

which is locally biholomorphic near the point (x1, · · · , xm) = (c1, · · · , cm). The
inverse transformation is denoted by yi = ψi(x1, · · · , xm). Suppose that φi satisfies

φi(λ
q1y1, · · · , λqmym) = λpiφi(y1, · · · , ym), λ ∈ C, (2.12)

with some (q1, · · · , qm) ∈ Zm for a given (p1, · · · , pm) in (A1). It is easy to see that
the inverse satisfies

ψi(λ
p1x1, · · · , λpmxm) = λqiψi(x1, · · · , xm).
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By the transformation, Eq.(2.1) is brought into the new system

dyi
dz

=
m∑
j=1

(Dφ)−1
ij fj(φ(y), z) +

m∑
j=1

(Dφ)−1
ij gj(φ(y), z) =: Fi(y, z) +Gi(y, z), (2.13)

where y = (y1, · · · , ym) and φ = (φ1, · · · , φm). It is straightforward to show that the
new system satisfies the conditions (A1) and (A2), in which (p1, · · · , pm) is replaced
by (q1, · · · , qm). Hence, the K-exponents of (2.13) with the weight (q1, · · · , qm) are
well defined.

Theorem 2.5. The K-exponents of the system (2.13) coincide with those of (2.1).

Proof. Differentiated by yk, Eq.(2.12) yields

∂φi

∂yk
(λq1y1, · · · , λqmym) = λpi−qk

∂φi

∂yk
(y1, · · · , ym). (2.14)

Differentiating in λ and putting λ = 1 for Eqs.(2.12) and (2.14), we obtain

m∑
k=1

∂φi

∂yk
qkyk = piφi(y1, · · · , ym), (2.15)

m∑
l=1

∂2φi

∂yk∂yl
qlyl = (pi − qk)

∂φi

∂yk
(y1, · · · , ym). (2.16)

The (i, k)-component of the Kovalevskaya matrix K̃ of (2.13) is given by

K̃ik =
m∑
j=1

∂(Dφ)−1
ij

∂yk
fA
j (φ(y)) +

m∑
j=1

(Dφ)−1
ij

m∑
l=1

∂fA
j

∂yl
(φ(y))

∂φl

∂yk
(y) + qiδik.

By using the equalities (2.15),(2.16) and −pici = fA
i (c1, · · · , cm), we can show that

K̃ik is rewritten as

K̃ik =
m∑

j,l=1

(Dφ)−1
ij (pjδjl + (DfA)jl)(Dφ)lk.

This proves that K̃ is similar to K. □
Proposition 2.6. If the system (2.1) has a formal series solution (2.7), it is a
convergent series on 0 < |z − z0| < ε for some ε > 0.

In Sec.3, a formal series solution (2.7) is regarded as an integral curve on an
unstable manifold of a certain vector field. Then, Prop.2.6 immediately follows
from the unstable manifold theorem, see also Goriely [8] for the same result for
autonomous systems.
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Next, let us consider the series solution of the form

xi(z) = ci(z − z0)
−qi +

∞∑
n=1

ai,n(z − z0)
−qi+n, (i = 1, · · · ,m). (2.17)

Note that the order of the leading term is qi, not pi.

Proposition 2.7. If 0 ≤ qi < pi and ci ̸= 0 for any i, then qi = 0 for all i.

Proposition 2.8. For the system (2.1), we further suppose the following condition.
(S) A fixed point of the truncated system is only the origin, i.e,

fA
i (x1, · · · , xm) = 0 (i = 1, · · · ,m) ⇒ (x1, · · · , xm) = (0, · · · , 0). (2.18)

If qi > pi for some i, then ci = 0.

Prop.2.7 means that if the order of a pole of xi(z) is smaller than pi for all
i = 1, · · · ,m, then (2.17) should be a local analytic solution. Prop.2.8 implies that
there are no Laurent series solutions xi(z) whose pole order is larger than pi. Proofs
of Prop.2.7 and 2.8 are given in Appendix B. Combining three propositions, we have

Theorem 2.9. If the system (2.1) satisfies (A1), (A2) and (S), any formal series
solutions with a singularity at z = z0 are of the form (2.7) such that (c1, · · · , cm) ̸=
(0, · · · , 0), and they are convergent.

Remark 2.10. If the truncated system has a fixed point other than the origin,
then it has a family of fixed points which forms an algebraic curve on Cm due to
the quasi-homogeneity. If the truncated system is a Hamiltonian system with the
Hamiltonian function H(x1, · · · , xm), the assumption (S) implies that a singularity
of the algebraic variety defined by {H = 0} is isolated. This fact will be essentially
used to study a relationship between the Painlevé equations and singularity theory.

Due to (A1), the truncated system (2.3) is invariant under the the Zs action

(x1, · · · , xm, z) 7→ (ωp1x1, · · · , ωpmxm, ω
rz), ω := e2πi/s, (2.19)

if s = r+1. For later purpose, we assume that the full system (2.1) is also invariant
under the same action;

(A3) The system (2.1) is invariant under the Zs action (2.19) with s = r + 1.

Example 2.11. The first, second and fourth Painlevé equations in Hamiltonian
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forms are given by

(PI)


dx

dz
= 6y2 + z

dy

dz
= x,

(2.20)

(PII)


dx

dz
= 2y3 + yz + α

dy

dz
= x,

(2.21)

(PIV)


dx

dz
= −x2 + 2xy + 2xz + α

dy

dz
= −y2 + 2xy − 2yz + β,

(2.22)

where α, β ∈ C are arbitrary parameters. These systems satisfy the assumptions
(A1) to (A3) with the weights

(PI) (p1, p2, r, s) = (3, 2, 4, 5),

(PII) (p1, p2, r, s) = (2, 1, 2, 3),

(PIV) (p1, p2, r, s) = (1, 1, 1, 2),

where f = (6y2+ z, x), g = (0, 0) for (PI), f = (2y3+ yz, x), g = (α, 0) for (PII) and
f = (−x2 + 2xy + 2xz,−y2 + 2xy − 2yz), g = (α, β) for (PIV). In Chiba [3], these
systems are investigated by means of the weighted projective spaces CP 3(p1, p2, r, s).
One of the purposes in this paper is to extend the previous result to a general system
(2.1). For a given weight (p1, · · · , pm, r) satisfying (A1) to (A3), the weighted pro-
jective space CPm+1(p1, · · · , pm, r, s) gives a suitable compactification of Cm+1 (the
space of the dependent variables and the independent variable), which is effective
to investigate the asymptotic behavior of solutions of the system.

Remark 2.12. A few remarks are in order. If f = (f1, · · · , fm) is independent of
z (i.e. fN

i = 0), we define r = 0 and s = 1. In this case, we need not assume (A3);
the action is trivial. All results in this paper hold even in this case. Some of our
analysis is still valid even if (p1, · · · , pm) includes zeros or negative integers. See [4]
for the detail, in which the third, fifth and sixth Painlevé equations are treated. In
general, a weight (p1, · · · , pm, r) satisfying (A1) to (A3) is not unique. All possible
weights can be calculated through the Newton diagram of the system (2.1), see [3].
In this paper, we fix one of the weights.

2.2 Weighted projective space

Consider the weighted C∗-action on Cm+2 defined by

(x1, · · · , xm, z, ε) 7→ (λp1x1, · · · , λpmxm, λrz, λsε), λ ∈ C∗ := C\{0},
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where the weights (p1, · · · , pm, r, s) are relatively prime positive integers. The quo-
tient space

CPm+1(p1, · · · , pm, r, s) := Cm+2\{0}/C∗

gives an m+ 1 dimensional orbifold called the weighted projective space.
In order to show that a weighted projective space is indeed an orbifold, we will

introduce the inhomogeneous coordinates. For simplicity, we demonstrate it for a
three dimensional space CP 3(p, q, r, s).

The space CP 3(p, q, r, s) is defined by the equivalence relation on C4\{0}

(x, y, z, ε) ∼ (λpx, λqy, λrz, λsε).

(i) When x ̸= 0,

(x, y, z, ε) ∼ (1, x−q/py, x−r/pz, x−s/pε) =: (1, Y1, Z1, ε1).

Due to the choice of the branch of x1/p, we also obtain

(Y1, Z1, ε1) ∼ (e−2qπi/pY1, e
−2rπi/pZ1, e

−2sπi/pε1),

by putting x 7→ e2πix. This implies that the subset of CP 3(p, q, r, s) such that x ̸= 0
is homeomorphic to C3/Zp, where the Zp-action is defined as above.

(ii) When y ̸= 0,

(x, y, z, ε) ∼ (y−p/qx, 1, y−r/qz, y−s/qε) =: (X2, 1, Z2, ε2).

Because of the choice of the branch of y1/q, we obtain

(X2, Z2, ε2) ∼ (e−2pπi/qX2, e
−2rπi/qZ2, e

−2sπi/qε2).

Hence, the subset of CP 3(p, q, r, s) with y ̸= 0 is homeomorphic to C3/Zq.
(iii) When z ̸= 0,

(x, y, z, ε) ∼ (z−p/rx, z−q/ry, 1, z−s/rε) =: (X3, Y3, 1, ε3).

Similarly, the subset {z ̸= 0} ⊂ CP 3(p, q, r, s) is homeomorphic to C3/Zr.
(iv) When ε ̸= 0,

(x, y, z, ε) ∼ (ε−p/sx, ε−q/sy, ε−r/sz, 1) =: (X4, Y4, Z4, 1).

The subset {ε ̸= 0} ⊂ CP 3(p, q, r, s) is homeomorphic to C3/Zs.
This proves that the orbifold structure of CP 3(p, q, r, s) is given by

CP 3(p, q, r, s) = C3/Zp ∪ C3/Zq ∪ C3/Zr ∪ C3/Zs.

The local charts (Y1, Z1, ε1), (X2, Z2, ε2), (X3, Y3, ε3) and (X4, Y4, Z4) defined above
are called inhomogeneous coordinates as the usual projective space. Note that they
give coordinates on the lift C3, not on the quotient C3/Zi (i = p, q, r, s). Therefore,
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any equations written in these inhomogeneous coordinates should be invariant under
the corresponding Zi actions.

The transformations between inhomogeneous coordinates are give by
X4 = ε

−p/s
1 = X2ε

−p/s
2 = X3ε

−p/s
3

Y4 = Y1ε
−q/s
1 = ε

−q/s
2 = Y3ε

−q/s
3

Z4 = Z1ε
−r/s
1 = Z2ε

−r/s
2 = ε

−r/s
3 .

(2.23)

An extension to the m+ 1 dimensional case CPm+1(p1, · · · , pm, r, s) is straight-
forward. The orbifold structure is characterized by

CPm+1(p1, · · · , pm, r, s) = Cm+1/Zp1 ∪ · · · ∪ Cm+1/Zpm ∪ Cm+1/Zr ∪ Cm+1/Zs.

The inhomogeneous coordinates are defined as above on each chart. In what fol-
lows, we use the notation (x1, · · · , xm, z) for the inhomogeneous coordinates of the
local chart Cm+1/Zs because a system of differential equations will be given on this
chart. For example, the transformation between the inhomogeneous coordinates
(x1, · · · , xm, z) on Cm+1/Zs and the j-th inhomogeneous coordinates
(X1, · · · , Xj−1, Xj+1, · · · , Xm, Z, ε) on Cm+1/Zpj is give by

xi = Xiε
−pi/s (i ̸= j), xj = ε−pj/s, z = Zε−r/s. (2.24)

Hence, the subset {ε = 0} on Cm+1/Zpj is attached at “infinity” of the chart
Cm+1/Zs.

3 A differential equation on a weighted projective

space

Now we give the system of polynomial differential equations

dxi
dz

= fi(x1, · · · , xm, z) + gi(x1, · · · , xm, z), i = 1, · · · ,m, (3.1)

satisfying (A1), (A2) and (A3) on the (x1, · · · , xm, z) coordinates of the space
CPm+1(p1, · · · , pm, r, s). Note that the inhomogeneous coordinates (x1, · · · , xm, z)
are coordinates for the lift Cm+1 of the quotient Cm+1/Zs ⊂ CPm+1(p1, · · · , pm, r, s).
Since the system (3.1) is invariant under the Zs action (2.19), it is well defined on
the quotient space Cm+1/Zs.

Let us express it on the j-th local chart Cm+1/Zpj by the transformation (2.24).
Due to the assumptions, we have

fi(X1ε
−p1/s, · · · , ε−pj/s, · · · , Xmε

−pm/s, Zε−r/s)

= ε−(1+pi)/sf1(X1, · · · , 1, · · · , Xm, Z),

gi(X1ε
−p1/s, · · · , ε−pj/s, · · · , Xmε

−pm/s, Zε−r/s)

= ε1−(1+pi)/s × (a polynomial of X1, · · · , Xm, Z, ε).
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With the aid of these equalities, (3.1) is written on the (X1, · · · , Xj−1, Xj+1, · · ·
, Xm, Z, ε) coordinates of Cm+1/Zpj as

dXi

dε
=

1

sε

(
piXi − pj

fi + εGi

fj + εGj

)
, (i = 1, · · · ,m; i ̸= j),

dZ

dε
=

1

sε

(
rZ − pjε

fj + εGj

)
,

(3.2)

where fi = fi(X1, · · · , 1, · · ·Xm, Z) (the unity is substituted at the j-th argument)
and Gi is a polynomial in (X1, · · · , Xm, Z, ε) determined by gi. This system is
rational and invariant under the Zpj action despite the fact that the coordinate
transformation (2.24) is not rational.

Proposition 3.1. Give the system (3.1) on the (x1, · · · , xm, z)-coordinates of the
local chart Cm+1/Zs of CPm+1(p1, · · · , pm, r, s). If the system satisfies the as-
sumptions (A1) to (A3), it induces a well defined rational differential equations
on CPm+1(p1, · · · , pm, r, s).
Example 3.2. We give the first Painlevé equation x′ = 6y2 + z, y′ = x on the
fourth local chart (x, y, z) of CP 3(3, 2, 4, 5). By (2.23), it is transformed into the
following equations

dY1
dε1

=
3− 12Y 3

1 − 2Y1Z1

ε1(−30Y 2
1 − 5Z1)

,
dZ1

dε1
=

3ε1 − 24Y 2
1 Z1 − 4Z2

1

ε1(−30Y 2
1 − 5Z1)

,

dX2

dε2
=

−12− 2Z2 + 3X2
2

5X2ε2
,

dZ2

dε2
=

−2ε2 + 4X2Z2

5X2ε2
,

dX3

dε3
=

24Y 2
3 + 4− 3X3ε3

−5ε23
,

dY3
dε3

=
4X3 − 2Y3ε3

−5ε23
,

on the other inhomogeneous coordinates. Although the transformations (2.23) have
branches, the above equations are rational because the first Painlevé equation sat-
isfies (A1) to (A3) with (p, q, r, s) = (3, 2, 4, 5). Hence, they define a rational ODE
on CP 3(3, 2, 4, 5) in the sense of an orbifold.

It is convenient to rewrite (3.2) as an autonomous vector field of the form

dXi

dt
= piXi − pj

fi + εGi

fj + εGj

(i = 1, · · · ,m; i ̸= j),

dZ

dt
= rZ − pjε

fj + εGj

,

dε

dt
= sε.

(3.3)

The new independent variable t parameterizes integral curves of (3.2). Note that
how to rewrite the system (3.2) as an autonomous vector field is not unique. To
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construct the space of initial conditions, rewriting as a polynomial vector field

dXi

dt
= piXi(fj + εGj)− pj(fi + εGi), (i = 1, · · · ,m; i ̸= j),

dZ

dt
= rZ(fj + εGj)− pjε,

dε

dt
= sε(fj + εGj),

(3.4)

may be more convenient, though in this section we will use the form (3.3).

Let us investigate the K-exponents of the system (3.1). Let (c1, · · · , cm) be one
of the roots of the equation −pici = fA

i (c1, · · · , cm), and consider a series solution
(2.7). If it is not a local holomorphic solution, (c1, · · · , cm) ̸= (0, · · · , 0) due to
Prop.2.7. Assume cj ̸= 0. On the (X1, · · · , Xm, Z, ε) coordinates of Cm+1/Zpj , we
obtain 

Xi = xix
−pi/pj
j = cic

−pi/pj
j (1 +O(z − z0)),

Z = zx
−r/pj
j = zc

−r/pj
j (z − z0)

r(1 +O(z − z0)),

ε = x
−s/pj
j = c

−s/pj
j (z − z0)

s(1 +O(z − z0)).

In particular,

Xi → cic
−pi/pj
j (i ̸= j), Z, ε→ 0,

as z → z0.

Lemma 3.3. The point

(X1, · · · , Xm, Z, ε) = (c1c
−p1/pj
j , · · · , cmc

−pm/pj
j , 0, 0) (3.5)

is a fixed point of the vector field (3.3).

Proof. A fixed point of (3.3) satisfying Z = ε = 0 is given as a root of

piXif
A
j (X1, · · · , 1, · · · , Xm)− pjf

A
i (X1, · · · , 1, · · · , Xm) = 0, (i ̸= j).

At the point (3.5), the left hand side is estimated as

picic
−pi/pj
j fA

j (c1c
−p1/pj
j , · · · , cmc

−pm/pj
j )− pjf

A
i (c1c

−p1/pj
j , · · · , cmc

−pm/pj
j )

= picic
−pi/pj
j c

−(1+pj)/pj
j fA

j (c1, · · · , cm)− pjc
−(1+pi)/pj
j fA

i (c1, · · · , cm).

Then, the equality −pici = fA
i (c1, · · · , cm) proves that the above quantity actually

becomes zero. □

This lemma suggests that the behavior of the series solution (2.7) as z → z0 is
governed by local properties of the fixed point (3.5). In particular, the dynamical
systems theory will be applied to the study of the fixed point. Due to the orbifold
structure, the inhomogeneous coordinates (X1, · · · , Xm, Z, ε) should be divided by
the Zpj -action (Sec.2.3). Hence, all points expressed as (3.5) obtained by different

choices of roots c
−1/pj
j represent the same point on the quotient space Cm+1/Zpj .
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3.1 Kovalevskaya exponents

The main theorem in this section is stated as follows.

Theorem 3.4. The eigenvalues of the Jacobi matrix of the vector field (3.3) at the
fixed point (3.5) are given by r, s and K-exponents of the system (3.1) other than
the trivial exponent −1. (If we use the polynomial vector field (3.4) instead of (3.3),
eigenvalues change by a constant factor).

Proof. We assume j = m for simplicity. Thus, (3.3) is an equation for (X1, · · · ,
Xm−1, Z, ε).

Let v = (−p1c1, · · · ,−pmcm)T be the eigenvector of the K-matrix associated
with the eigenvalue −1 (see Lemma 2.3). Put v1 = (−p1c1, · · · ,−pm−1cm−1)

T , v2 =
−pmcm and

P =

(
I v1
0 v2

)
,

where I denotes the (m− 1)× (m− 1) identity matrix. We obtain

P−1KP =

(
K̃ 0
∗ −1

)
,

where K̃ is an (m − 1) × (m − 1) matrix whose eigenvalues are K-exponents other

than −1. The (i, j) component of K̃ is given by

K̃i,j = piδij +
∂fA

i

∂xj
(c1, · · · , cm)−

pici
pmcm

∂fA
m

∂xj
(c1, · · · , cm).

On the other hand, the Jacobi matrix of (3.3) at the fixed point is of the form

J =

 J̃ ∗ ∗
0 r ∗
0 0 s

 , (3.6)

where J̃ is an (m− 1)× (m− 1) matrix whose (i, j) component is given by

J̃i,j = piδij −
pm
fA
m

∂fA
i

∂xj
+ pm

fA
i

(fA
m)

2

∂fA
m

∂xj
, (3.7)

where fA
i is estimated at the point (c1c

−p1/pm
m , · · · , cm−1c

−pm−1/pm
m , 1). Due to the

quasi-homogeneity and the equality −pici = fA
i (c1, · · · , cm), we have

fA
i (c1c

−p1/pm
m , · · · , cm−1c

−pm−1/pm
m , 1) = c−(1+pi)/pm

m fA
i (c1, · · · , cm) = −picic−(1+pi)/pm

m ,

∂fA
i

∂xj
(c1c

−p1/pm
m , · · · , cm−1c

−pm−1/pm
m , 1) = c−(pi+1−pj)/pm

m

∂fA
i

∂xj
(c1, · · · , cm).
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By a suitable scaling of the independent variable z of the original system (3.1), we
can assume without loss of generality that cm = 1. Substituting the above equalities

into (3.7) with cm = 1, we obtain J̃i,j = K̃i,j. □

Since eigenvalues of the Jacobi matrix are invariant under the actions of diffeo-
morphisms, the K-exponents are invariant under a wide class of coordinate transfor-
mations. In particular, the set of all K-exponents associated with all roots {ci}mi=1

are invariant under the automorphisms on CPm+1(p1, · · · , pm, r, s).

3.2 Extended Painlevé test

Let λ2, · · · , λm, r, s be eigenvalues of the Jacobi matrix J of (3.3) at the fixed point
(3.5), among which λ2, · · · , λm are K-exponents of (3.1) (λ1 = −1 is used for the

trivial one). Put X̂i = Xi − cic
−pi/pj
j . Then, Eq.(3.3) is rewritten as

dX̂

dt
= JX̂ + F (X̂), X̂ = (X̂1, · · · , X̂j−1, X̂j+1, · · · , X̂m, Z, ε), (3.8)

with the nonlinearity F . Suppose that Re(λi) ≤ 0 for i = 2, · · · , k, and Re(λi) > 0
for i = k + 1, · · · ,m. Since r and s are positive integers, J has exactly m − k + 2
eigenvalues with positive real parts. Thus, the system (3.8) has an m − k + 2
dimensional unstable manifold at the origin; by a suitable linear transformation,
(3.8) is rewritten as

dXu

dt
= JuXu + Fu(Xu,Xs), Xu ∈ Cm−k+2,

dXs

dt
= JsXs + Fs(Xu,Xs), Xs ∈ Ck−1,

where real parts of eigenvalues of Ju and Js are positive and nonpositive, respec-
tively. Due to the unstable manifold theorem, there exists a local analytic function
φ satisfying φ(0) = Dφ(0) = 0 such that the set (Xu, φ(Xu)) expresses the unstable
manifold. Then,

dXu

dt
= JuXu + Fu(Xu, φ(Xu)) (3.9)

gives the dynamics on the unstable manifold. The purpose in this section is to prove

Proposition 3.5. The system (3.1) has anm−k+1 parameter family of convergent
Laurent series solutions of the form

xi(z) = ci(z − z0)
−pi +

∞∑
n=1

ai,n(z − z0)
−pi+n, i = 1, · · · ,m,

where {ai,n} includes m− k free parameters other than z0, if and only if
(i) λk+1, · · · , λm are positive integers,
(ii) Ju is semi-simple, and
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(iii) the system (3.9) on the unstable manifold is linearizable by a local analytic
transformation.

In particular, the system (3.1) has an m parameter family of Laurent series
solutions if and only if
(i) all K-exponents except for λ1 = −1 are positive integers (classical Painlevé test),
(ii) the Jacobi matrix J is semisimple, and
(iii) the system (3.8) is linearizable by a local analytic transformation.

A similar result is also obtained by Goriely [8] for autonomous systems. A lin-
earization of the system (3.9) is achieved by Poincaré-Dulac normal form theory by
finite steps. For the convenience of the reader, a brief review of the normal form
theory is given in Appendix A. In [3, 4], it is proved that the first to sixth Painlevé
equations are linearizable.

Proof of Prop.3.5. By the standard perturbation method (the variation of con-
stants method), a general solution of (3.8) is expressed as

Xi(t) = cic
−pi/pj
j + hi(α2e

λ2t, · · · , αme
λmt, z0e

rt, ε0e
st), (i = 1, · · · ,m; i ̸= j),

Z(t) = z0e
rt + c

1/pj
j ε0e

st + esthm+1(α2e
λ2t, · · · , αme

λmt, z0e
rt, ε0e

st),

and ε(t) = ε0e
st, where α2, · · · , αm, z0, ε0 are free parameters determined by an

initial condition. The functions h1, · · · , hm+1 are formal power series with hi(0) = 0
whose coefficients are polynomial in t. More precisely, they are expressed as

hi(α2e
λ2 , · · · , ε0est) =

∞∑
|n|=1

hi,n(t)e
⟨λ,n⟩t, (i = 1, · · · ,m+ 1; i ̸= j),

where n = (n2, · · · , nm+2), |n| = n2 + · · ·+ nm+2 and ⟨λ, n⟩ = λ2n2 + · · ·+ λmnm +
rnm+1 + snm+2. The function hi,n(t) is polynomial in t. Moving to the original
coordinates (x1, · · · , xm, z), we obtain the next lemma, which can be also proved
directly from Eq.(3.1).

Lemma 3.6. The system (3.1) has a formal series solution of the form

xi(z) = ciT
−pi(1 + h̃i(α2T

λ2 , · · · , αmT
λm , z0T

r, ε0T
s)), T := z − z0, (3.10)

where h̃i is a formal power series in the arguments, whose coefficients are polynomial
in log T , and α2, · · · , αm, z0, ε0 are free parameters.

A solution on the unstable manifold is obtained by putting α2 = · · · = αk = 0;

Xi(t) = cic
−pi/pj
j + hi(0, · · · , 0, αk+1e

λk+1t, · · · , αme
λmt, z0e

rt, ε0e
st),

Z(t) = z0e
rt + c

1/pj
j ε0e

st + esthm+1(0, · · · , 0, αk+1e
λk+1t, · · · , αme

λmt, z0e
rt, ε0e

st),

This is a convergent series solution because of the unstable manifold theorem. Mov-
ing to the original coordinates (x1, · · · , xm, z), we obtain

xi(z) = ciT
−pi(1 + h̃i(0, · · · , 0, αk+1T

λk+1 , · · · , αmT
λm , z0T

r, ε0T
s)), (3.11)

15



where the right hand side is a convergent power series in the arguments, whose
coefficients are polynomial in log T , and αk+1, · · · , αm, z0, ε0 are m− k + 2 free pa-
rameters. On the parameter space, there are curves (αk+1(t), · · · , αm(t), z0(t), ε0(t)),
on which the above solution represents the same solution. Hence, (3.11) defines an
m − k + 1 parameter family of solutions. It does not include log T if and only if
the coefficients of hi do not include polynomial in t. Then, Prop.3.5 immediately
follows from Prop.A.3. □

3.3 The space of initial conditions

In this section, we give an algorithm to construct the space of initial conditions for
a differential equation having the Painlevé property. For a polynomial system, a
manifold M(z) is called the space of initial conditions if any solutions of the system
give global holomorphic sections of the fiber bundle P = {(x, z) |x ∈ M(z), z ∈ C}
over C. Okamoto [10] constructed the spaces of initial conditions for the first to
the sixth Painlevé equations by blow-ups of a Hirzebruch surface eight times and
by removing a certain divisor called vertical leaves. In Chiba [3], the spaces of
initial conditions for the first, second and fourth Painlevé equations, respectively,
are obtained only by one, two and three times blow-ups with the aid of the weighted
projective spaces. The purpose of this section is to extend this result. If a given
equation having the Painlevé property has n-types Laurent series solutions (i.e.
the equation −pici = fA

i (c1, · · · , cm) to determine the leading coefficients has n
roots, and the corresponding series solutions are convergent Laurent series), then the
space of initial conditions is obtained by n times weighted blow-up of the weighted
projective space.

Suppose that the system (3.1) satisfying (A1) to (A3) is given. Determine the
leading coefficients (c1, · · · , cm) of the formal series solution (2.7) by solving −pici =
fA
i (c1, · · · , cm). For each (c1, · · · , cm), we suppose that (2.7) is a convergent Laurent
series (without log(z−z0)), so that the conditions (i) to (iii) of Prop.3.5 are satisfied.
In particular, λ2, · · · , λk satisfy Re(λi) ≥ 0 and λk+1, · · · , λm are positive integers.
Then, the fixed point (3.5) is a singularity of the foliation defined by integral curves;
any Laurent series solutions pass through this point. For each fixed point, we will
perform the resolution of singularities. The procedure is divided into five steps as
follows;

Step 1. Due to Prop.2.7, (c1, · · · , cm) ̸= (0, · · · , 0). Assume cj ̸= 0. Move to
the inhomogeneous coordinates on Cm+1/Zpj by (2.24) to obtain (3.3);

dXi

dt
= piXi − pj

fi + εGi

fj + εGj

(i = 1, · · · ,m; i ̸= j),

dZ

dt
= rZ − pjε

fj + εGj

,

dε

dt
= sε.

(3.12)

Our procedure below is independent of how to rewrite the system (3.2) to an au-
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tonomous vector field. For example, it may be more convenient to use the polynomial
system (3.4) instead of (3.3) when calculating the normal form at Step 3.

This vector field has a fixed point (singularity) (3.5). In order for the point to

be the origin, put X̂i = Xi − cic
−pi/pj
j , which results in

dX̂

dt
= J̃X̂ + F (X̂, Z, ε), X̂ = (X̂1, · · · , X̂j−1, X̂j+1, · · · , X̂m),

dZ

dt
= rZ + εFm+1(X̂, Z, ε),

dε

dt
= sε,

(3.13)

where F is a nonlinearity and Fm+1 = −pj/(fj + εGj). The matrix J̃ is a submatrix
of J , whose eigenvalues are nontrivial K-exponents λ2, · · · , λm (see Eq.(3.6)).

Step 2. If the Jacobi matrix J̃ has eigenvalues λ2, · · · , λk having nonpositive
real parts, transform (3.13) as

dXs

dt
= JsXs + F s(Xs,Xu, Z, ε), Xs ∈ Ck−1,

dXu

dt
= JuXu + F u(Xs,Xu, Z, ε), Xu ∈ Cm−k,

dZ

dt
= rZ + εFm+1(Xs,Xu, Z, ε),

dε

dt
= sε,

(3.14)

by a linear transformation of (X̂1, · · · , X̂m) (we need not change Z and ε), where
real parts of eigenvalues of Ju and Js are positive and nonpositive, respectively. We
suppose that Ju is of the Jordan normal form. Because of Prop.3.5, it is semi-simple;
Ju = diag(λk+1, · · · , λm). Due to the unstable manifold theorem, the unstable
manifold is expressed as a convergent power series of the form

Xs = φ(Xu) =
∞∑

|n|=2

bnX
n
u, (3.15)

where n denotes a multi-index as usual. The coefficient vectors bn can be obtained
by substituting it into Eq.(3.14). The system on the unstable manifold is given by

dXu

dt
= JuXu + F u(φ(Xu),Xu, Z, ε),

dZ

dt
= rZ + εFm+1(φ(Xu),Xu, Z, ε),

dε

dt
= sε,

(3.16)

Step 3. Calculate the normal form of the first equation of (3.16) up to degree
N to be determined;
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Due to the normal form theory, there exists a polynomial transformation (near
identity transformation)

Xu 7→ Y = h1(Xu, Z, ε), h1(0) = 0, Dh1(0) = id, (3.17)

of degree N , which can be exactly calculated for a finite N , such that the first
equation of Eq.(3.16) takes the form (see Prop.A.1)

dY

dt
= JuY +G1(Y , Z, ε) +G2(Y , Z, ε), Y ∈ Cm−k,

dZ

dt
= rZ + εFm+1,

dε

dt
= sε,

(3.18)

where G1 consists of resonance terms up to degree N , and G2 ∼ O(||(Y , Z, ε)||N+1).
If we assume the condition (iii) of Prop.3.5, G1 = 0. Nevertheless, we keep the term
G1 to observe that what happen when a given system (3.1) does not have the
Painlevé property. How to choose N will be explained in Sec.4.2.

Step 4. Weighted blow-up;
Now the origin of them−k+2 dimensional system (3.18) on the unstable manifold

is a singularity; Laurent series solutions under consideration lie on the unstable man-
ifold and they approach to the origin as z → z0. In order to resolve the singularity, we
introduce the weighted blow-up with the weight (λk+1, · · · , λm, r, s). Roughly speak-
ing, the weighted blow-up is a birational transformation π : B → Cm−k+2 whose ex-
ceptional divisor π−1(0) is the weighted projective space CPm−k+1(λk+1, · · · , λm, r, s),
andB is a line bundle over CPm−k+1(λk+1, · · · , λm, r, s). Denote Y = (Yk+1, · · · , Ym).
One of the local coordinates (uk+1, · · · , um, ζ, w) of B is defined by

Yk+1
...
Ym
Z
ε

 =


uk+1w

λk+1

...
umw

λm

ζwr

ws

 . (3.19)

Hence, w denotes a coordinate on a fiber and (uk+1, · · · , um, ζ) is the inhomogeneous
coordinates of the chart Cm−k+1/Zs of CPm−k+1(λk+1, · · · , λm, r, s). In particular,
the set {w = 0} ⊂ CPm−k+1(λk+1, · · · , λm, r, s) is attached at infinity of the original
chart Cm+1 = {(x1, · · · , xm, z)}.

The coordinate transformation between the original chart and the new coordi-
nates (Xs, uk+1, · · · , um, ζ, w) is given by xi = (cic

−pi/pj
j + h2(Xs, uk+1, · · · , um, ζ, w))w−pi , (i ̸= j)

xj = w−pj ,
z = ζ,

(3.20)

18



where h2 is a polynomial with h2(0) = 0 that is obtained by a finite step.
Due to the orbifold structure of the exceptional divisor CPm−k+1(λk+1, · · · , s),

the Zs action

(uk+1, · · · , um, ζ, w) 7→ (ωλk+1uk+1, · · · , ωλmum, ω
rζ, ω−1w), ω := e2πi/s,

acts on the space {(uk+1, · · · , um, ζ, w)}. This is compatible with the Zs action (2.19)
of the original chart; the one action induces the other through the transformation
(3.20).

Put Ju = diag(λk+1, · · · , λm) and Gi = (Gi,k+1, · · · , Gi,m). By the blow-up
(3.19), Eq.(3.18) is transformed into the system

dui
dt

= w−λi(G1,n +G2,n),

dζ

dt
= wFm+1,

dw

dt
= w.

Using ζ = z and deleting t, we obtain the system
dui
dz

= w−1−λi(G1,i +G2,i)/Fm+1, i = k + 1, · · · ,m,
dw

dz
= 1/Fm+1.

(3.21)

Since 1/Fm+1 = −(fj+εGj)/pj is holomorphic in uk+1, · · · , um, w and z, a singularity
of the right hand side may arise only from the factor w−1−λi .

Proposition 3.7. If N is sufficiently large, the function w−1−λiG2,i is holomorphic
in uk+1, · · · , um, w, z, while w−1−λiG1,i is of the form

w−1−λiG1,i = w−1 × (polynomial of uk+1, · · · , um, z).

If the conditions of Prop.3.5 are satisfied, G1,n = 0 and the right hand side of
Eq.(3.21) is holomorphic in uk+1, · · · , um, w, z. Further, 1/Fm+1 ̸= 0 when w = 0.
Hence, there are no singularities of the foliation on the exceptional divisor {w = 0}.

As a result, the singularity of the foliation at the point (3.5) is resolved; m−k+1-
parameter family of integral curves that lie on the unstable manifold, all of which
pass through the fixed point (3.5) in (X1, · · · , Xm, Z, ε) coordinates, intersect with
the m− k+ 1-dimensional exceptional divisor {w = 0} at different points. Further,
if all K-exponents other than −1 are positive integers, then the right hand of (3.21)
is polynomial because a transcendental function may arise only from the expression
of the unstable manifold Xs = φ(Xu).

Proof. Since

G2(Y , Z, ε) = G2(uk+1w
λk+1 , · · · , umwλm , ζwr, ws)
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and G2 ∼ O(||(Y , Z, ε)||N+1), w−1−λiG2,i is holomorphic in w if N is sufficiently
large. On the other hand, since G1,i(Y , Z, ε) consists of resonance terms, a monomial
α := Y

nk+1

k+1 · · ·Y nm
m Znm+1εnm+2 included in G1,i(Y , Z, ε) satisfies

λk+1nk+1 + · · ·+ λmnm + rnm+1 + snm+2 = λi.

Hence, w−1−λiα becomes of order 1/w after the blow-up.
Let us confirm the last statement. When w = 0, we have Yi = Z = ε = 0.

This implies Xi = cic
−pi/pj
j when w = 0. Recall that fj in Eq.(3.3) implies fj =

fj(X1, · · · , 1, · · · , Xm, Z). Therefore, we obtain

1/Fm+1|w=0 = − 1

pj
(fj + εGj)|w=0

= − 1

pj
fA
j (c1c

−p1/pj
j , · · · , 1, · · · , cmc

−pm/pj
j )

= − 1

pj
c
−(1+pj)/pj
j fA

j (c1, · · · , cm) = c
−1/pj
j ̸= 0. □

Step 5. Divide (3.20) and (3.21) by the Zpj -action;
If pj ̸= 1, (3.20) is not a one-to-one transformation. Recall that the group Zpj

(Xi, Z, ε) 7→ (e2πi·pi/pjXi, e
2πi·r/pjZ, e2πi·s/pjε), (i ̸= j)

acts on the inhomogeneous coordinates on the lift of the chart Cm+1/Zpj and Eq.(3.3)
is invariant under the action due to the orbifold structure. This action induces a
Zpj action on the (Xs, uk+1, · · · , w)-coordinates and Eq.(3.21) is invariant under the
action;

Zpj ↷ Cm
1 := {(Xs, uk+1, · · · , um, w)}.

Obviously, the right hand sides of the transformation (2.24) are invariant under
the Zpj action. This shows that the right hand sides of the transformation (3.20)
are rational invariants of the Zpj action. Thus, if we divide Cm

1 by the action,
(3.20) becomes a one-to-one rational transformation, which can be explicitly given
by rewriting the right hand sides of (3.20) in terms of polynomial invariants of
the action Zpj ↷ Cm+1

1 , one of which should be W := wpj . The original chart
M0 := {(x1, · · · , xm)} ≃ Cm and the quotient space M1 := Cm

1 /Zpj , which is a
nonsingular algebraic variety, are glued by the one-to-one rational transformation
(3.20) to give a nonsingular algebraic variety M01. Eq.(3.1) together with (3.21)
gives a holomorphic equation on M01 without singularities of the foliation.

Suppose that a given system with the Painlevé property (in the sense that any
solutions are meromorphic) has n-types Laurent series solutions, all of whose leading
terms are of the form xi ∼ ci(z − z0)

−pi ; that is, there are n roots of the equation
−pici = fA

i (c1, · · · , cm). We perform Step 1 to Step 5 for all Laurent series to
obtain the manifold Mi ≃ Cm/Zpj and a holomorphic differential equation on it as
in Step 5. Then, an algebraic variety M(z) :=M0∪M1∪· · ·∪Mn parameterized by
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z ∈ C gives the space of initial conditions for (3.1). Each solution defines a global
holomorphic section of the fiber bundle {(x, z) |x ∈ M(z), z ∈ C} and there are no
singularities of the foliation on the bundle. See Chiba [3] for the detailed calculation
for the first, second and fourth Painlevé equations, and Section 4 for the higher
order first Painlevé equation.

4 The first Painlevé hierarchy

Define the operator Lm by

d

dz
Lm+1[x] =

(
d3

dz3
− 8x

d

dx
− 4

dx

dz

)
Lm[x], L0[x] = 1, (4.1)

where x = x(z) is a function of z ∈ C. The 2m-th order first Painlevé equation (the
first Painlevé hierarchy) is defined to be Lm[x] = −4z. Indeed, it is easy to verify
that there is a polynomial Pm such that the equation is expressed as

x(2m) = Pm(x, x
′, · · · , x(2m−2)) + z, x(i) :=

dix

dzi
. (4.2)

For example, we obtain

x′′ = 6x2 + z,

x′′′′ = 20xx′′ + 10(x′)2 − 40x3 + z,

for m = 1, 2, respectively. We rewrite (4.2) as the 2m-dimensional system

(PI)m


x′1 = x2
...

x′2m−1 = x2m
x′2m = Pm(x1, · · · , x2m−1) + z.

(4.3)

This system satisfies the assumptions (A1) to (A3) with gi = 0 and

(p1, p2, · · · , p2m, r, s) = (2, 3, · · · , 2m+ 1, 2m+ 2, 2m+ 3).

Indeed, it is easy to prove by induction that the function Pm satisfies

Pm(λ
2x1, λ

3x2, · · · , λ2mx2m−1) = λ2m+2Pm(x1, x2, · · · , x2m−1) (4.4)

for any λ ∈ C. Thus, the system (4.3) induces a rational ODE on the weighted
projective space CP 2m+1(2, · · · , 2m + 3). In Shimomura[12], it is proved that the
first Painlevé hierarchy has the Painlevé property in the sense that any solutions
are meromorphic functions. The leading coefficients of the Laurent series solutions
are given by

cj(k) = (−1)j+1j! · b0, b0 :=
1

2
k(k + 1), (4.5)
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for k = 1, · · · ,m [11]. Hence, the system (4.3) has m Laurent series solutions of the
form

xi(z) = ci(k)(z − z0)
−pi +

∞∑
n=1

ai,n(k)(z − z0)
−pi+n.

4.1 The K-exponents of the first Painlevé hierarchy

For each Laurent series solution with (4.5), the K-exponents are defined, which are
given as follows.

Theorem 4.1. The K-exponents of the system (4.3) associated with the Laurent
series solution with (4.5) are given by the following 2m integers;

λ = 2, 4, · · · , 2m− 2k, (m− k)

2k + 3, 2k + 5, · · · , 2m+ 1, (m− k)

2m+ 4, 2m+ 6, · · · , 2m+ 2k + 2, (k)

−1, −3, · · · ,−(2k − 1), (k)

Thus, the Laurent series solution includes 2m−k+1 free parameters (including z0).
In particular, the Laurent series for the case k = 1 includes 2m free parameters that
represents a general solution.

In order to prove the theorem, we need a Hamiltonian form of the system. By
putting x 7→ λ2x and z 7→ λ−1z with λ−2m−3 = 4m, Eq.(4.2) is transformed to the
equation x(2m) = Pm(x, · · · , x(2m−2)) + 4mz due to (4.4). Further, by putting

uj = 41−j(x2j−1 − Pj−1(x1, · · · , x2j−3)),

vj =
41−j

2

(
x2j −

2j−3∑
i=1

∂Pj−1

∂xi
(x1, · · · , x2j−3)xi+1

)
,

(4.6)

(uj, vj) satisfies the system{
u′j = 2vj,
v′j = 2uj+1 + 2u1uj + 2wj, (j = 1, · · · ,m),

(4.7)

where um+1 = 0 and wj is determined by the recursive relation

wj =
1

2

j∑
k=1

ukuj+1−k +

j−1∑
k=1

ukwj−k −
1

2

j−1∑
k=1

vkvj−k + δjmz.

The system (4.7) is introduced by Shimomura [12] to prove the Painlevé property.
If we define the weighted degree of xj by deg(xj) = j + 1, then Eqs.(4.4) and (4.6)
provide deg(uj) = 2j and deg(vj) = 2j + 1. This implies that the transformation

(x1, · · · , x2m, z) 7→ (u1, v1, · · · , um, vm, z)
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defined by (4.6) is an automorphism on CP 2m+1(2, · · · , 2m + 3). In particular,
K-exponents of Eq.(4.3) are the same as those of (4.7) due to Thm.2.5 or Thm.3.4.

According to Takei [13], we further change coordinates by

uj = (−1)j−1Qj, vj = 2(−1)m−j(Pm−j+1 + Pm−j+2Q1 + · · ·+ PmQj−1). (4.8)

Then, (Pj, Qj) satisfies the Hamiltonian system

dPj

dz
= −∂Hm

∂Qj

,
dQj

dz
=
∂Hm

∂Pj

, (j = 1, · · · ,m), (4.9)

where Hm is a polynomial Hamiltonian function. Since the weighted degrees are
given by deg(Pj) = 2m+ 3− 2j and deg(Qj) = 2j, the transformation

(u1, v1, · · · , um, vm, z) 7→ (P1, Q1, · · · , Pm, Qm, z)

is an isomorphism from CP 2m+1(2, · · · , 2m+ 3) to

CP 2m+1(2m+ 1, 2, · · · , 2m+ 3− 2j, 2j, · · · , 3, 2m, 2m+ 2, 2m+ 3).

In particular, the K-exponents do not change. It is easy to verify the equality

Hm(· · · , λ2m+3−2jPj, λ
2jQj, · · · , λ2m+2z) = λ2m+4Hm(· · · , Pj, Qj, · · · , z). (4.10)

Thus Lemma 2.4 provides

Lemma 4.2. If λ is a K-exponent of the system (4.3), so is µ = 2m+ 3− λ.

Because of this lemma, the existence of K-exponents in the fourth line in Thm.4.1
immediately follows from that of the third line.

Proof of Thm.4.1. The K-matrix of the system (4.3) is given by

K =



2 1 · · · 0 0 · · · 0 0
...

...
...

...
...

...
0 0 · · · j + 1 1 · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 0 · · · 2m 1

∂Pm

∂x1

∂Pm

∂x2
· · · ∂Pm

∂xj

∂Pm

∂xj+1
· · · ∂Pm

∂x2m−1
2m+ 1


,

where ∂Pm/∂xj is estimated at the point

c(k) = (c1(k), · · · , c2m−1(k)).

The eigen-equation is given by

det(λ−K) = (λ− 2) · · · (λ− 2m− 1)−
2m−1∑
i=1

∂Pm

∂xi
(c(k))(λ− 2) · · · (λ− i) = 0.
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By the definition, Pm satisfies

Lm+1[x] = −4
(
x(2m) − Pm(x, · · · , x(2m−2))

)
, L0[x] = 1.

Putting x = φ0 + δφ1 yields

Lm+1[φ0 + δφ1] = −4
(
φ
(2m)
0 − Pm(φ0, · · · , φ(2m−2)

0 )
)

−4δ

(
φ
(2m)
1 −

2m−1∑
i=1

∂Pm

∂xi
(φ0, · · · , φ(2m−2)

0 )φ
(i−1)
1

)
+O(δ2).

If we put φ0(z) = b0(z + 1)−2 with b0 = k(k + 1)/2, then the first term in the right
hand side vanishes because of Eq.(4.4). Since

φ
(j)
0 (0) = (−1)j(j + 1)!b0 = cj+1(k),

we obtain

Lm+1[φ0 + δφ1](0) = −4δ

(
φ
(2m)
1 (0)−

2m−1∑
i=1

∂Pm

∂xi
(c(k))φ

(i−1)
1 (0)

)
+O(δ2).

Further, putting φ1(z) = b0(z + 1)λ−2 provides

Lm+1[φ0 + δφ1](0) = −4δb0 · det(λ−K) +O(δ2).

Therefore, if we set

Lj[φ0 + δφ1](z) = fj(z) + δgj(z) +O(δ2), f0 = 1, g0 = 0, (4.11)

det(λ−K) = 0 is equivalent to gm+1(0) = 0.
Let us derive difference equations for fj and gj. Substituting (4.11) into the

definition (4.1) of Lj+1, we obtain{
f ′
j+1 = f ′′′

j − 8φ0f
′
j − 4φ′

0fj,
g′j+1 = g′′′j − 8φ0g

′
j − 4φ′

0gj − 8φ1f
′
j − 4φ′

1fj.
(4.12)

If we set fj = Aj(z + 1)−2j, the first equation yields

(2j + 2)Aj+1 = 2j(2j + 1)(2j + 2)Aj − 16jb0Aj − 8b0Aj

= 8(2j + 1)

(
1

2
j(j + 1)− b0

)
Aj.

Thus, we have

Aj+1 = −4b0

j∏
l=1

4(2l + 1)

l + 1

(
1

2
l(l + 1)− b0

)
, b0 =

1

2
k(k + 1). (4.13)
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This is further rearranged as

Aj = (−1)j2j
(2j − 1)!! · (k + j)!

j! · (k − j)!
, (j = 1, · · · , k), (4.14)

and Aj = 0 for j ≥ k + 1.
Next, by putting gj = Bj(z + 1)λ−2j, the second equation of (4.12) gives

Bj+1 =
(λ− (2j + 2k + 2)) (λ− (2j + 1)) (λ− (2j − 2k))

λ− (2j + 2)
Bj −

4 (λ− (4j + 2))

λ− (2j + 2)
b0Aj.

Since gm+1(0) = 0 if and only if Bm+1 = 0, roots of Bm+1(λ) = 0 give the K-
exponents. Since Aj = 0 for j ≥ k + 1, we obtain

Bm+1 =
(λ− (2m+ 2k + 2)) (λ− (2m+ 1)) (λ− (2m− 2k))

λ− (2m+ 2)
Bm

=

∏m
j=k+1 (λ− (2j + 2k + 2)) · (λ− (2j + 1)) · (λ− (2j − 2k))

(λ− (2m+ 2)) · (λ− 2m) · · · (λ− (2k + 4))
Bk+1.(4.15)

Now we need two lemmas.

Lemma 4.3. For any j ≥ k, Bj+1(λ) is a polynomial in λ of degree 2j.

Lemma 4.4. The equation Bk+1(λ) = 0 has k roots given by λ = 2k + 4, 2k +
6, · · · , 4k + 2. In particular, there is a polynomial Ck+1(λ) of degree k such that

Bk+1 = (λ− (2k + 4)) · · · (λ− (4k + 2))Ck+1(λ). (4.16)

Lemma 4.3 is trivial because Bj+1(λ) = 0 is equivalent to the eigen-equation det(λ−
K) = 0 for the 2j dimensional problem. If Lemma 4.4 is true, all factors in the
denominator of (4.15) cancel and we obtain

Bm+1 =
m∏

j=m+1−k

(λ− (2j + 2k + 2))
m∏

j=k+1

(λ− (2j + 1))
m∏

j=k+1

(λ− (2j − 2k)) · Ck+1(λ).

In particular, we obtained the first three lines in Thm.4.1. This completes the proof
because of Lemma 4.2.

Proof of Lemma 4.5. Put

Pj =
(λ− (2j + 2k + 2)) (λ− (2j + 1)) (λ− (2j − 2k))

λ− (2j + 2)
, Qj = −2 (λ− (4j + 2))

λ− (2j + 2)
.

Then we have

Bk+1 = PkBk +Qkk(k + 1)Ak

= Pk(Pk−1Bk−1 +Qk−1k(k + 1)Ak−1) +Qkk(k + 1)Ak

...

= PkPk−1 · · ·P1B1 + [QkAk + PkQk−1Ak−1 + · · ·+ Pk · · ·P2Q1A1]k(k + 1).
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Substituting Pj, Qj and (4.14), we obtain

Bk+1(λ)

k(k + 1)
=

k∑
l=0

λ− (4k − 4l + 2)

λ− (2k − 2l + 2)
(−1)k−l+12k−l+1 (2k − 2l − 1)!! · (2k − l)!

(k − l)! · l!
×

k∏
j=k−l+1

(λ− (2j + 2k + 2)) (λ− (2j + 1)) (λ− (2j − 2k))

λ− (2j + 2)
.

Now we show that λ = 4k + 2− 2n is a root of Bk+1(λ) = 0 for n = 0, 1, · · · , k − 1.
Substituting this value gives

Bk+1(λ)

k(k + 1)
=

k∑
l=0

2l − n

k + l − n
(−1)k−l+12k−l+1 (2k − 2l − 1)!! · (2k − l)!

(k − l)! · l!
×

k∏
j=k−l+1

(−2) (j + n− k) (4k − 2n− 2j + 1) (3k − n− j + 1)

2k − n− j
.

Since the factor j + n− k becomes zero when j = k − n, which is possible only for
l = n+ 1, · · · , k,

Bk+1(λ)

k(k + 1)
= (−1)k2k+1

n∑
l=0

2l − n

k + l − n

(2k − 2l − 1)!! · (2k − l)!

(k − l)! · l!
×

k∏
j=k−l+1

(j + n− k) (4k − 2n− 2j + 1) (3k − n− j + 1)

2k − n− j
.

Define

F (l) :=
2l − n

k + l − n

(2k − 2l − 1)!! · (2k − l)!

(k − l)! · l!
×

k∏
j=k−l+1

(j + n− k) (4k − 2n− 2j + 1) (3k − n− j + 1)

2k − n− j
.

Then, it is straightforward to prove that F (l) = −F (n−l) and F (n/2) = 0 when n is
an even number. This proves Bk+1(λ) = 0 for λ = 4k+2−2n with n = 0, 1, · · · , k−1.
□

4.2 The space of initial conditions for the fourth order equa-
tion

The fourth order first Painlevé equation is given by

(PI)2


x′1 = x2
x′2 = x3
x′3 = x4
x′4 = 20x1x3 + 10x22 − 40x31 + z.

(4.17)
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In this section, we demonstrate how to construct the space of the initial conditions
of this system. The system satisfies the assumptions (A1) to (A3) with the weight

(p1, p2, p3, p4, r, s) = (2, 3, 4, 5, 6, 7). (4.18)

Thus, we give the system on the local chart C5/Z7 of the space CP 5(2, 3, · · · , 7).
The system has the two families of Laurent series solutions

(I) xj(z) ∼ (−1)j+1j! (z − z0)
−pj , (4.19)

(II) xj(z) ∼ 3(−1)j+1j! (z − z0)
−pj , (4.20)

whose K-exponents are given by

(I) λ = −1, 2, 5, 8,

(II) λ = −1,−3, 8, 10,

respectively. In particular, the first one represents a general solution. We perform
the resolution of singularity for each Laurent series.

(I) Let us consider the resolution of the Laurent series (I).
Step 1. The coordinate transformation between the original coordinates and

the inhomogeneous coordinates on C5/Z2 are given by

x1 = ε−2/7, x2 = X2ε
−3/7, x3 = X3ε

−4/7, x4 = X4ε
−5/7, z = Zε−6/7. (4.21)

We express the system (4.17) in the new coordinates as a polynomial vector field of
the form (3.4) 

dX2/dt = 3X2
2 − 2X3,

dX3/dt = 4X3X2 − 2X4,
dX4/dt = 5X4X2 − (40X3 + 20X2

2 − 80 + 2z),
dZ/dt = 6ZX2 − 2ε,
dε/dt = 7εX2.

(4.22)

This system has two fixed points

(X2, X3, X4, Z, ε) = (2, 6, 24, 0, 0), (2/
√
3, 2, 8/

√
3, 0, 0),

which correspond to the Laurent series (I) and (II), respectively. The eigenvalues of
the Jacobi matrix at these fixed points are

λ = 4, 10, 16, 12, 14,

λ = −2
√
3, 16/

√
3, 20/

√
3, 12/

√
3, 14/

√
3,

respectively. Since we have used the polynomial form (3.4) instead of (3.3), they
differ from the K-exponents, r and s by a constant factor (multiplied by 1/2 and
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√
3/2, they become 2, 5, 8, 6, 7 for the first one and −3, 8, 10, 6, 7 for the second one,

respectively, which coincide with the K-exponents and r, s).
For the resolution of singularity of the first fixed point (I), put

(X̂2, X̂3, X̂4) = (X2 − 2, X3 − 6, X4 − 24) (4.23)

to obtain the system of the form (3.13).
Step 2. We introduce the linear transformation

X̂2 = v1,

X̂3 = 4v1 + v2,

X̂4 = 20v1 + 3v2 + v3 + Z/2− ε/2.

(4.24)

Then, we obtain the system of the form
dv1/dt = 4v1 + F1(v1, v2, v3, Z, ε)
dv2/dt = 10v2 + F2(v1, v2, v3, Z, ε)
dv3/dt = 16v3 + F3(v1, v2, v3, Z, ε)
dZ/dt = 12Z + F4(v1, v2, v3, Z, ε)
dε/dt = 14ε+ F5(v1, v2, v3, Z, ε),

(4.25)

where F1, · · · , F5 are defined by
F1 = −2v2 + 3v21,
F2 = −2v3 − Z + ε+ 4v21 + 4v1v2,
F3 = 8v21 + 3v1v2 + 5v1v3 − v1Z/2 + v1ε,
F4 = −2ε+ 6v1Z,
F5 = 7v1ε.

Note that we need not diagonalize the linear part; −2v2 in F1, −2v3 − Z + ε in F2

and −2ε in F4 do not yield a singularity after the blow-up (see the next step).
Step 3. We calculate the normal form of the system (4.25) to delete several

monomials included in F1, F2, F3. We define weighted degrees to be

deg(v1) = 2, deg(v2) = 5, deg(v3) = 8, deg(Z) = 6, deg(ε) = 7, (4.26)

which are the same as the weights of the weighted blow-up done in Step 4. From
the argument of Step 4 in Sec.3.3, it turns out that if a monomial α included in
Fi satisfies deg(α) < deg(vi) + 1, then the monomial yields a factor 1/wn for some
n ≥ 1 in the right hand side of the system after the blow-up. Hence, we have to
remove such monomials by the normal form theory. Monomials which may yield
the factor 1/wn are v21 in F2 and v21, v1v2, v

3
1, v

4
1 in F3 (although v31 and v41 are not

included in F3, they may appear after removing v21 and v1v2). To remove them, we
set 

y1 = v1,
y2 = v2 + a1v

2
1,

y3 = v3 + a2v
2
1 + a3v1v2 + a4v

3
1 + a5v

4
1.

(4.27)
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We can verify by a straightforward calculation that if we put

a1 = 3, a2 = 1, a3 = −1/2, a4 = −1/2, a5 = 0,

then the system (4.25) is brought into
dy1/dt = 4y1 − 2y2 + 9y21,
dy2/dt = 10y2 − 2y3 − Z + ε− 9y1y2 + 44y31,
dy3/dt = 16y3 + 6y1y3 + y1ε/2 + y22 − 7y21y2/2
dZ/dt = 12Z − 2ε+ 6y1Z
dε/dt = 14ε+ 7y1ε.

(4.28)

This system does not include a monomial α satisfying deg(α) < deg(vi)+1 except for
the diagonal part (4y1, 10y2, 16y3, 12Z, 14ε), which will be removed by the blow-up
below.

Step 4. We employ the weighted blow-up by
y1
y2
y3
Z
ε

 =


u1w

2

u2w
5

u3w
8

ζw6

w7

 . (4.29)

Then, we obtain the polynomial system as desired;

du1
dz

= u2w
2 − 7

2
u21w,

du2
dz

= −22u31 + 7u1u2w + u3w
2 − 1

2
w +

1

2
z,

du3
dz

= u1u3w − 1

4
u1 +

7

4
u21u2 −

1

2
u22w,

dw

dz
= −1− 1

2
u1w

2.

(4.30)

The coordinate transformation between the original coordinates and (u1, u2, u3, w, ζ)
is given by 

x1 = w−2

x2 =
(
2 + u1w

2
)
w−3,

x3 =
(
6 + 4u1w

2 − 3u21w
4 + u2w

5
)
w−4

x4 =
(
24 + 20u1w

2 − 10u21w
4 + 3u2w

5 − u31w
6

−1

2
w7 +

1

2
u1u2w

7 + u3w
8 +

1

2
w6z

)
w−5,

z = ζ.

(4.31)

Step 5. Due to the orbifold structure of CP 5(2, 3, 4, 5, 6, 7), the Z2 action

(X2, X3, X4, Z, ε) 7→ (−X2, X3,−X4, Z,−ε) (4.32)
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acts on the coordinates (X2, X3, X4, Z, ε). This induces the Z2 action on the (u1, u2, u3, z, w)
coordinates given by

(u1, u2, u3, z, w) 7→ (−u1 −
4

w2
,−u2 −

32u1
w3

− 64

w5
,

−u3 −
z

w2
− 4u2
w3

+
24u21
w4

+
32u1
w6

+
64

w8
, z,−w). (4.33)

If we divide C4
1 = {(u1, u2, u3, w)} by this action, (4.31) becomes a one-to-one ra-

tional transformation which defines a smooth algebraic variety C4
0 ∪ C4

1/Z2, where
C4

0 = {(x1, x2, x3, x4)} is the original chart.

(II) Next, we consider the resolution of the Laurent series (II).
Step 1. For the resolution of singularity of the second fixed point (II) of the

system (4.22), put

(X̂2, X̂3, X̂4) = (X2 − 2/
√
3, X3 − 2, X4 − 8/

√
3) (4.34)

to obtain the system of the form (3.13).
Step 2. We introduce the linear transformation

X̂2 = v1,

X̂3 = 3
√
3v1 + v2 +

3
8
Z − 5

√
3

8
ε,

X̂4 = 25v1 +
5
√
3

3
v2 + v3 +

7
√
3

8
Z − 27

8
ε.

(4.35)

Then, we obtain the system of the form

dv1/dt = −2
√
3v1 − 2v2 − 3

4
Z + 5

√
3

4
ε+ F1(v1, v2, v3, Z, ε)

dv2/dt =
16√
3
v2 − 2v3 + F2(v1, v2, v3, Z, ε)

dv3/dt =
20√
3
v3 + F3(v1, v2, v3, Z, ε)

dZ/dt = 12√
3
Z − 2ε+ F4(v1, v2, v3, Z, ε)

dε/dt = 14√
3
ε+ F5(v1, v2, v3, Z, ε),

where F1, · · · , F5 are nonlinear terms. The unstable manifold is a (v2, v3, Z, ε)-space.
We denote the unstable manifold by

v1 = φ(v2, v3, Z, ε), (4.36)

with a convergent power series φ which does not include a constant term. The
system on the unstable manifold is given by

dv2/dt =
16√
3
v2 − 2v3 + F2(φ(v2, v3, Z, ε), v2, v3, Z, ε)

dv3/dt =
20√
3
v3 + F3(φ(v2, v3, Z, ε), v2, v3, Z, ε)

dZ/dt = 12√
3
Z − 2ε+ F4(φ(v2, v3, Z, ε), v2, v3, Z, ε)

dε/dt = 14√
3
ε+ F5(φ(v2, v3, Z, ε), v2, v3, Z, ε).

(4.37)
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Step 3. We define weighted degrees by

deg(v2) = 8, deg(v3) = 10, deg(Z) = 6, deg(ε) = 7, (4.38)

which are the same as the weights of the weighted blow-up done in Step 4. As
before, if a monomial α included in Fi (i = 2, 3) satisfies deg(α) < deg(vi) + 1, then
the monomial yields a factor 1/wn in the right hand side of the system after the
blow-up. Since Fi is nonlinear, Fi(φ(v2, v3, Z, ε), v2, v3, Z, ε) does not include such
monomials (the possible least degree among nonlinear monomials is deg(Z2) = 12,
which is larger than deg(v2) + 1 and deg(v3) + 1). Hence, we need not calculate the
normal form.

Step 4. We employ the weighted blow-up by
v2
v3
Z
ε

 =


u2w

8

u3w
10

ζw6

w7

 . (4.39)

The coordinate transformation between the original coordinates and (v1, u2, u3, w, ζ)
is given by

x1 = w−2

x2 =

(
2
√
3

3
+ v1

)
w−3,

x3 =

(
2 + 3

√
3v1 + u2w

8 − 5
√
3

8
w7 +

3

8
zw6

)
w−4,

x4 =

(
8
√
3

3
+ 25v1 +

5
√
3

3
u2w

8 + u3w
10 +

7
√
3

8
zw6 − 27

8
w7

)
w−5,

z = ζ.

(4.40)

The equations of v1, u2, u3, w are

dv1
dz

=

√
3v1
w

− 3v21
2w

− 5
√
3

8
w6 + u2w

7 +
3

8
zw5,

du2
dz

= −3
√
3v21

2w9
− 15

√
3v1

16w2
+

2v1u2
w

+ u3w +
3u1z

8w3
,

du3
dz

= −15v21
2w11

+
21v1
16w4

− 5
√
3v1u2
6

+
5v1u3
2w

− 3
√
3v1z

16w5
,

dw

dz
= −

√
3

3
− 1

2
v1.

(4.41)

Although the right hand sides are not holomorphic at w = 0, they are holomorphic
on the unstable manifold v1 = φ(u2w

8, u3w
10, zw6, w7) ∼ O(w6). Any integral curves

of the vector field outside the unstable manifold approach to the other fixed point
(I).
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Step 5. The Z2 action (4.32) induces the Z2 action on the (v1, u2, u3, z, w)
coordinates given by

(v1, u2, u3, z, w) 7→ (−v1 −
4
√
3

3
, u2 −

5
√
3

4w
+

6
√
3v1
w8

+
12

w8
, (4.42)

−u3 −
10
√
3u2

3w2
+

25

4w3
− 7

√
3z

4w4
+

8
√
3

w10
− 30v1

w10
, z,−w).(4.43)

If we divide C4
2 = {(v1, u2, u3, w)} by this action, (4.40) becomes a one-to-one ratio-

nal transformation which defines a smooth algebraic variety C4
0 ∪C4

2/Z2. Therefore,
M(z) = C4

0 ∪C4
1/Z2 ∪C4

2/Z2 defined by the transformations (4.31) and (4.40) gives
the space of initial conditions for the system (4.14).
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A Normal form theory

In this Appendix, we give a brief review of the normal form theory. See [5] for more
detail.

Let us consider a holomorphic vector field

dx

dt
= Ax+ f(x), x ∈ Cm, (A.1)

defined near the origin, where A is an m×m matrix and f ∼ O(||x||2) denotes the
nonlinearity. We assume that A = diag(λ1, · · · , λm) is a diagonal matrix. If there
exist j and non-negative integers (n1, · · · , nm) such that n1 + · · ·+ nm ≥ 2 and

λ1n1 + · · ·+ λmnm = λj, (A.2)

then, the monomial vector field xn1
1 · · · xnm

m ej is called the resonance term. A normal
form of (A.1) up to the order N is given as follows.

Proposition A.1. For any integer N ≥ 2, there exists a polynomial transformation
x 7→ y of degree N such that (A.1) is transformed into the system

dy

dt
= Ay + g1(y) + g2(y), (A.3)

where g1 consists only of resonance terms up to degree N , and g2 ∼ O(||x||N+1).

We need the following assumption for the convergence as N → ∞.

(P) The convex hull of eigenvalues {λ1, · · · , λm} in C does not include the origin.
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In this case, the number of resonance terms is finite.

Proposition A.2. Under the assumption (P), there exists a local analytic trans-
formation x 7→ y such that (A.1) is transformed into the system

dy

dt
= Ay + g1(y), (A.4)

where g1 consists only of resonance terms.

(A.1) has a formal series solution of the form

x(t) = P (α1e
λ1t, · · · , αme

λmt), (A.5)

where P is a formal power series in the arguments, whose coefficients are polynomi-
als in t. α1, · · · , αm are arbitrary constants. The next proposition is well known in
perturbation theory.

Proposition A.3. P is a convergent power series, whose coefficients are indepen-
dent of t, if and only if

(i) A is semi-simple, and
(ii) (A.1) is linearized by a local analytic transformation.

In particular, the condition (ii) is satisfied if (P) is satisfied and f(x) does not
include resonance terms. There are examples that (P) is not satisfied while (A.1) can
be linearized (Siegel’s theorem). In the proof of Prop.3.5, the system (3.9) satisfies
(P) because the eigenvalues have positive real parts.

B Proofs of Proposition 2.7 and 2.8

Consider the series solution

xi(z) = ci(z − z0)
−qi + ai,1(z − z0)

−qi+1 + · · · = ciT
−qi(1 + o(T )), (B.1)

where T = z − z0. Without loss of generality, we suppose that

q1
p1

= · · · = qM
pM

>
qM+1

pM+1

≥ · · · ≥ qm
pm
. (B.2)

Substituting (B.1) into fA
i , we have

fA
i (x1(z), · · · , xm(z))

= fA
i (c1T

−q1 , · · · , cmT−qm) · (1 + o(T ))

= fA
i (c1T

qM
pM

p1−q1T
− qM

pM
p1 , · · · , cmT

qM
pM

pm−qmT
− qM

pM
pm) · (1 + o(T ))

= T
− qM

pM
(1+pi)fA

i (c1T
qM
pM

p1−q1 , · · · , cmT
qM
pM

pm−qm) · (1 + o(T )).

(B.2) gives qMpi/pM − qi ≥ 0 for any i and qMpi/pM − qi = 0 for i = 1, · · · ,M .
Thus we obtain

fA
i (x1(z), · · · , xm(z)) = T

− qM
pM

(1+pi)fA
i (c1, · · · , cM , 0, · · · , 0) · (1 + o(T )).
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Similarly, we can verify

fN
i (x1(z), · · · , xm(z), z) ∼ o(T

− qM
pM

(1+pi)),

gi(x1(z), · · · , xm(z), z) ∼ o(T
− qM

pM
(1+pi)),

as T → 0. Hence, the system (2.1) with (B.1) yields

−ciqiT−qi−1(1 + o(T )) = T
− qM

pM
(1+pi)fA

i (c1, · · · , cM , 0, · · · , 0) · (1 + o(T )). (B.3)

We will compare the orders of a pole in both sides; qi + 1 and qM(1 + pi)/pM .

Proof of Prop.2.8. Assume that qi > pi for some i. We can assume without loss
of generality that qi > pi for any i = 1, · · · ,m. Then, (B.2) shows

(qi + 1)− qM
pM

(1 + pi) ≤ (qi + 1)− qi
pi
(1 + pi) = 1− qi

pi
< 0. (B.4)

This proves

fA
i (c1, · · · , cM , 0, · · · , 0) = 0

for i = 1, · · · ,m. Then, the condition (S) gives c1 = · · · = cM = 0. We repeat this
procedure by replacing qi − 1 by qi (qi − 1 := qi) for i = 1, · · · ,M and rearranging
the order of q1, q2, · · · , qm so that (B.2) holds for some M . If qi > pi, the inequality
(B.4) again holds. If qi = pi for some i, then

(qi + 1)− qM
pM

(1 + pi) < (qi + 1)− qi
pi
(1 + pi) = 0.

Since the inequality (B.4) holds for any i, we have c1 = · · · = cM = 0.
By repeating this procedure, at least q1 decreases by 1 at each step. This algo-

rithm stops when qi = pi for any i and it completes the proof. □
Proof of Prop.2.7. Suppose 0 ≤ qi < pi and ci ̸= 0 for i = 1, · · · ,m. For
i = 1, · · · ,M , we have

(qi + 1)− qM
pM

(1 + pi) = (qi + 1)− qi
pi
(1 + pi) = 1− qi

pi
> 0.

Thus, Eq.(B.3) gives ciqi = 0 for i = 1, · · · ,M . By the assumption, we obtain qi = 0
for i = 1, · · · ,M . By repeating this procedure as before, we can prove that qi = 0
for any i. □
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