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A compactified Riccati equation of Airy type on a

weighted projective space

By

Hayato Chiba∗

Abstract

The Riccati equation dx/dy = x2 − y is investigated from a view point of dynamical

systems theory. The equation is realized as a two dimensional vector field on a weighted

projective space. The normal form theory and the center manifold theory of vector fields are

applied to obtain many properties of the equation.

§ 1. Introduction

In this paper, the Riccati equation

(1.1)
dx

dy
= x2 − y

is investigated via the dynamical systems theory. It is known that putting x = −u′/u,
u satisfies the linear Airy equation

(1.2)
d2u

dy2
= yu.

Since the Airy equation is well studied, many properties of the Riccati equation can
be easily obtained. Our purpose in this paper is to study the Riccati equation without
using the linear equation. Since Eq.(1.2) is not used, in what follows, we call Eq.(1.1)
the Airy equation.

The Airy equation is regarded as a two dimensional vector field dx/dt = x2 −
y, dy/dt = 1, where t ∈ C is an additional parameter. In order to investigate behavior
of solutions near infinity, we will propose a compactification of the vector field defined on
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a compact manifold CP 2(1, 2, 3) called a weighted projective space. Roughly speaking,
a vector field on CP 2(1, 2, 3) is given as a projectivization of the vector field dx/dt =
x2 − y, dy/dt = 1 in some weighted manner, where the weight reflects a symmetry of
the Airy equation. The vector field on CP 2(1, 2, 3) has three fixed points. One of them
corresponds to a pole of a solution (i.e. x = ∞), and the other fixed points correspond
to an irregular singular point of the equation (i.e. y = ∞). The dynamical systems
theory, in particular, local theory near fixed points are applied to investigate behavior
of solutions near poles and the irregular singular point. By using this setting, we will
prove that
• the Airy equation is locally integrable near poles,
• any solutions are meromorphic functions,
• any solutions have infinitely many poles,
• the equation has a holomorphic first integral,
• the existence of a solution without poles on a certain sector,
• the Airy equation is uniquely characterized by the geometry of CP 2(1, 2, 3) and a
certain local condition.

Although some of them are easily proved if we use the linear equation, our proofs
without using the linear equation are applicable to any nonlinear differential equations.
For example, we can prove that the Painlevé equations can be transformed into certain
integrable systems near each poles. An application to the Painlevé equations will appear
in a forthcoming paper.

§ 2. A weighted projective space

In this section, we give a definition of a weighted projective space, on which a
compactified Airy equation is defined.

Let Ũ be a complex manifold and Γ a finite group acting analytically and effectively
on Ũ . In general, the quotient space Ũ/Γ is not a smooth manifold if the action has
fixed points. Roughly speaking, a (complex) orbifold M is defined by glueing a family
of such spaces Ũα/Γα; a Hausdorff space M is called an orbifold if there exist an open
covering {Uα} of M and homeomorphisms ϕα : Uα � Ũα/Γα. See [3] for more details.
In this article, we will consider the quotient space of the form C

n/Zp, an algebraic
variety having a unique conical singularity.

Let ω̃ be a holomorphic differential form on a complex manifold Ũ . If ω̃ is invariant
under an analytic action of Γ, it induces a holomorphic differential form on Ũ/Γ outside
the set of singularities. A holomorphic differential form on a complex orbifold M =⋃

Uα � ⋃
Ũα/Γα is defined to be a family ω̃α of Γα-invariant holomorphic forms on

Ũα, which is consistent on intersections Uα ∩ Uβ . More formally, let {ω̃α} be a family
of Γα-invariant holomorphic forms on Ũα. If there is an open set U3 � Ũ3/Γ3 such that
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U3 ⊂ U1∩U2, we suppose that there are injections λj : Ũ3 → Ũj such that λ∗
1ω̃1 = λ∗

2ω̃2.
Then, the family {ω̃α} is called a holomorphic differential form on the orbifold M . A
meromorphic form on M is defined in a similar manner. We also define a holomorphic
(meromorphic) differential equation on an orbifold by regarding differential equations
as Pfaffian forms.

Consider the weighted C
∗-action on C

n+1 given by

(2.1) (x0, · · · , xn) �→ (λp0x0, · · · , λpnxn), λ ∈ C
∗ := C\{0},

with the weight (p0, · · · , pn) ∈ Z
n. The quotient space

(2.2) CPn(p0, · · · , pn) := C
n+1/C

∗

is called the weighted projective space. Note that CPn(1, · · · , 1) is a usual projective
space, while otherwise a weighted projective space is not a complex manifold but an
orbifold with several singularities.

Example 2.1. CP 2(1, 2, 3).
This space is defined by the relation [x, y, z] ∼ [λx, λ2y, λ3z], λ ∈ C.

(i) When x 	= 0,

[x, y, z] ∼ [1,
y

x2
,

z

x3
] := [1, Y1, Z1].

This implies that the set of points on CP 2(1, 2, 3) with x 	= 0 is homeomorphic to
C

2 = {(Y1, Z1)}.
(ii) When y 	= 0,

[x, y, z] ∼ [y−1/2x, 1, y−3/2z] := [X2, 1, Z2].

On the other hand, putting y = e2πiy yields

[x, y, z] ∼ [−y−1/2x, 1,−y−3/2z] = [−X2, 1,−Z2].

This means that two points (X2, Z2) and (−X2,−Z2) should be identified. Hence, the
set of points on CP 2(1, 2, 3) with y 	= 0 is homeomorphic to C

2/Z2.
(iii) When z 	= 0,

[x, y, z] ∼ [z−1/3x, z−2/3y, 1] := [X3, Y3, 1].

As above, the set of points on CP 2(1, 2, 3) with z 	= 0 is homeomorphic to C
2/Z3, where

the Z3-action is defined by (X3, Y3) �→ (e2πi/3X3, e
4πi/3Y3).

This proves that

(2.3) CP 2(1, 2, 3) � C
2 ∪ C

2/Z2 ∪ C
2/Z3

and thus CP 2(1, 2, 3) is an orbifold with two singularities.
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We call local coordinates (Y1, Z1), (X2, Z2), (X3, Y3) an inhomogeneous coordinates
system on CP 2(1, 2, 3). Note that they are not actual local coordinates on CP 2(1, 2, 3)
but coordinates on the covering spaces Ũα. They are related through

(2.4)

{
X3 = X2Z

−1/3
2

Y3 = Z
−2/3
2

,

{
X3 = Z

−1/3
1

Y3 = Y1Z
−2/3
1

,

{
X2 = X3Y

−1/2
3

Z2 = Y
−3/2
3

,

{
Y1 = Y3X

−2
3

Z1 = X−3
3

,

which are often used throughout the paper.
Recall that a meromorphic differential equation on CP 2(1, 2, 3) is a family of Γα-

invariant meromorphic equations on the covering spaces Ũα. In the inhomogeneous
coordinates, they are expressed as meromorphic equations

(2.5)
dY1

dZ1
= f1(Y1, Z1),

dX2

dZ2
= f2(X2, Z2),

dX3

dY3
= f3(X3, Y3),

which are invariant under the actions of id, Z2, Z3, respectively. The next lemma shows
that if we use the inhomogeneous coordinates with the relation (2.4), meromorphy of
f1, f2, f3 implies id, Z2, Z3-invariance of Eq.(2.5).

Lemma 2.2. Suppose that differential equations on the coordinates (Y1, Z1), (X2, Z2)
and (X3, Y3) are given as (2.5). They define a meromorphic differential equation on
CP 2(1, 2, 3) if and only if f1, f2, f3 are meromorphic.

Proof. If Eq.(2.5) defines a meromorphic differential equation on CP 2(1, 2, 3), then
f1, f2, f3 are meromorphic by the definition. Conversely, suppose that f1, f2, f3 are
meromorphic. We should prove that equations (2.5) are id, Z2, Z3-invariant. Due to the
relation (2.4), the third equation dX3/dY3 = f3(X3, Y3) is transformed into

(2.6)
dY1

dZ1
=

Z
1/3
1 − 2Y1f3(Z

−1/3
1 , Y1Z

−2/3
1 )

−3Z1f3(Z
−1/3
1 , Y1Z

−2/3
1 )

.

For simplicity, suppose that f3 is holomorphic and expressed as f3(X3, Y3) =
∑

aijX
i
3Y

j
3

(even if f3 is meromorphic, the proof is done in the same way by expressing it as a
quotient of two holomorphic functions). This provides

(2.7)
dY1

dZ1
=

Z
1/3
1 − 2Y1

∑
aijZ

−(i+2j)/3
1 Y j

1

−3Z1

∑
aijZ

−(i+2j)/3
1 Y j

1

.

Since the right hand side is meromorphic, aij 	= 0 only when i + 2j ∈ 3Z − 1. Then,

(2.8)
dY1

dZ1
=

1 − 2Y1

∑
i+2j=3n−1 aijZ

−n
1 Y j

1

−3Z1

∑
i+2j=3n−1 aijZ

−n
1 Y j

1

.
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Hence, the third equation is of the form

(2.9)
dX3

dY3
=
∑
j,n

a3n−1−2j,jX
3n−1−2j
3 Y j

3 .

It is easy to verify that this equation is invariant under the Z3-action (X3, Y3) �→
(e2πi/3X3, e

4πi/3Y3). Similarly, we can show that the second equation is invariant under
the Z2-action (X2, Z2) �→ (−X2,−Z2). This proves the lemma.

Although we use only CP 2(1, 2, 3) in this paper, the above properties are common
among any weighted projective spaces.

§ 3. A compactified Airy equation

Let us consider the weighted projective space CP 2(1, 2, 3) with the inhomogeneous
coordinates (Y1, Z1), (X2, Z2), (X3, Y3) satisfying the relation (2.4). On the third coor-
dinate, we give the Airy equation dX3/dY3 = X2

3 − Y3. This induces a well-defined
meromorphic differential equation on CP 2(1, 2, 3). Indeed, the relation (2.4) transforms
the Airy equation into

(3.1)
dY1

dZ1
=

Z1 + 2Y1(Y1 − 1)
3Z1(Y1 − 1)

,
dX2

dZ2
=

2 − 2X2
2 + X2Z2

3Z2
2

,
dX3

dY3
= X2

3 − Y3.

Since they are meromorphic, they define a meromorphic differential equation on CP 2(1, 2, 3)
due to Lemma 2.2. Note that the sets {Z1 = 0} and {Z2 = 0} correspond to {X3 = ∞}
and {Y3 = ∞}, respectively. Hence, the first two equations of (3.1) describe behavior
of the Airy equation near infinity. In this sense, we call the system (3.1) a compactified
Airy equation on CP 2(1, 2, 3).

Remark. The relation (2.4) shows that X2 and Y1 satisfy X2
2 = Y −1

1 . We can
see that this is a coordinate transformation between inhomogeneous coordinates on
the weighted projective space CP 1(1, 2). Thus, we have a cellular decomposition of
CP 2(1, 2, 3) as

(3.2) CP 2(1, 2, 3) = C
2/Z3 ∪ CP 1(1, 2), (disjoint),

where C
2 = {(X3, Y3)} and CP 1(1, 2) = {(Y1, 0)}∪{(X2, 0)} related by X2

2 = Y −1
1 . This

implies that CP 2(1, 2, 3) is obtained by attaching CP 1(1, 2) to C
2/Z3 at “infinity”.

We will use several theorems on dynamical systems (vector fields). For this purpose,
it is convenient to regard Eq.(3.1) as 2-dim dynamical systems

(3.3)

 Ẏ1 = 2Y1 +
Z1

Y1 − 1
Ż1 = 3Z1,

Ẋ2 = 2 − 2X2
2 + X2Z2

Ż2 = 3Z2
2 ,

Ẋ3 = X2
3 − Y3

Ẏ3 = 1,
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where (˙) denotes the derivative d/dt and t ∈ C is an additional parameter. Fixed points
of the vector fields are given by (Y1, Z1) = (0, 0) and (X2, Z2) = (±1, 0), which play an
important role. We can show that any solutions (X3, Y3) of the Airy equation satisfying
X3 → ∞ or Y3 → ∞ approach to one of the fixed points. Hence, local analysis near
the fixed points based on the dynamical systems theory gives much information on the
asymptotic behavior of the Airy equation.

§ 4. Meromorphy of solutions of the Airy equation

Now we prove that any solutions X3 = X3(Y3) of the Airy equation are meromor-
phic functions by using the above setting. Of course, it is very easy to prove it if we use
the fact that the Airy equation comes from the linear equation u′′ = yu. Nevertheless,
our proof without using a linear equation is significant because it is also applicable to
more higher order equations such as the Painlevé equations. Since our proof is based
on Poincaré’s linearization theorem of vector fields, we give a simple review of it.

Let Ax + f(x) be a holomorphic vector field on C
n with a fixed point x = 0, where

A is an n × n constant matrix and f(x) ∼ O(|x|2) is a nonlinearity. Let λ1, · · · , λn be
eigenvalues of A. We consider the following two conditions:

(Nonresonance) There are no j ∈ {1, · · · , n} and non-negative integers m1, · · · , mn

satisfying the resonant condition

(4.1) m1λ1 + · · · + mnλn = λj , (m1 + · · · + mn ≥ 2).

(Poincaré domain) The convex hull of {λ1, · · · , λn} in C does not include the origin.

Theorem 4.1 (Poincaré. See [1] for the proof). Suppose that A is diagonal and
eigenvalues satisfy the above two conditions. Then, there exists a local analytic trans-
formation y = x + ϕ(x), ϕ(x) ∼ O(|x|2) defined near the origin such that the equation
dx/dt = Ax + f(x) is transformed into the linear system dy/dt = Ay.

We will give an idea of the proof later.

Theorem 4.2. There exists a local holomorphic function ϕ(Y1, Z1) defined near
(Y1, Z1) = (0, 0) such that ϕ(0, 0) = 0 and the Airy equation dX3/dY3 = X2

3 − Y3 is
transformed into the integrable equation dx/dy = x2 by the local transformation

(4.2)

(
x

y

)
=

(
X3

Y3 + X−1
3 ϕ(Y3X

−2
3 , X−3

3 )

)
.

Since ϕ(Y3X
−2
3 , X−3

3 ) is holomorphic near X3 = ∞, we can say that the Airy
equation is locally integrable near each singularities of solutions.
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Proof. Suppose that a solution X3 = X3(Y3) of the Airy equation is not holomor-
phic at some finite Y3 = Y∗. If X3(Y∗) is finite, a fundamental theorem on ODEs proves
that X3(Y3) is holomorphic near Y∗. Thus, we consider a solution such that X3 → ∞
as Y3 → Y∗. Because of (2.4), (Y1, Z1) → (0, 0) as Y3 → Y∗, which is a fixed point of
the first vector field of (3.3). Eigenvalues of the Jacobian matrix of this vector field
are λ = 2, 3, and they satisfy the conditions for Poincaré’s theorem. To apply it, put
Ŷ1 = Y1 + Z1. Then, the first equation of (3.3) is transformed into

dŶ1

dt
= 2Ŷ1 +

Z1Ŷ1 − Z2
1

Ŷ1 − Z1 − 1
,

dZ1

dt
= 3Z1,(4.3)

and the linear part becomes diagonal. Now Poincaré’s theorem proves that there is a
local analytic transformation(

û

v

)
=

(
Ŷ1 + φ1(Ŷ1, Z1)
Z1 + φ2(Ŷ1, Z1)

)
, φ1, φ2 ∼ O(|x|2),

such that Eq.(4.3) is linearized as dû/dt = 2û, dv/dt = 3v. We can prove that φ2 ≡ 0
because the equation Ż1 = 3Z1 is already linear (thus, we need not change Z1). Further,
the function φ1 can be written as φ1(Ŷ1, Z1) = Z1ϕ̂(Ŷ1, Z1), where ϕ̂ ∼ O(Ŷ1, Z1) is a
local holomorphic function. This follows from the fact that when Z1 = 0, then Eq.(4.3)
is already linear, so that φ1(Ŷ1, 0) = 0. Hence,

(4.4)

(
û

v

)
=

(
Ŷ1 + Z1ϕ̂(Ŷ1, Z1)

Z1

)
, ϕ̂ ∼ O(Ŷ1, Z1).

Now we have performed the series of transformations(
X3

Y3

)
�→
(

Y1

Z1

)
=

(
Y3X

−2
3

X−3
3

)
�→
(

Ŷ1

Z1

)
=

(
Y1 + Z1

Z1

)
�→
(

û

Z1

)
(4.5)

to obtain the linear system dû/dt = 2û, dZ1/dt = 3Z1. Next, we are back to the original
coordinate by the inverse transformations given by(

û

Z1

)
�→
(

u

Z1

)
:=

(
û − Z1

Z1

)
�→
(

x

y

)
:=

(
Z

−1/3
1

uZ
−2/3
1

)
.

Then, the system dû/dt = 2û, dZ1/dt = 3Z1 is transformed into the equation dx/dy =
x2. Eq.(4.2) is obtained by combining all transformations above if we put ϕ̂(Ŷ1, Z1) =
ϕ̂(Y1 + Z1, Z1) := ϕ(Y1, Z1).

The equation dx/dy = x2 is solved as x = (C − y)−1, where C ∈ C is an integral
constant. By the transformation (4.2), we obtain the local first integral of the Airy
equation as

(4.6) Y3 + X−1
3 + X−1

3 ϕ(Y3X
−2
3 , X−3

3 ) = C.
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We will show later that this is actually a global first integral.

Corollary 4.3. Any solutions of the Airy equation dX3/dY3 = X2
3 − Y3 are

meromorphic.

Proof. Suppose that a solution X3 = X3(Y3) of the Airy equation is not holo-
morphic at some finite Y3 = Y∗. As was explained in the above proof, we assume that
X3 → ∞ as Y3 → Y∗. Near the point (X3, Y3) = (∞, Y∗), we have the first integral
(4.6). Since X3 → ∞ as Y3 → Y∗, it turns out that C = Y∗. Put X−1

3 = ξ;

Y3 + ξ + ξϕ(Y3ξ
2, ξ3) − Y∗ = 0.

Since ϕ(Y3ξ
2, ξ3) ∼ O(ξ2), it is easy to verify that the derivative of the above with

respect to both of ξ and Y3 at (ξ, Y3) = (0, Y∗) are not zero. Hence, the implicit
function theorem proves that the above relation is locally solved as ξ = g(Y3), where
g(Y3) is holomorphic near Y∗ and g(Y∗) = 0, g′(Y∗) 	= 0. Therefore, X3 = 1/g(Y3) has a
pole of first order at Y∗.

The next purpose is to show that the local holomorphic function ϕ in Theorem
4.2 has an analytic continuation to a sufficiently large domain. In general, the trans-
formation y = x + ϕ(x) in Thm.4.1 is biholomorphic from a small neighborhood U of
the origin onto a small neighborhood V of the origin. However, the function x + ϕ(x)
may have an analytic continuation to a larger domain, although it is not biholomorphic
(in particular, it is not injective) outside U . To explain it, recall a proof of Poincaré’s
theorem.

Suppose that a vector field Ax + f(x) satisfying the conditions for Poincaré’s the-
orem is linearized by the transformation y = x + ϕ(x), ϕ(x) ∼ O(|x|2). Substituting
y = x + ϕ(x) into ẏ = Ay yields

ẋ +
∂ϕ

∂x
(x)ẋ = Ax + Aϕ(x).

Since ẋ = Ax + f(x), ϕ satisfies the partial differential equation

∂ϕ

∂x
(x)(Ax + f(x)) = Aϕ(x) − f(x)(4.7) ( n∑

j=1

∂ϕk

∂xj
(x)(λjxj + fj(x)) = λkϕk(x) − fk(x), k = 1, · · · , n

)
.

The existence of a solution ϕ(x) can be proved by the contraction mapping principle on
a certain Banach space of local holomorphic functions h(x) such that h ∼ O(|x|2). See
[1] for the details.
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Let U be a neighborhood of the origin on which ϕ(x) is defined and holomorphic.
Our purpose is to construct an analytic continuation of ϕ. Let φt(x0) be the flow of the
vector field Ax + f(x) (i.e. a solution of ẋ = Ax + f(x) satisfying the initial condition
x(0) = x0). We will show that ϕ is analytically continued along the flow φt.

Proposition 4.4. Let S be an analytic hypersurface ((n−1)-dim complex man-
ifold) in U ⊂ C

n. Suppose that at each point x0 ∈ S, an integral curve of the vector
field Ax + f(x) transversely intersects S. Then, the function ϕ(x) has an analytic
continuation from U to the region {φt(x0) | t ∈ C, x0 ∈ S} ∩ C

n.

Proof. Since Eq.(4.7) is a first order linear PDE of ϕ, it is integrated by the
characteristic curve method; that is, we assume that along a characteristic curve x(t),
ϕ(x(t)) satisfies an ODE

(4.8)
d

dt
ϕ(x(t)) = Aϕ(x(t)) − f(x(t)),

where a characteristic curve is given by an integral curve of ẋ = Ax + f(x) due to
Eq.(4.7). Denote the curve x(t) = φt(x0) by using the flow. Along this curve, Eq.(4.8)
is integrated as

ϕ(φt(x0)) = eAt
[
−
∫ t

0

e−Asf(φs(x0))ds + C
]
, C = ϕ(x0).

Now we take an analytic hypersurface S. We locally express S as a graph of a holo-
morphic function x = h(τ), τ ∈ C

n−1. Put x0 = h(τ) ∈ S ⊂ U . Then, ϕ(h(τ)) is
holomorphic and

ϕ(φt(h(τ))) = eAt
[
−
∫ t

0

e−Asf(φs(h(τ)))ds + ϕ(h(τ))
]
.

This shows that ϕ(φt(h(τ))) is holomorphic in (t, τ) ∈ C
n as long as ϕ(φt(h(τ))) is

bounded. To prove that ϕ(x) is holomorphic at a point x = φt(h(τ)), it is sufficient to
show that the Jacobian matrix of φt(h(τ)) with respect to (t, τ) is nonsingular.

Since φt is a flow of the vector field g(x) := Ax + f(x), the Jacobian matrix of
φt(h(τ)) is given by
(4.9)

J =
(

g(φt(h(τ))),
∂φt

∂x
(h(τ))

∂h

∂τ

)
=

∂φt

∂x
(h(τ))

(
∂φt

∂x
(h(τ))−1g(φt(h(τ))),

∂h

∂τ

)
.

It is well known that the derivative ∂φt/∂x of the flow is nonsingular because it is a
fundamental solution of the variational equation

(4.10)
d

dt

(
∂φt

∂x

)
=

∂g

∂x
(φt) ·

(
∂φt

∂x

)
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Next, we have

d

dt

(
∂φt

∂x
(h(τ))

)−1

g(φt(h(τ)))

=−
(

∂φt

∂x

)−1

· d

dt

(
∂φt

∂x

)
·
(

∂φt

∂x

)−1

g(φt) +
(

∂φt

∂x

)−1

· ∂g

∂x
(φt)g(φt).

Substituting Eq.(4.10) provides

d

dt

(
∂φt

∂x
(h(τ))

)−1

g(φt(h(τ))) = 0.

Hence, (
∂φt

∂x
(h(τ))

)−1

g(φt(h(τ))) = g(h(τ)).

Therefore,

(4.11) J =
∂φt

∂x
(h(τ))

(
g(h(τ)),

∂h

∂τ

)
.

By the assumption for the surface S, the above matrix is nonsingular.

Now we are back to the Airy equation. Let ϕ(Y1, Z1) be a local holomorphic
function defined near (Y1, Z1) = (0, 0) described in Thm.4.2.

Theorem 4.5. The function ϕ(Y1, Z1) has a (multi-valued) analytic continua-
tion to the region {(Y1, Z1) |Z1 	= 0}. In particular, Eq.(4.6) gives a global first integral
which is holomorphic on the region {(X3, Y3) |X3 	= 0}.

Proof. Recall that the function ϕ(Y1, Z1) is obtained by applying the Poincaré’s
theorem to the first vector field of (3.3). Let U ⊂ C

2 be a neighborhood of (Y1, Z1) =
(0, 0) on which ϕ is holomorphic.

Let δ > 0 be a sufficiently small number and take an analytic hypersurface (curve)
S in U defined by (Y1, Z1) = (τ, δ), τ ∈ C. The tangent vector of S is (1, 0), which is
transverse to the first vector field of (3.3) when Z1 	= 0. Hence, ϕ(Y1, Z1) has an analytic
continuation along integral curves of the vector field starting at points on S ⊂ U .

Now we use the well known fact that any solutions of the Airy equation X ′
3 =

X2
3 − Y3 have poles (see the next proposition). Moving to the (Y1, Z1) coordinate,

this implies that for any initial point (Y0, Z0) such that Z0 	= 0, a solution of the first
equation of (3.3) can approach to (Y1, Z1) = (0, 0) and intersects with S if δ > 0 is
sufficiently small. In other words, integral curves starting at points on S can reach any
points (Y0, Z0), Z0 	= 0. This fact and Prop.4.4 complete the proof.

As an application of the dynamical systems theory, let us show the following known
result without using a linear equation.
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Proposition 4.6. (i) Any solutions of the Airy equation X ′
3 = X2

3 − Y3 have
infinitely many poles. (ii) A position of each pole analytically depends on an initial
condition.

Proof. Fix a solution X3 = h(Y3) of the Airy equation. It is sufficient to show the
existence of poles for large Y3 (actually they accumulate at Y3 = ∞). When Y3 is large,
then Z2 = Y

−3/2
3 is small. Thus it is convenient to use the second system of (3.3), say

E2, with small Z2.
Give an initial condition (X2, Z2) = (u, v) for E2, which lies on the solution X3 =

h(Y3). Let us consider the approximate dynamical system

(4.12) Ẋ2 = 2 − 2X2
2 , Ż2 = 3Z2

2 .

This is solved as

(4.13) X2(t) =
1 + X0e

−4t

1 − X0e−4t
, Z2(t) =

v

1 − 3tv
,

(
X0 =

u − 1
u + 1

)
.

There is a path {τeiθ | 0 ≤ τ < ∞} in the t-plane such that when |Z2(0)| = |v| < ε1,
then |Z2(t)| < ε1 for any t > 0 and |X2(t)| → ∞ along the path. Now we regard the
system E2 as a perturbation of Eq.(4.12). Since solutions are continuous with respect
to a small perturbation of a vector field, for any positive number M , there is ε1 > 0
and a time t0 such that when |v| < ε1, then |Z2(t0)| < ε1 and |X2(t0)| > M . Since
Y1 = X−2

2 and Z1 = X−3
2 Z2, it follows that if ε1 > 0 is sufficiently small, then the

solution of E2 written in the (Y1, Z1) coordinate passes through inside of U , where U

is a neighborhood of (Y1, Z1) = (0, 0), on which Thm.4.2 is valid. Then, the equation
is transformed into x′ = x2, and the solution has a pole. Let Y3 = ζ be the position of
the pole.

Next, take a different initial value (u, v) for the system E2, which lies on the solution
X3 = h(Y3), such that |v| < ε2 << |ζ|−3/2. By the same argument as above, we have
|Z2(t0)| < ε2 and |X2(t0)| > M for some t0. Thus we find a pole of the solution again.

Let us estimate the position of the latter pole. Inside U , we have the local first
integral (4.6). The number C gives a position of a pole because Y3 → C as X3 → ∞ in
(4.6). In the (X2, Z2) coordinate, (4.6) is rewritten as

(4.14) Z
−2/3
2 + X−1

2 Z
1/3
2 + X−1

2 Z
1/3
2 ϕ(X−2

2 , X−3
2 Z2) = C.

Therefore, the position of the latter pole Y3 = Y∗ is estimated as

Y∗ = Z2(t0)−2/3 + O(1/M), |Y∗| > ε
−2/3
2 + O(1/M) >> |ζ| + O(1/M).

Hence, the latter pole Y∗ is different from the first one ζ. Repeating this procedure,
we can find infinitely many poles. Part (ii) of the proposition immediately follows from
(4.6).
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§ 5. A characterization of the Airy equation

In the previous section, we have shown for the Airy equation X ′
3 = X2

3 − Y3 that
(i) it induces a meromorphic equation on CP 2(1, 2, 3); the Airy equation is also mero-
morphic in (Y1, Z1) and (X2, Z2) coordinates.
(ii) there is a hyperbolic fixed point (Y1, Z1) = (0, 0) of the corresponding dynamical
system (3.3), whose Jacobian matrix is given by

(5.1) J =

(
2 −1
0 3

)
.

The eigenvalues λ = 2, 3 allow us to apply Poincaré’s linearization theorem. Here,
let us observe that the (1, 2)-component of J (= −1) also plays an important role. If
the (1, 2)-component were zero, that is, if an equation on (Y1, Z1) coordinate were of
the form {

Ẏ1 = 2Y1 + O(Y 2
1 , Y1Z1, Z

2
1 )

Ż1 = 3Z1

,

then, we can show the following by the same way as Thm.4.2; by the coordinate trans-
formation of the form (4.2), X ′

3 = X2
3 −Y3 is transformed into the equation ẏ = 0. Since

y = C = constant, we obtain the first integral

(5.2) Y3 + X−1
3 ϕ(Y3X

−2
3 , X−3

3 ) = C,

(compare with Eq.(4.6)). In this case, Cor.4.3 is not true because the implicit function
theorem is not applicable (ξ-derivative vanishes).

In this section, we prove that the above properties (i),(ii) uniquely determine the
Airy equation.

Theorem 5.1. Consider the space CP 2(1, 2, 3) with the inhomogeneous coordi-
nates (Y1, Z1), (X2, Z2), (X3, Y3). Give a differential equation

(5.3)
dX3

dY3
= f(X3, Y3),

on the third coordinate, where f is holomorphic in X3 and meromorphic in Y3. For this
equation, suppose that
(i) it is also a meromorphic equation in (Y1, Z1) and (X2, Z2) coordinates.
(ii) the corresponding 2-dim vector field has a hyperbolic fixed point (Y1, Z1) = (0, 0).
The (1, 2)-component of its Jacobian matrix is not zero.

Then, Eq.(5.3) is of the form

(5.4)
dX3

dY3
= a2X

2
3 + a1Y3, a2, a1 ∈ C, a2 	= 0.
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In particular, when a1 = 0, it is equivalent to the integrable equation X ′
3 = X2

3 , and
when a1 	= 0, it is equivalent to the Airy equation.

The condition (i) means that a given equation is meromorphic on CP 2(1, 2, 3) due
to Lemma 2.2. Hence, the condition (i) is a global condition which reflects a structure
of CP 2(1, 2, 3). On the other hand, the condition (ii) is an assumption only for one
point. Thus, we may say that(

Airy equation
x′ = x2

)
= (structure of CP 2(1, 2, 3)) + (local behavior at one point).

Actually, the global first integral (4.6) was constructed by the analysis at one point
(Y1, Z1) = (0, 0). Note that we can not distinguish the Airy and x′ = x2 by the
condition (ii) because of Thm.4.2. The proof of this theorem will be given in the end
of this section.

The next theorem is motivated by the following fact. Recall that CP 2(1, 2, 3) admits
the decomposition (3.2). The set C

2/Z3 corresponds to the (X3, Y3)-space, and the set
CP 1(1, 2) corresponds to the region {Z1 = 0} ∪ {Z2 = 0} (i.e. {X3 = ∞}∪ {Y3 = ∞}).
It is remarkable that the set CP 1(1, 2) is an invariant manifold of the dynamical system
(3.3); if Z1 = 0 (resp. Z2 = 0) at an initial time, then Z1 = 0 (resp. Z2 = 0) for all
time. On the invariant manifold, the dynamical system is reduced to

(5.5) Ẏ1 = 2Y1(Y1 − 1), Ẋ2 = 2 − 2X2
2 ,

which governs the behavior of the Airy equation at “infinity” (here, we rewrite the first
equation of (3.3) as a polynomial vector field Ẏ1 = 2Y1(Y1 − 1) + Z1, Ż1 = 3Z1(Y1 − 1)
to avoid the singularity Y1 = 1). Now we show that the dynamics at infinity uniquely
determines the Airy equation.

Theorem 5.2. Consider the space CP 2(1, 2, 3) with the inhomogeneous coordi-
nates (Y1, Z1), (X2, Z2), (X3, Y3). Give a differential equation

(5.6)
dX3

dY3
= f(X3, Y3),

on the third coordinate, where f is holomorphic in X3 and Y3. For this equation, suppose
that
(i) it is also a meromorphic equation in (Y1, Z1) and (X2, Z2) coordinates.
(ii) when Z1 = 0 and Z2 = 0, the corresponding 2-dim polynomial vector field is reduced
to (5.5).

Then, Eq.(5.6) is the Airy equation.
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Since CP 1(1, 2) is a codimension 1 submanifold, again the Airy equation is charac-
terized by a structure of CP 2(1, 2, 3) and a local condition. The proof of this theorem
is similar to that of Thm.5.1 and omitted.

Proof of Thm.5.1. At first, we show that f(X3, Y3) is polynomial in X3 and ra-
tional in Y3. In the (X2, Z2) coordinate, the equation X ′

3 = f(X3, Y3) is written as

dX2

dZ2
=

X2Z2 − 2Z
2/3
2 f(X2Z

−1/3
2 , Z

−2/3
2 )

3Z2
2

.

Due to the assumption (i), Z
2/3
2 f(X2Z

−1/3
2 , Z

−2/3
2 ) is meromorphic. Putting u2 = Z

1/3
2

shows that f(X2u
−1
2 , u−2

2 ) is meromorphic in u2. By the assumption for f , f(X2u2, u
2
2)

is also meromorphic in u2. Since a meromorphic function on CP 1 is a rational function,
it turns out that f(X2u2, u

2
2) is rational in u2. Thus f(X2u2, u

2
2) is expressed as

(5.7) f(X2u2, u
2
2) =

∑
aj(X2)u

j
2∑

bj(X2)u
j
2

, (finite sum),

where aj and bj are meromorphic. Similarly, considering in (Y1, Z1) coordinate shows
that f(u1, Y

2
1 u2

1) is rational in u1 and meromorphic in Y1. Putting u2 = Y1u1, X2 = Y −1
1

in Eq.(5.7) yields

f(u1, Y
2
1 u2

1) =
∑

aj(Y −1
1 )Y j

1 uj
1∑

bj(Y −1
1 )Y j

1 uj
1

.

Thus, aj(Y −1
1 ), bj(Y −1

1 ) are meromorphic in Y1. Since both of aj(X) and aj(X−1) are
meromorphic, aj is rational, and so is bj . Hence, f(X3, Y3) is rational in X3 and Y3. By
the assumption for f , it is polynomial in X3.

Therefore, we assume that f is written as a quotient of polynomials as

(5.8) f(X, Y ) =

∑
i,j=0 aijX

iY j∑
j=0 bjY j

,

where the right hand side is a finite sum. Then, the the equation X ′
3 = f(X3, Y3) is

written as

dY1

dZ1
=

1
3Z1

(
2Y1 −

∑
bjY

j
1 Z

−(2j−1)/3
1∑

aijY
j
1 Z

−(i+2j)/3
1

)
,(5.9)

dX2

dZ2
=

1
3Z2

2

(
X2Z2 − 2

∑
aijX

i
2Z

−(i+2j)/3
2∑

bjZ
−(2j+2)/3
2

)
,(5.10)

in (Y1, Z1) and (X2, Z2) coordinates, respectively. Since they are meromorphic, they
have to satisfy

(5.11)

{
aij 	= 0 only if i + 2j = 3m + δ (m = 0, · · · , M),
bj 	= 0 only if 2j = 3n − 2 + δ (n = 0, · · · , N),
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where δ ∈ {0, 1, 2} and M, N are maximum integers satisfying the above relations, which
exist because f is rational. Substituting them into Eq.(5.9) yields

(5.12)
dY1

dZ1
=

1
3Z1

(
2Y1 −

∑
bjY

j
1 Z−n+1

1∑
aijY

j
1 Z−m

1

)
.

We regard it as a dynamical system

(5.13)

 Ẏ1 = 2Y1 −
∑

bjY
j
1 Z−n+1

1∑
aijY

j
1 Z−m

1

,

Ż1 = 3Z1.

(I) When M ≥ N , we obtain

(5.14)

 Ẏ1 = 2Y1 −
∑

bjY
j
1 ZM−n+1

1∑
aijY

j
1 ZM−m

1

,

Ż1 = 3Z1.

The constant term a3M+δ,0 of
∑

aijY
j
1 ZM−m

1 has to be not zero so that (Y1, Z1) = (0, 0)
is a fixed point. The (1, 2)-component of the Jacobian matrix of the fixed point arises
from a monomial Z1 in the polynomial

∑
bjY

j
1 ZM−n+1

1 . In the polynomial, a monomial
Z1 exists only if j = 0 when n = M . The condition (5.11) provides 0 = 3M − 2 + δ.
This yields M = N = 0, δ = 2. Therefore, we obtain

(5.15)

{
aij 	= 0 only if i + 2j = 2,

bj 	= 0 only if 2j = 0.

This proves that nonzero numbers among aij , bj are only a20, a01 and b0, and the equa-
tion is X ′

3 = (a20X
2
3 + a01Y3)/b0. In particular, the Jacobian matrix at the fixed point

(0, 0) of Eq.(5.14) is given by

(5.16) J =

(
2 −b0/a20

0 3

)
, b0 	= 0, a20 	= 0

(II) When M < N , we obtain

(5.17)

 Ẏ1 = 2Y1 −
∑

bjY
j
1 ZN−n

1∑
aijY

j
1 ZN−m−1

1

,

Ż1 = 3Z1.

The constant term a3(N−1)+δ,0 of
∑

aijY
j
1 ZN−m−1

1 has to be not zero so that (Y1, Z1) =
(0, 0) is a fixed point. This proves M = N − 1. The (1, 2)-component of the Jacobian
matrix of the fixed point arises from a monomial Z1 in the polynomial

∑
bjY

j
1 ZN−n

1 .
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In the polynomial, a monomial Z1 exists only if j = 0 when n = N − 1. The condition
(5.11) provides 0 = 3(N − 1) − 2 + δ. This yields N = 1, M = 0, δ = 2. Therefore, we
obtain

(5.18)

{
aij 	= 0 only if i + 2j = 2,

bj 	= 0 only if 2j = 0, 3.

This proves that nonzero numbers are only a20, a01 and b0 as before.

§ 6. Asymptotics at an irregular singular point

In the previous sections, we have investigated the fixed point (Y1, Z1) = (0, 0) of the
system (3.3). In this section, we investigate another fixed point (X2, Z2) = (±1, 0) (it is
sufficient to consider one of them because they are related by the Z2 symmetry). At this
fixed point, the Jacobian matrix of the second system of (3.3) has eigenvalues λ = ∓4, 0.
Since it has a zero eigenvalue, the system is not approximated by the linearized one.
Instead, the system has one dimensional center manifold. This is related to the fact
that Y3 = ∞ is an irregular singular point of the Airy equation, at which there are no
holomorphic solutions. In this section, we will investigate the irregular singular point
via the center manifold theory. There are a lot of references on the center manifold
theory. For analytic properties of center manifolds, [2] is well written and it provides
all ingredients for our purpose.

In order to give a brief review of the center manifold theory, let us consider the
general system

(6.1)

{
ẋ = Ax + f1(x, y), x ∈ R

m,

ẏ = By + f2(x, y), y ∈ R
n,

where A and B are matrices and f1, f2 ∼ (|x + y|2) are Cr nonlinearities. We suppose
that eigenvalues of A have nonzero real parts, and eigenvalues of B lie on the imaginary
axis.

Theorem 6.1 (Center manifold theorem). There is a neighborhood V ⊂ R
n of

the origin and a Cr function ϕ : V → R
m such that

(i) ϕ(0) = ϕ′(0) = 0,
(ii) (ϕ(y), y) is a local invariant manifold, which is called the center manifold.

A center manifold is exponentially attracting or repelling. Hence, long time behav-
ior of the system is governed by the reduced system ẏ = By + f2(ϕ(y), y). This is a
basic strategy to detect bifurcations of dynamical systems.
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Remark. (i) Center manifolds are not unique.
(ii) Even if a given system is analytic, a center manifold is neither Cω nor C∞. Indeed,
a neighborhood V = V (r) in the theorem may shrink as r → ∞. However, if we restrict
the domain of ϕ to some sector, then ϕ may become analytic.
(iii) A formal expansion ϕ(y) =

∑N
n=2 anyn + o(yN ) of a center manifold is obtained by

substituting this to the system. It is easy to see that coefficients a2, a3, · · · are uniquely
determined. Thus, nonunique center manifolds have the common asymptotic expansion.

The existence of a center manifold is proved as follows: For the sake of simplicity,
we suppose that all eigenvalues of A have negative real parts. In this case, a center
manifold is attracting.

Let (x(t), y(t)) be a solution of Eq.(6.1) with the initial condition (x0, y0) at t = 0.
We suppose that (x0, y0) lies on a (unknown) center manifold x = ϕ(y). The first
equation of (6.1) is integrated as

ϕ(y(t)) = eA(t−t0)ϕ(y(t0)) +
∫ t

t0

eA(t−s)f1(ϕ(y(s)), y(s))ds.

If ϕ(y(t)) moves slowly, putting t = 0 and t0 → −∞ yields

(6.2) ϕ(y0) =
∫ 0

−∞
e−Asf1(ϕ(y(s)), y(s))ds.

We want to obtain a center manifold as a solution of this integral equation. Unfortu-
nately, the integral of the right hand side does not exist in general because y(s) may
diverge too rapidly as s → −∞. To handle this difficulty, we introduce a modified
system.

Let V1 ⊂ V2 ⊂ R
n be small neighborhoods of the origin. Let χ(y) be a C∞

function such that χ ≡ 1 on V1 and χ ≡ 0 outside V2. We consider the modified system
ẋ = Ax + f1(x, y)χ(y). The equation for ϕ becomes

(6.3) ϕ(y0) =
∫ 0

−∞
e−Asf1(ϕ(y(s)), y(s))χ(y(s))ds.

In this case, the integral is well defined and we can prove the existence of a unique
solution ϕ(y) by the contraction mapping principle on a certain Banach space when
V1 and V2 are sufficiently small. This gives a global center manifold for the modified
system. Since χ(y) ≡ 1 on V1, this gives a local center manifold on V1 for the original
system.

Since χ is not analytic and a choice is not unique, a local center manifold is not
analytic and not unique. However, if y0 is restricted to the region such that the negative
orbit y(s), −∞ < s < 0 is included in V1, then χ(y(s)) ≡ 1 on the orbit and (6.3) is
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Figure 1. Flow of the equation ẏ = 3y2. The gray region is W .

reduced to (6.2). Hence, if y0 is restricted to such a region, then we can show that ϕ(y0)
is uniquely determined and analytic (if a given system is analytic).

Now we are back to the Airy equation. For the second equation of (3.3), put
X2 = 1 + x + y/4 and Z2 = y. Then, we obtain

(6.4)

 ẋ = −4x − 2x2 − 5
8
y2,

ẏ = 3y2,

so that the origin is a fixed point and the Jacobian matrix is diagonal. This system
has a center manifold x = ϕ(y) near y = 0. Let us determine a sector on which
ϕ is holomorphic. The equation ẏ = 3y2 is solved as y(t) = y0/(1 − 3ty0). Orbits
(Re(y(t)), Im(y(t))) as t ∈ R increases are shown in Fig.1. Let V ⊂ C be a neighborhood
of y = 0, on which a local center manifold x = ϕ(y) exists by the general theory. In V ,
define a region W so that if y0 ∈ W , then y(t) ∈ W for −∞ < t < 0, see Fig.1.

Note that for any ε > 0, there is an open neighborhood U of the origin such that
W ⊃ U ∩S(−π + ε, π− ε), where S(−π + ε, π− ε) denotes the sector −π + ε < arg(y) <

π − ε. When y0 ∈ W , a holomorphic center manifold is given as a unique solution of

(6.5) ϕ(y0) =
∫ 0

−∞
e4s

(
−2ϕ(y(s))2 − 5

8
y(s)2

)
ds, y(s) =

y0

1 − 3sy0
, y0 ∈ W.

It is easy to see that x = ϕ(y) is a solution of the ODE

(6.6)
dx

dy
=

1
3y2

(
−4x − 2x2 − 5

8
y2

)
corresponding to Eq.(6.4). Let us construct an analytic continuation of ϕ(y0), y0 ∈ W .
Our purpose is to show that
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Theorem 6.2. For the Airy equation X ′
3 = X2

3 − Y3, there is a unique solution
X3 = Â(Y3) satisfying the following.
(i) For any ε > 0, there exists a positive number R such that Â(Y3) is holomorphic on
the region

(6.7) {Y3 ∈ C | |Y3| > R, −π + ε < arg(Y3) < π − ε}.

(ii) Around Y = ∞, Â(Y ) has an asymptotic expansion

(6.8) Â(Y ) = Y 1/2 +
1
4
Y −1 +

∞∑
n=2

anY 1/2−3n/2, (Y → ∞)

where an is determined by

(6.9) a2 = − 5
32

, ak+1 = −3
4
kak − 1

2

∑
m

amak+1−m.

Remark. (i) For the linear Airy equation, d2u/dy2 = yu, there is a unique solution
such that zeros exist only on the negative real axis. Such a solution is well known
as the Airy function u = Ai(y). Our solution is related with the Airy function by
Â(Y ) = −Ai′(Y )/Ai(Y ). Hence, Â(Y ) has poles only on the negative real axis. In this
sense, our result is weaker than the known result because the region above is smaller
than 2π by 2ε. It seems that it is very difficult to obtain such a strict result without
using a linear equation.
(ii) Because of the symmetry (X3, Y3) �→ (e2πi/3X3, e

4πi/3Y3) of the equation X ′
3 =

X2
3 − Y3, there are exactly three solutions having similar properties.

(iii) Let Â+(Y3) = e−2πi/3Â(e4πi/3Y3) be a solution obtained by the symmetry. It
has the same asymptotic expansion as Â(Y3). Hence, it is expected that they are
exponentially close to each other. Indeed, we can prove (without using a linear equation)
that

(6.10) Â(Y ) − Â+(Y ) = C · exp[−4
3
Y 3/2] · (1 + o(Y )), (Y → ∞)

on a suitable sector. The constant C (so called the Stokes multiplier) can be obtained
as

(6.11) C = 2πi ·
[ ∞∑

n=2

1
(n − 1)!

(
4
3

)n−1(
(n − 1)an−1 − 4

3
an

)]
,

(we omit the proof). A numerical simulation suggests that C = 2i, and we can confirm
it if we use the linear equation. Again, in my opinion, it is very difficult to obtain the
exact value of C without using the linear equation.
(iv) Our strategy based on the center manifold theory is applicable to any nonlinear
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systems. For the first Painlevé equation, a solution obtained by the center manifold
theory is called Boutroux’s tritronquee solution.

Proof. Instead of Eq.(6.4), let us consider the system

(6.12)

 ẋ = eiθ(−4x − 2x2 − 5
8
y2),

ẏ = eiθ(3y2),

for a fixed −π/2 < θ < π/2. Note that the corresponding ODE is the same as Eq.(6.6).
Define the region Wθ by rotating W by −θ. Then, by the center manifold theory, a
holomorphic center manifold of (6.12) defined on Wθ is uniquely given by a solution of
the integral equation
(6.13)

ϕθ(y0) =
∫ 0

−∞
e4eiθseiθ

(
−2ϕθ(y(s))2 − 5

8
y(s)2

)
ds, y(s) =

y0

1 − 3seiθy0
, y0 ∈ Wθ.

Putting eiθs �→ s proves that ϕθ(y0) = ϕ(y0) when y0 ∈ W ∩ Wθ. Hence, ϕθ(y0) is an
analytic continuation of ϕ(y0) to Wθ. This argument is valid as long as −π/2 < θ < π/2;
when θ = ±π/2, the stable eigenvalue −4eiθ lies on the imaginary axis and the dimension
of a center manifold changes. Therefore, for any ε > 0, there exists a positive number
r such that
(i) ϕ(y) is holomorphic in {y | 0 < |y| < r, −3π/2 + ε < arg(y) < 3π/2 − ε}.
(ii) x = ϕ(y) is a solution of Eq.(6.6).
(iii) ϕ(y) has an asymptotic expansion of the form ϕ(y) =

∑∞
n=2 anyn, which is uniquely

determined by (6.9).
(iv) A solution of (6.6) satisfying (i), (iii) is unique.

Changing to the (X3, Y3) coordinate, we obtain the theorem.
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