
Bayesian Modelling of Pattern Formation from One Snapshot of Pattern

Natsuhiko Yoshinaga∗

WPI - Advanced Institute for Materials Research,
Tohoku University, Sendai 980-8577, Japan and
MathAM-OIL, AIST, Sendai 980-8577, Japan

Satoru Tokuda
Research Institute for Information Technology, Kyushu University, Kasuga 816-8580, Japan and

MathAM-OIL, AIST, Sendai 980-8577, Japan

CONTENTS

SI. Related works 1

A. Pattern formation and crystalline structure 1

B. Inverse structural optimisation 2

C. Symbolic regression of governing equations 3

D. State noise and measurement noise 3

SII. Family of models 4

A. Phase-field crystal model and its generalisation 4

B. Polynomial expansion of the linear operation with respect to wavenumbers 5

SIII. Order parameters 6

A. Properties of the order parameters 8

SIV. Statistical inference 9

A. Bayesian formulation 9

B. Setup of prior distribution 10

C. Details of Monte Carlo simulations 11

SV. Examples 11

A. Target pattern produced by a numerical simulation: dodecagonal quasi-crystal 11

B. Target pattern synthesised by a function: dodecagonal quasi-crystal 13

C. Target pattern synthesised by a function: stripe and hexagonal patterns 16

D. Target pattern synthesised by a function: double gyroid and Frank Kasper A15 20

SVI. Robustness against noise 24

References 26

SI. RELATED WORKS

Our method covers interdisciplinary research fields such as materials science of soft materials and crystalline struc-
tures, nonlinear dynamics of pattern formation, and data-driven science techniques of machine learning and inverse
problems. In this section, we review related works.
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A. Pattern formation and crystalline structure

First, we give a brief review of nonlinear dynamics on pattern formation and self-assembly of crystalline-like struc-
tures. The nonlinear partial differential equations such as the Swift-Hohenberg equation (SH) [1] have been used to
describe a periodic pattern as a minimal model. SH was originally derived for stationary finite number instability of
fluid convection[1–5], and then has later been applied to optics[6], ecosystem[7], and other seemingly distinct problems.
The Ohta-Kawasaki-Oono (OKO) equation, which is similar to the SH equation, was proposed to describe the micro-
phase separation of block copolymers[8, 9], whereas SH may also have been used for the same problem[10, 11]. In the
theory of block copolymers, the SH equation is instead called the Landau-Brazovskii theory. These equations repro-
duce a stripe (also called lamellar or smectic) and hexagonal patterns in two dimensions[12], and lamellar, hexagonal
cylinders, BCC, hexagonal closed packing patterns, also gyroid patterns in three dimensions [11, 13, 14]. The essence
of these models is that there is a specific length scale, or wavenumber, at which the uniform state becomes unstable.
Recently, the conserved version of SH has been used for the description of the crystalline structures [15, 16]. This
model is specifically called the phase-field crystal model (PFC). The models that we used in this work are extensions
of the PFC.

All these models are based on nonlinear partial differential equations (PDEs). This approach has an advantage and
disadvantage compared to particle-based simulations, such as molecular dynamics and Monte Carlo simulations that
are widely used to describe crystalline structures. The advantage is that the system is expressed using continuum
(mostly scalar) field in which the position of a particle is identified by a peak of the field. Because the density field is
defined everywhere in the system, it is easier to analyse structures (symmetry, length scale, and so on) and deviation
from a perfect crystalline structure (dislocation and disclination). These topological defects have been studied not
only in solids[17], but also in soft materials[18, 19] The dynamics of defects has been studied by using PDEs[12, 16].
The PFC is a natural extension of the conventional phase-field model, and is capable of describing diffusive time
scale as well as local crystalline order[15]. Therefore, the PFC captures both elasticity and plasticity, and long-time
behaviours of defect dynamics. The disadvantage is that there is no explicit form of an interaction potential between
particles, and efforts are necessary to map molecular interactions to the associated linear and nonlinear terms in
PDEs[20].

The extension of the PFC (or SH) has been proposed in several ways. One is to introduce two length scales to
destabilise the uniform state[21, 22]. This results in stable quasi-crystalline patterns such as decagonal (10-fold)
and dodecagonal (12-fold) quasi-crystals in two dimensions. This model also reproduces an icosahedral pattern in
three dimensions[23] although in this case, the two length scales, are strictly speaking, not unstable but close to
neutral stability. The quasi-crystal pattern appears due to nonlinear selection mechanism. The second type of the
extension is to use many order parameters as a model of a multi-component system. Along this line, quasi-crystal
patterns are reproduced in two dimensions[24] and in three dimensions[25]. The third type of the extension is the
weak crystallisation theory based on the Landau-Brazovskii theory [26]. The simplest version of this theory is nothing
but the SH equation. In the weak crystallisation theory, anisotropic nonlinear terms are included to make complex
patterns to reproduce, for example, quasi-crystals in two dimensions[27]. The model using the anisotropic nonlinear
terms corresponds to an anisotropic interaction in a microscopic model, for example, using Janus particles, patchy
particles[28], or polyhedral-shape particles[29].

B. Inverse structural optimisation

Studies on inverse structural design have been performed mostly using particle-based models. The two major
directions of the research is a control of the structure through the external template, and the design of potential
interaction between particles. The template method is more intuitive than the potential design, but it requires a good
template beforehand. On the other hand, the design of potential interactions does not need the prescribed structure,
and the structure appears spontaneously from uniform disordered state. This self-assembly of discrete particles has an
advantage against the template approach because after optimisation the structures are reproduced without external
aids, and thus it is easy to scale up the structures[30–32]. Most of the studies along this line are discrete particles
using either Monte Carlo, Molecular Dynamics simulations, or an extension of them. Examples include simulated
annealing for the parameters in Lennard-Jones-type isotropic interactions using the difference of the particle position
from the target lattice in real space as a cost function [33, 34] (See also [35, 36] and references therein). These studies
initiate inverse structural design of the self-assembly of materials[37, 38]. The design is based on various optimisation
techniques such as gradient method[39], generic algorithm[40], swarm optimisation[41, 42], the Covariance matrix
adaption-evolutionary strategy (CMA-ES)[43, 44] and statistical physics-inspired inverse design (SP-ID) [44, 45].

Recently, the optimisation of interaction potentials by minimisation of the relative entropy combined with Monte
Carlo simulations has been proposed [39, 46–50]. In those studies, parameters in a potential function are optimised by
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a gradient of pair-potential with respect to the parameters using the difference between the target and target radial
distribution functions. The target structure is given by positions of particles, and by adding fluctuation around the
positions, the radial distribution function for the structure is obtained. This method treats the probability of the
microscopic structures for given parameters by the Boltzmann distribution. The inverse structural design has been
applied to various soft materials such as colloidal assembly[39, 46–48, 50], block copolymers[41, 42], and granular
media[51]. These methods, thus far, are the point estimate in which only the most likely parameters are estimated. In
the BM-PDE, we compute the posterior distribution from which uncertainty of the parameters can be evaluated. We
also optimise the noise amplitude described by the inverse temperature β. This optimisation has not been performed
in the previous works, and it is essential to estimate the best parameters for the target pattern with noise and without
ground truth parameters. Lack of the optimisation of the noise amplitude results in overfitting of the parameters for
the target under noise[52]. Besides, the BM-PDE is an inverse structural design of the model described by PDEs.
The optimisation problem of PDEs has focused on time-series data, and therefore, for the snapshot of a stationary
structure, the inverse problem has not been formulated.

C. Symbolic regression of governing equations

The automatic discovery of the governing equations from data is a relevant topic in data-driven science. Parameter
estimation of nonlinear PDEs has been studied[53–55] along the line of system identification, optimisation, and
control of nonlinear dynamical systems[56]. Initiated by the success of physical laws for double-pendulum [57, 58], it
is becoming feasible to estimate an equation of motion from data ψ. Recently, the method of sparse linear regression
was successfully applied to ordinal differential equations (ODEs)[59] and partial differential equations (PDEs) for
time-series data [60, 61]. The key idea is to minimise the error of ‖∂tψ(t) − f(ψ(t))‖ under a certain norm ‖ · ‖
with a regularisation term. The function f(ψ) is expanded in terms of polynomials of ψ with their coefficients. The
polynomials may be replaced by a list of candidate terms in ψ. Then, the problem reduces to an estimation of the
coefficients. Estimation based on sparse regression helps to make many coefficients zero, so that only a few terms
remain in the estimated governing equation. Parsimony is an underlying philosophy of the method; the governing
equation should be described by minimal terms in ψ and minimal terms in spatial derivatives in the case of PDEs.

Our problem to estimate the governing PDE from a given target pattern is fundamentally different from those
studies in several respects. First, the methods mentioned above are based on the regression for the time-series data
and therefore demands an accurate observation of ∂tψ[54, 56, 62, 63]. The target pattern in our problem is only
one snapshot ideally satisfying ∂tψ = 0 without noise, and therefore, we cannot use optimatisation with respect to
∂tψ(t) − f(ψ(t)). Moreover, the information on the snapshot is far less than time-series data because in the latter
case, there are data of ψ(t) under different time t. Second, our interest is to estimate not only parameters but also
the best model. Third, our target pattern is not necessarily produced from a numerical result, but synthesised by a
function that is independent of the models.

Another feature of BM-PDE is uncertainty quantification. Statistical inference has been widely used to estimate
parameters with their errors (uncertainty)[64, 65]. This approach is well established in the linear regression problems.
However, fewer studies have been made in uncertainty quantification for the estimation of governing equations,
particularly for nonlinear PDEs[66, 67]. Majority of the methods are based on point estimation in which parameters
are estimated by minimising the cost function (energy)[59–61]. To estimate parameters in ODEs, statistical inference
has been used for time-series data using approximate Bayesian computation [68].

D. State noise and measurement noise

To our knowledge, all the studies on the estimation of governing equations described by PDEs are based on
time-series data. Two major approaches for such data are the regression and trajectory matching[54, 56]. The
regression minimises |∂tψ(x) − f [ψ(x)]|2 with respect to parameters µ in f [ψ(x)][53]. The sparse regression adds a
regularisation term such as |µ| in the cost function. This method implies the dynamics is governed by the stochastic
process ∂tψ(x) = f [ψ(x)] + ξ(x, t) where ξ(x, t) is the state noise. In the simplest case, the state noise is taken from
the normal distribution. The advantage of this method is its low computational cost and independence on initial
conditions. However, this method does not suit for the measurement noise ψ(x) = ψ∗(x)+ ξ(x) because the nonlinear
terms in f [ψ(x)] may amplify or reduce the noise[56].

The second method is trajectory matching[54, 67]. In this method, the estimation of parameters is made for
a specific pattern generated numerically under specific initial condition. The optimisation problem is to minimise
|ψ(x, t) − ψ∗(x, t)| with respect to parameters which change ψ(x, t). Here, ψ∗(x, t) is data and ψ(x, t) is generated,
typically using numerical simulations, from the initial condition under a candidate of parameters. This method may
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be used not only for the state noise, but also for the measurement noise ψ(x) = ψ∗(x) + ξ(x). The initial condition
is either taken from the data (and fixed), or is treated as parameters to be optimised[54, 67].

Our problem is to estimate the best model and parameters from one snapshot of a pattern at the stationary state.
Trajectory matching cannot be used for this problem because there is no information about the initial condition. The
regression method is appealing in this respect, but in our problem, uncertainty arises from the target pattern, and
not from the dynamical equations. Therefore, we have to consider the measurement noise rather than the state noise.
We need to eliminate the dependence on the initial condition. To do this, we marginalise the initial condition, which
is taken from a random distribution. We also have to identify the same patterns which have different orientation.
The different orientation arises from different initial conditions under the same model and the same parameters. This
argument is the reason why the order parameter has to be introduced in BM-PDE.

SII. FAMILY OF MODELS

A. Phase-field crystal model and its generalisation

We consider a pattern described by a scalar density field ψ(x) in a box with a periodic boundary condition, and
x ∈ [−Lx/2, Lx/2]× [−Ly/2, Ly/2] in two dimensions and x ∈ [−Lx/2, Lx/2]× [−Ly/2, Ly/2]× [−Lz/2, Lz/2] in three
dimensions. The density field ψ(x) is obtained by an unknown model of a partial differential equation. In this study,
we focus on a family of the phase-field crystal (PFC) models given by

∂tψ = Lψ + ∆ψ3 (S1)

with the linear operator denoted by L and the nonlinear term is given in the second term. The family is constructed
by modifying the linear operator L so that the system has one or more length scales. The simplest PFC model is a
conserved version of the Swift-Hohenberg (SH) equation [16]. The equation is given by

∂tψ = ∆
[
−εψ + (q0 + ∆)

2
ψ + ψ3

]
(S2)

where the total mass is conserved as

ψ̄ =
1

V

∫
ψ(x)dx. (S3)

Here, V is the total volume (area in two dimensions) in the system, and q0 is a characteristic wavenumber corresponding
to the length scale 2π/q0. The parameter ε controls whether the uniform state ψ(x) = ψ̄ is stable ε . 0 or unstable
ε & 0. The precise value of the threshold is dependent on other parameters and a type of patterns. The PFC equation
reproduces a stripe (also called lamellar or smectic) and hexagonal patterns in two dimensions[12, 69], and a lamellar,
hexagonal cylinder, BCC, and hexagonal closed packing patterns [13, 70]. A finite mean density ψ̄ plays a role as
the quadratic nonlinear term in equation (S2). This can be seen by subtracting the mean density as ψ → ψ + ψ̄ in
equation (S2) as,

∂tψ = ∆
[(
−ε+ 3ψ̄2

)
ψ + (q0 + ∆)

2
ψ + 3ψ̄ψ2 + ψ3

]
. (S4)

The PFC equation has a single characteristic length at which a real part of the eigenvalue is positive (or, at least,
negative but close to zero). The linear spectrum is shown in Fig. 1(e). To extend equation (S2) for the arbitrary
number of length scales, we use m characteristic wavenumbers, q0, q1, · · · , qm−1, and the values of the spectral,
a0, a1, · · · , am−1, at the wavenumber k = qi. A family of our models is conveniently described by the equations for

the Fourier transform of the density field, that is, ψ̃(k) = F [ψ(x)]. Our models corresponding to equation (S1) are
given by

∂tψ̃(k) = Lkψ̃(k) + F
[
∆ψ(x)3

]
, (S5)

and its linear operator is expressed in the Fourier space as

Lk = a0S0(k) + a1S1(k) + · · ·+ amSm(k) + k2
(
1− k2

)2 (
q2
1 − k2

)2 · · · (q2
m − k2

)2
. (S6)

To specify the position of peaks and their heights in the spectrum, Si(k) is chosen to be a function of k and qi
satisfying

dLk=qi

dk
= 0 (S7)

Lk=qi = ai, (S8)
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for i ∈ [0,m− 1]. The wavelength is limited in the range

qi ∈ (0, 1] (S9)

and ai is sufficiently close to 0, but not necessarily positive. Since we may freely choose a unit of length scale, we fix
to be q0 = 1 when m ≥ 2.

For a single wavelength, we have m = 1, and we recover the conserved SH equation (the simplest PFC model). In
order to control the position and amplitude of unstable mode, we use the following form,

Lk = −a0

q4
0

k2
(
k2 − 2q2

0

)
− s0k

2
(
q2
0 − k2

)2
(S10)

With this form, patterns with k = q0 appear, and its stability is denoted by a0 (see Fig. 1(e) in the main text). Here,
s0 expresses sharpness of the peak in the spectrum. For larger s0, the peak becomes sharper (Fig. 1(e)).

For two length scales, we use another length scale k = q1 in addition to k = q0, and the linear stability around the
uniform state for the two length scales, a0 for k = q0 and a1 for k = q1 as shown in Fig. 1(e). This model has been
used to reproduce quasi-crystal patterns [23]. The explicit form of the linear operator is given by

Lk = a0S0(k) + a1S1(k)− s0k
2

q4
1

(
q2
0 − k2

)2 (
q2
1 − k2

)2
(S11)

S0(k) =
1

q4
0(q2

0 − q2
1)3

k2(q2
1 − k2)2

(
(q2

1 − 3q2
0)k2 + q2

0(−2q2
1 + 4q2

0)
)

(S12)

S1(k) =
1

q4
1(q2

0 − q2
1)3

k2(q2
0 − k2)2

(
(3q2

1 − q2
0)k2 + q2

1(2q2
0 − 4q2

1)
)
. (S13)

To make sharp enough peaks we use s0 = 100.
For three length scales, we may extend the above-discussed expressions and obtain

Lk =a0S0(k) + a1S1(k) + a2S2(k)− s0k
2
(
q2
0 − k2

)2 (
q2
1 − k2

)2 (
q2
2 − k2

)2
(S14)

S0(k) =
1

q4
0(q2

0 − q2
1)3(q2

2 − q2
0)3

k2(k2 − q2
1)2(k2 − q2

2)2

×
(
q2
0(−6q4

0 + 4q2
0q

2
2 + 4q2

0q
2
1 − 2q2

1q
2
2) + k2(5q4

0 − 3q2
0q

2
2 − 3q2

0q
2
1 + q2

1q
2
2)
)

(S15)

S1(k) =
1

q4
1(q2

0 − q2
1)3(q2

1 − q2
2)3

k2(k2 − q2
0)2(k2 − q2

2)

×
(
q2
1(−2q2

0q
2
2 + 4q2

0q
2
1 + 4q2

1q
2
2 − 6q4

1) + k2(q2
0q

2
2 − 3q2

0q
2
1 − 3q2

1q
2
2 + 5q4

1)
)

(S16)

S2(k) =
1

q4
2(q2

2 − q2
0)3(q2

1 − q2
2)3

k2(k2 − q2
0)2(k2 − q2

1)2

×
(
q2
2(−2q2

0q
2
1 + 4q2

0q
2
2 + 4q2

1q
2
2 − 6q4

2) + k2(q2
0q

2
1 − 3q2

0q
2
2 − 3q2

1q
2
2 + 5q4

2)
)
. (S17)

The linear spectrum is shown in Fig. 1(e).

B. Polynomial expansion of the linear operation with respect to wavenumbers

Our family of models is based on the number of length scales. This is demonstrated in the functional form of the
linear operator in the Fourier space shown in Fig. 1(e) and equations (S5)-(S6). The benefit of this approach is that
parameters µ have clear physical meaning: the wavenumbers qi correspond to the characteristic length scales and
stability at the wavenumbers ai. The disadvantage of this approach is that we have to treat the different number of
length scales independently. This implies that the two-length-scale model m = m2 does not include the one-length-
scale model. If q0 and q1 are overlapped in m = m2, the operator L diverges, as seen in equation (S11). On the other
hand, we may consider a family of the model by expanding Lk in equation (S6) by a polynomial expansion of k. In
this section, we discuss the drawbacks of this approach and explain why we use our family of models by equation (S6).

Within the approach of polynomial expansion, parameters {µ} are chosen as coefficients of a polynomial expansion
of Lk =

∑
i µik

i. The advantage of this expansion is that we may express Lk of different models with different
number of length scales in Fig. 1(e) in a unified way. Once we truncate the expansion up to k14, we may express
three-length-scale model, and when the coefficients of k12 and k14 are identically zero, the model describes two length



6

scales. We may use sparse regression by adding regularisation and use a particular type of prior distribution of the
parameters[71].

The disadvantage of this method is that the coefficients of the expansion in terms of polynomials of k do not have
explicit physical meanings. In a practical term, the range of the parameters is too broad so that estimation is not
possible. For example, the numerically produced dodecagonal quasi-crystal discussed in Sec. SV A is expressed as

Lk ≈ −99.7k2 + 945.6k4 − 2984.8k6 + 3531.8k8 − 1392.8k10; (S18)

and the precision of 0.1 is necessary to obtain quasi-crystal. Therefore, the range of the parameters should be
[−4000.0, 4000.0]. Practically, it is impossible to get a reasonable estimate from such wide range of the parameters,
and even if possible, uncertainty is certainly much larger than 0.1, and thus there is no guarantee to obtain quasi
crystal within the error.

Finally, we should point out that the sparse regression does not work when parameters are correlated [72]. In the
system that we are studying, the parameters must be correlated because the amplitude and position of the unstable
wavenumber are set by the peak of Lk, and it is determined by the balance of several terms in the polynomial
expansion.

SIII. ORDER PARAMETERS

To quantify the distance between a target pattern, ψ∗(x), and a pattern ψ(x) that we get from the model equation
(S1), we consider the cost function, which we also refer to as energy. The cost function is zero when the two patterns
are identical while it is larger when the current pattern is far from the target pattern. The naive cost function may
be the average difference of local density

E
?
=

∫
[ψ(x)− ψ∗(x)]

2
dx. (S19)

This is a counterpart of the average difference of position of particles with respect to positions in a target pattern in
discrete particle systems [33, 34]. This cost function has also been used in the parameter estimation of a PDE for
time-series data[55, 56]. This cost function is not appropriate for our purpose because a stationary target pattern
has translational and rotational invariance. The energy should not change by translation and rotation of the whole
pattern (see Fig. S1). We, therefore, consider the cost function by comparing two patterns up to global symmetry
transformation Tλ parametrised by λ as

E = min
λ

∫
[Tλ ◦ ψ(x)− ψ∗(x)]

2
dx. (S20)

Here, we consider the action of the Euclidean group E(d) and the global scale transformation. The naive way to
compute the cost function is brute force matching, that is, the two patterns are compared after translating and
rotating one of the pattern. This is impossible in practice, and therefore, we use an approximate form of equation
(S20).

To do this, we used the Fourier transform of the pattern as

ψ̃(k) =

∫
ψ(x)eik·xdx (S21)

ψ(x) =

∫
k

ψ̃(k)e−ik·x (S22)

where the volume in the Fourier space is
∫
k

= 1
(2π)d

ddk. The cost function similar to equation (S19) may be defined

in the Fourier space. Yet this energy does not work well because the peaks of the pattern are very sharp and localised
at some position in k-space (see the spectrum in Fig. S1).

We define the order parameter Ψ[ψ] = (Ψ1[ψ],Ψ2[ψ], . . . ,Ψl[ψ]) to characterise pattern in the Fourier space, and
use the following cost function,

E[ψ∗, ψ] =

l0∑
l=1

|Ψ∗l −Ψl[ψ]|2 (S23)

where l denotes a mode of the order parameter and Ψ∗l = Ψl[ψ
∗]. The order parameter is a rotational invariant form

of the quantity Alm with l ∈ [0, l0] and m ∈ {±1} in two dimensions and m ∈ [−l, l] in three dimensions. Note that
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FIG. S1. Comparison between patterns. When the target pattern is a stripe (left), translationally shifted and/or rotated
patterns are also regarded as a stripe (right top). However, hexagonal and dodecagonal quasi-crystal patterns (right bottom)
are different from the stripe pattern. In addition to the patterns in real space, corresponding patterns in the Fourier space are
shown.

m in the superscript of Y ml (θk, ϕk) and subscript of Alm should not be confused by m describing a model in M . In
three dimensions, Alm is described by

Alm [ψ] =

∫
W (k)|ψ̃(k)|Y ml (θk, ϕk)dk3 (S24)

with spherical harmonics Y ml (θk, ϕk) in the spherical coordinates of the Fourier space (k, θk, ϕk), and, in two dimen-
sions, by

Al,±1 [ψ] =

∫
W (k)|ψ̃(k)|

(
cos lθk
sin lθk

)
dk2 (S25)

where +1(−1) denotes cos lθk(sin lθk), respectively, and θk is a polar angle in the Fourier space. In two dimensions, we
denote Al,± in the vector form as Al = (Al,+, Al,−). Here, W (k) is a weight function in the Fourier space, depending
only on k = |k|. In this work, we set to be W (k) = 1 for simplicity. The zeroth mode l = 0 corresponds to mean

amplitude of ψ̃(k), which is independently considered by ψ̄. We, therefore, use the sum for l ∈ [1, l0] in equation
(S23). The maximum mode is denoted by l0. We use the convention of spherical harmonics

Y ml (θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimϕ (S26)

where Pml (cos θ) is associated Legendre polynomial with integers l and m ∈ [−l, l]. Any continuous function on a unit
sphere may be expanded as

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

flmY
m
l (θ, ϕ) (S27)

and, in turn, the coefficients are expressed by

flm =

∫
f(θ, ϕ)Y m∗l (θ, ϕ)dθdϕ sin θ. (S28)

We consider appropriate norm that is invariant under rotation,

Ψl = ‖Alm‖ =
√
A2
l,+1 +A2

l,−1 (S29)
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in two dimensions, and

Ψl = ‖Al‖ =

√
4π

2l + 1

√√√√ l∑
m=−l

(−1)mAl,mAl,−m (S30)

in three dimensions. Here, the prefactor is included because (Y 0
l )2 +

∑l
m=1 Y

m
l (θ, ϕ)Y m∗l (θ, ϕ) = (2l + 1)/(4π), and

the sum of |Alm|2 scales 2l + 1.
We numerically evaluate Al for patterns ψ(x) and A∗l for a target pattern ψ∗(x). Since both real space and Fourier

space density fields are expressed by values at a finite number of mesh points, the range of a mode l is truncated at
the maximum mode l0. The larger mode extracts a finer structure in the Fourier spectrum, and the structure finer
than the mesh size is invalid. We thus take l0 = N . Note that for odd l, Alm ' 0 and therefore the dimension of Ψ
is l0/2.

A. Properties of the order parameters

We summarise the properties of our order parameters defined in equation (S29) in two dimensions and equation
(S30) in three dimensions. First, we show the order parameter is invariant with translation

Ta ◦ ψ(x) = ψ(x + a). (S31)

By the Fourier transform of the pattern, ψ̃(k) = F ◦ ψ(x), the translated pattern is expressed as

F ◦ Ta ◦ ψ(x) =

∫
ψ(x + a)eik·xdx

= eik·a
∫
ψ(x)eik·xdx

= eik·aF ◦ ψ(x) (S32)

and therefore, |F ◦ Ta ◦ ψ(x)| = |F ◦ ψ(x)|.
Next, we consider the global rotation around the axis n with an angle φ as

Tφ,n ◦ ψ(x) = ψ(Rφ,n(x)), (S33)

where Rφ,n is the rotation matrix around the axis n with an angle φ. Note that in two-dimensions n = êz and
therefore the rotation is characterised only by φ. Because the rotation matrix is unitary transformation and commute
with the Fourier transform, the rotational transformation may be considered as rotation in the Fourier space. Using
the polar coordinates in the Fourier space, the transformation in two dimensions is given by

Tφ ◦ |F ◦ ψ(x)| = |ψ̃(k, θk + φk)|. (S34)

Because equation (S25) is essentially the Fourier transform in the polar direction, its amplitude equation (S29) is
invariant the shift in the polar direction, that is, invariant under the global rotation.

In three dimensions, under rotation, equation (S30) is transformed as

T ◦Ψl =

√
4π

2l + 1

√ ∑
m,m1,m2

D(l)
mm1Alm1

(
D(l)
mm2Alm2

)∗
=

√
4π

2l + 1

√∑
m

AlmA∗lm = Ψl (S35)

which is invariant under rotation. Here, Dmm1
is Wigner D-matrix rotating the spherical harmonics[73]. Note that

the rotation does not change l, but do change m.
In contrast with the order parameter in two dimensions, equation (S30) is not the only quantity that is invariant

under rotation. There is another invariant, under given l,

Ψ
(3)
l =

∑
m1,m2,m3

(
l l l
m1 m2 m3

)
Alm1

Alm2
Alm3

(S36)

This was proposed to characterise the structure of supercooled liquid in [74]. Algebraic structure behind this argument
is that, in two dimensions, the coupling two same modes (say m) produce only 2 and 0, but do not produce m itself
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resulting from trigonometric product. On the other hand, in three dimensions, the coupling between two modes l do
produce the mode l. Here we have used the 3j-symbol counts only m1 + m2 + m3 = 0. Notice that this quantity
is identically zero for l = 1, for there is only one invariant in this case. The l = 1 is isomorphic to a vector, whose
invariant is length (amplitude) of it.

Another property of the order parameter is about the cost function between a pattern ψ(x) and its rotation by
2π/n

E =

l0∑
l=1

∣∣Ψl −R2π/n ◦Ψl

∣∣ . (S37)

When Al,±1 is finite only for l = n, 2n, 3n, . . ., the transformation does not change the order parameter and thus
E = 0.

SIV. STATISTICAL INFERENCE

A. Bayesian formulation

We may extend our model naturally toward the Bayesian formulation, which enables us not only to choose the
optimal PDE, i.e. parameters and the number of the characteristic length scales but also to evaluate their uncertainty.
To do this, we assume the order parameter Ψl[ψs] of the stationary pattern ψs is observed as that of the target pattern
ψ∗ with the additive noise ξl:

Ψ∗l = Ψl(ψs;ψ0, µ) + ξl, (S38)

where ξl is the random variable distributed according to zero-mean Gaussian distribution with variance β−1 ≥ 0.
The noise ξl and the corresponding inverse temperature β play a role of the uncertainty of the measurement. Here,
ψs and ψ0 are the stationary and initial states of ψ in equation (S1), respectively, and µ is the set of parameters.
The dependence of Ψl[ψs] on ψ0 and µ is explicitly represented by Ψl(ψs;ψ0, µ). The assumption equation (S38) is
equivalently represented as the conditional probability density

p(Ψ∗l | ψ0, µ, β) =

√
β

2π
exp

{
−β

2
[Ψ∗l −Ψl(ψs;ψ0, µ)]2

}
. (S39)

We consider the parameter estimation of µ by marginalising ψ0. Hereafter, the discretization ψ0 = {ψ(j)
0 }N

d

j=1 and

the reparametrization ψ
(j)
0 → ψ̄ + ψ

(j)
0 are also considered, where ψ̄ and ψ

(j)
0 are respectively, the mean density and

the (relative) density at the mesh point j. By Bayes’ theorem, the conditional joint probability density of ψ0 and µ

under given {Ψ∗l }
l0
l=1, β and the model class m is represented as

p(µ | {Ψ∗l }
l0
l=1, ψ0, β,m) =

p(µ | m)

p({Ψl}l0l=1 | β,m)

l0∏
l=1

p(Ψ∗l | ψ0, µ, β),

∝ exp

[
−β

2
E(ψ∗, ψs;ψ0, µ)

]
(S40)

where m denotes the number of the characteristic length scales such as equations (S10), (S11) or (S14). Here, p(µ | m)

and p(ψ0) are the prior distribution defined as the uniform distribution, and the marginal likelihood p({Ψl}l0l=1 | β,m)
is given by

p({Ψl}l0l=1 | β,m) =

(
β

2π

) l0
2
∫

exp

[
−β

2
E(ψ∗, ψs;ψ0, µ)

]
p(ψ0)p(µ | m)dψ0dµ. (S41)

The dependence of E[ψ∗, ψs] on ψ0 and µ is explicitly represented by E(ψ∗, ψs;µ, ψ0). Note that we assume the
causality

p(ψ0, µ | {Ψ∗l }
l0
l=1, ψ0, β,m) = p(ψ0)p(µ | {Ψ∗l }

l0
l=1, ψ0, β,m), (S42)
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which ignores (i) the dependence of ψ0 on {Ψ∗l }
l0
l=1 and β, and (ii) the correlation between ψ0 and µ. This assumption

reflects our ansatz that ψ0 is not uniquely determined only by ψ∗ (or {Ψ∗l }
l0
l=1). Here ψ0 is treated as a latent variable.

By marginalising out ψ0, the posterior distribution of µ is given by

p(µ | {Ψ∗l }
l0
l=1, β,m) =

∫
p(ψ0, µ | {Ψ∗l }

l0
l=1, ψ0, β,m)dψ0. (S43)

The posterior mean estimator µ̂, i.e. the mean of p(µ | {Ψ∗l }
l0
l=1, β,m), is adopted as our best parameter set. The

standard deviation of p(µ | {Ψ∗l }
l0
l=1, β,m) plays a role of the error in µ̂.

We consider both the hyperparameter estimation of β and model selection of m [52, 64, 75–77]. By Bayes’ theorem,

the joint probability density of β and m under given {Ψ∗l }
l0
l=1 is represented as

p(β,m | {Ψ∗l }
l0
l=1) =

p({Ψ∗l }
l0
l=1 | β,m)p(β)p(m)

p({Ψ∗l }
l0
l=1)

, (S44)

where p({Ψ∗l }
l0
l=1) is the normalising constant. Here, p(β) and p(m) are the prior distributions defined as the uniform

distribution. The maximum a posteriori estimator, or equivalently the empirical Bayes estimator in this setup, is
adopted as the pair of our optimal model and temperature

(β̂, m̂) = arg max
β,m

p(β,m | {Ψ∗l }
l0
l=1) (S45)

= arg max
β,m

p({Ψ∗l }
l0
l=1 | β,m). (S46)

For convenience, the Bayes free energy F (β,m) = − log p({Ψl}l0l=1 | β,m) is defined. Using the Bayes free energy, we

may see the optimal model and temperature (β̂, m̂) minimise F (β,m). If ∂F/∂β = 0 is satisfied at β = β̂, then we
obtain the self-consistent equation

β̂ =
1

〈E(ψ∗, ψs;ψ0, µ)〉β̂
, (S47)

where

〈· · · 〉β =

∫
(· · · )p(ψ0, µ | {Ψ∗l }

l0
l=1, β,m)dψ0dµ. (S48)

By marginalising out β, we can also evaluate the uncertainty of m as the probability

p(m | {Ψ∗l }
l0
l=1) =

∫
p(β,m | {Ψ∗l }

l0
l=1)p(β)dβ. (S49)

Note that p(m1 | {Ψ∗l }
l0
l=1), ..., p(mimax

| {Ψ∗l }
l0
l=1) demonstrate the probability of each model m1, ..., mimax

, respec-

tively, based on the observations {Ψ∗l }
l0
l=1.

B. Setup of prior distribution

We assume no prior information about parameters and latent variables except their range. The prior density of
each variable is defined by the continuous uniform distribution whose support equals to the domain of each variable.
The prior density of ψ0 is defined by

p(ψ0) =

Nd∏
j=1

ϕ(ψ
(j)
0 ), (S50)

where ϕ(ψ
(j)
0 ) is the continuous uniform distribution whose support is ψ

(j)
0 ∈ [−0.1, 0.1]. For equation (S39) with m

length scales, the set of parameters is defined by

µ = {dx, dy, ψ̄, a0, q1, a1, q2, a2, · · · , qm−1, am−1}, (S51)
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where dim(µ) = 2m + 2 in two dimensions. In three dimensions, the mesh size along the z-axis dz is added in the
parameters. The prior density of µ is also defined by

p(µ | m) = ϕ(dx)ϕ(dy)ϕ(ψ̄)ϕ(a0)

m−1∏
i=1

ϕ(ai)ϕ(qi), (S52)

where ϕ(dx), ϕ(dy), ϕ(ψ̄), ϕ(ai), and ϕ(qi) are the continuous uniform distributions, whose supports are respectively
dx ∈ [1− (1/q∗N), 1 + (1/q∗N)], dy ∈ [1− (1/q∗N), 1 + (1/q∗N), ], ψ̄ ∈ [−1, 0], ai ∈ [−0.2, 0.2], and qi ∈ [0, 1]. Here,
2π/q∗ is the wavelength that is used to synthesise the target pattern (see Methods in the main text).

We also assume no prior information for model and hyperparameter; the prior distribution of each variable is defined
by the discrete uniform distribution. The prior distribution p(β) is also defined by the discrete uniform distribution

with β ∈ {βα}
Nrep−1
α=0 , where β0 = 0 and

βα = 10
log10 βmin+ α−1

Nrep−1 log10(βmax/βmin)
(S53)

for α ∈ {1, 2, · · · , Nrep − 1}. Here, we set as Nrep = 40, βmin = 10−3 and βmax = 102. Equation (S53) means that
discretization of β is finer at the large β (lower variance of noise). The prior distribution p(m) is defined by the

discrete uniform distribution at m ∈ {mi}imax
i=1 . Each grid point (mi, βα) can be regarded as the candidate of model

selection equally possible in prior.

C. Details of Monte Carlo simulations

The joint distribution p(ψ0, µ | {Ψ∗l }
l0
l=1, β,m) is realised by the Gibbs sampling based on the relation of equation

(S42), i.e. the alternately iterative sampling from p(ψ0) and p(µ | {Ψ∗l }
l0
l=1, ψ0, β,m). The sampling from p(ψ0) simply

follows equation (S50). The sampling from p(µ | {Ψ∗l }
l0
l=1, ψ0, β,m) follows the procedure below. First, we solve the

model of equation (S1) under a given initial state ψ0 and parameters µ of equation (S51) for a model m. Then, the
similarity of an obtained pattern ψs as a stationary state and a target pattern ψ∗ is evaluated by the cost function
E(ψ∗, ψs;ψ0, µ), describing the distance shown in equation (S23) in the space of the order parameter Ψl (see equation
(S29) or equation (S30)). Changing µ, we may iterate numerical simulations and evaluation of the similarity between
them. Following the Metropolis criterion at an inverse temperature β, we compare a current cost function with a cost
function in a previous step, and decide a current set of parameters is accepted or not.

By using the replica exchange Monte Carlo (REMC) method, we sample ψ0 and µ from p(ψ0, µ | {Ψ∗l }
l0
l=1, βα,m)

for Nrep replicas in parallel [78, 79]. At higher temperature, the motion of one MC step in the parameter space is large
whereas at the lower temperature, each motion is small so that it intensively samples parameters near the minimum
of the cost function. For every two steps, the parameter sets of neighbouring temperature were exchanged following
the Metropolis criterion. This process enables us to sample parameters weighed with likelihood effectively [78, 79].

The initial parameter set is sampled from the prior distribution of equation (S52). The lowest energy state is
typically achieved by 1000 − 2000 MC steps. In one MC step, the Gibbs sampling is used to perform motion in
the parameter space in all directions one by one. After finding the lowest energy state, we restart REMC from the
initial parameter set of the lowest energy state to sample its steady state. This is because the relaxation under higher
temperature is much faster than the lower temperature. After 1000 MC steps, we cut the initial burn-in steps and
compute the statistical quantities after 200 MC steps. Bridge sampling was used to calculate F (β,m) for each m
[80, 81]. The error bars of F (β,m) were calculated by the bootstrap resampling [82].

SV. EXAMPLES

A. Target pattern produced by a numerical simulation: dodecagonal quasi-crystal

The process of parameter estimation is shown in Fig. S2(a). At the initial parameters, estimation is poor in all
temperatures. After several MC steps, the cost function decreases drastically at the lower temperature, and reach its
steady state. At the steady states, sampled patterns are very closed to the target pattern. At the higher temperature,
the parameter change in each MC step is too large to converge to a unique pattern; rather, it exhibits nearly random
motion in the parameter space. In Fig. S2(b), we demonstrate successful sampling in the parameter space by showing
the cost function, or we call it energy, covers a wide range of its values. The distribution of the energy has two
regions connected by the energy gap. The lower energy corresponds to a quasi-crystal, which is qualitatively similar
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to the target pattern, while the higher energy is dominated by hexagonal patterns. This result implies that there are
multiple minima of the energy distribution. This means that the standard MC simulation does not converge to the
ground truth unless an initial parameter set is chosen nicely,

FIG. S2. (a) Snapshots of two-dimensional pattern with two length scales under different inverse temperature β during the
Monte Carlo simulations for the target pattern of numerically produced dodecagonal quasi-crystal. (b-d) The cost function
during the steps in replica exchange Monte Carlo (REMC) simulations in the parameter space at the steady state with one
(c), two (b), and three (d) length scales, respectively. (e-h) Histogram of the estimated parameters during REMC steps with
vertical dashed lines indicating their ground truth. The different colours show different temperature.

The same algorithm is used for the different models with one length scale or three length scales (Fig. S2(c,d)). Both
REMC simulations converge to their steady energy histograms, both of which are higher than the energy histogram of
the two-length-scale model. This result means the two-length-scale model is indeed most likely for the target pattern.
In fact, the marginal likelihood, which we call free energy F (β,m), shown in Fig.2(e) in the main text has the lowest
value for the two-length-scale model m = m2. Because this target pattern has corresponding ground truth parameter
values and the model of equation (2) is deterministic, the minimum of the free energy is, strictly speaking, achieved
at β → ∞. Nevertheless, we obtain a clear deviation of the free energy of the wrong models m = m1 and m = m3,
as they increase at large β. This is because the wrong models do not have exactly the same pattern to the target
patter in their solution, and therefore, the best estimation is made at the finite noise level, resulting in the minimum

at the finite β. In those models, estimation of parameters is carried out at the optimal temperature β̂ at which the
free energy has its minimum value.

The probability of each model is calculated by marginalising the probability at each temperature P ∝ e−F [β] about
the whole temperature range. This probability is also well captured by the minimal value of the free energy of each
model. The result is shown in the inset of Fig.2(e). In this example, the probability of selecting the two-length-scale
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TABLE S1. The ground truth and estimated parameter values for numerically produced 12-fold quasi-crystal. Errors are
evaluated from the standard deviation of each data.

parameters ground truth estimated (one length) estimated (two length) estimated (three length)

dx 1.020 0.985± 0.000 1.0217± 0.0024 1.002± 0.00036

dy 1.026 1.0006± 0.000 1.0232± 0.00319 1.0019± 0.0002

ψ̄ -0.826 −0.436± 0.000 −0.820± 0.0163 −0.677± 0.0024

a0 0.00794 0.0648± 0.000 0.0391± 0.0594 −0.157± 0.00475

q1 0.518 - 0.518± 0.00214 0.728± 0.00077

a1 0.0306 - 0.0375± 0.0140 0.0282± 0.0020

q2 - - - 0.367± 0.0004

a2 - - - −0.136± 0.00246

model is almost 100%.
The estimate parameters are shown in Table S1, together with the uncertainty of the estimation. The uncertainty

quantification is made by the standard deviation of the probability distribution of the parameters around their mean
value. The ground truth is indeed within the error.

Histograms of the parameters at each β under m = m2 are shown in Fig.S2(e-h). As we can see, at lower temperature
(higher β in the blue line), the distribution accumulates around the ground truth whereas, at the higher temperature
(low β shown in the red line), the distribution covers the whole range of the parameters. From the high temperature
to the low temperature, the distribution gradually becomes shrinking. This suggests that RMEC can well sample the
true parameter distribution.

The width of the histograms at the low temperature varies from parameter to parameter. For the wavelength q1,
the distribution is narrow around the ground truth, as demonstrated in the small standard deviation in Table S1.
The mean density ψ̄ and the spectrum amplitude at q = q1 (see Fig. 1(e)) has broader distribution, but still there is
a clear peak near the ground truth. On the other hand, the distribution of the spectrum amplitude at q = q0 is very
broad even at the lowest temperature. In fact, the error in the estimation of a0 is comparable to its estimated value,
suggesting that we have poor estimation on a0. We suspect that this is because the model does not care about the
value of a0 once the mode at the wavelength q1 becomes unstable as its amplitude a1 > 0. Due to nonlinear interaction
between different modes, even the mode with a negative spectrum, which is linearly stable, becomes unstable and
grows. Therefore, the mode at the wavelength q0 = 1 may have arbitrary amplitude as long as its spectrum is close
to zero that it can be destabilised by the mode at q1.

The estimated parameters in the one-length-scale and three-length-scale models deviate from the ground truth. One
length scale is not enough to reproduce a quasi-crystalline pattern, and therefore, the estimated parameters correspond
to hexagonal patterns. The three-length-scale model, on the other hand, does reproduce a quasi-crystalline pattern,
which is similar to the target pattern. Therefore, the estimated parameters, particularly the wavelength q1 and
q0 satisfy the ratio q0/q1 ' 1.997, which is close to 2 cos(π/12). Nevertheless, the energy is higher than that of
the two-length-scale model because the three-length-scale model is not a true model, and the sampled pattern is
quantitatively different from the target pattern. We note that the energy of the three-length-scale model is still lower
than the one-length-scale model in which the estimation is qualitatively wrong.

B. Target pattern synthesised by a function: dodecagonal quasi-crystal

The same algorithm was used for the target pattern synthesised by functions for the two-dimensional stripe, hexag-
onal, and dodecagonal quasi-crystal patterns, and the three-dimensional double-gyroid pattern. The results are
summarised in Fig. 3 in the main text.

The target pattern of a dodecagonal quasi-crystal that is synthesised by the function of superposition of twelve
plane waves (see Methods in the main text). The pattern has twelve-fold rotational symmetry, as demonstrated in
the pattern in the Fourier space (Fig. S3). We may generate a similar pattern from the estimated PDE to the target
pattern, if not exactly the same.

The obtained energy histogram is qualitatively similar to the target pattern of the numerically produced dodecagonal
quasi-crystal (see Fig. S3). The two-length-scale model has two distinct energy scales associated with quasi-crystal
and hexagonal pattern. At the lower energy, we obtain quasi-crystals. The three-length-scale model also reproduces
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quasi-crystals, but the energy is higher than that of the two-length-scale model. Therefore, the two-length-scale model
will most likely give the target pattern.

FIG. S3. (Top) The target pattern and the generated pattern from the estimated PDE in real and Fourier space. (Bottom)
Energy histograms of the REMC sampling for the target pattern of dodecagonal quasi-crystal that is synthesised by the function.
The horizontal axis is shown in the logarithmic scale.

The log marginal likelihood (free energy) at each temperature is calculated for each model (see Fig. 4(c)). The
models with one- and three-length scales show qualitatively same temperature dependent of the log marginal likelihood
with the results for numerically produced target pattern (Fig.2(e)). On the other hand, the two-length scale model
m = m2 shows qualitatively different temperature dependence, namely there is a minimum at β ≈ 16. This is because
there is no ground truth in this target pattern. Intuitively, this situation is similar to the target pattern with noise.
In both cases, the model of equation (2) cannot reproduce exactly the same pattern as the target. The Bayesian
modelling is suitable in such cases because it gives us an optimal noise level[52]. Even though the cost function, or
energy, is lower at the lower temperature, the posterior distribution is too narrow so that a slightly higher temperature
than the lowest temperature gives the best estimate. This is exactly how our method avoids overfitting.

FIG. S4. Histogram of the estimated parameters for the target pattern of dodecagonal quasi-crystal that is synthesised by the

function. The vertical dashed line in the histogram of wavenumber indicates q1 =
√

2−
√

3, which is necessary to reproduce
the dodecagonal pattern.
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The estimated parameters are shown in Table S2 and the corresponding histograms for each β are shown in Fig. S4.
The histograms of the sampled parameters are qualitatively similar to the results of the numerically produced target
pattern. The distribution of the estimated wavenumber is well accumulated around the value that is necessary to
make quasi-crystals, that is, q1 ≈ 0.51, which is close to 1/(2 cos(π/12)) under q0 = 1. The width of the distribution
is sharp because if the ratio q1/q0 does not satisfy the appropriate value, the coupling between the two modes cannot
occur. Other parameters do not have specific values that they should satisfy. In fact, as we will discuss at the end
of this section, there is a region where the dodecagonal quasi-crystal can appear in the parameter space spanned
by mean density ψ̄ and the spectrum amplitude a1. Other parameters show broader distribution than that of the
wavelength. These parameters are distributed inside the region. In particular, the mean density is a good quantity
separating the dodecagonal quasi-crystal from stripe and hexagonal patterns. This is because ψ̄ manifests the strength
of coupling among three modes, that is, the coupling of two modes affects another mode in the dynamic equation
(see the quadratic term in equation (S4)). The stripe pattern has a symmetry of ψ → −ψ, and therefore, this
coupling must be week. The hexagonal pattern does not have the symmetry and this requires stronger coupling; the
dodecagonal quasi-crystal requires even far stronger coupling[21]. Therefore, |ψ̄| � 0. This is in agreement with the
result of the estimation in Fig. S4(b). The distribution of a0 is broad by the same reason in the case of numerically
produced dodecagonal quasi-crystal pattern.

TABLE S2. The estimated parameters values for functionally synthesised dodecagonal quasi-crystals. Errors are evaluated
from the standard deviation of each sample from the REMC at the optimal temperature.

parameters estimated (one length) estimated (two length) estimated (three length)

dx = dy 0.986± 0.0092 0.980± 0.0018 1.02± 0.0046

ψ̄ −0.183± 0.0497 −0.748± 0.0192 −0.475± 0.00165

a0 0.010± 0.0120 −0.132± 0.0443 −0.0459± 0.0433

q1 - 0.514± 0.0037 0.666± 0.0052

a1 - 0.0153± 0.0085 0.007± 0.0121

q2 - - 0.342± 0.0076

a2 - - 0.110± 0.0697

Once the best parameters are obtained, a larger scale pattern may be obtained as in Fig. S5. The dodecagonal
quasi-crystal indeed spans the larger space. This pattern is also obtained from the random initial condition. Note
that the estimated parameters do not imply that the dodecagonal quasi-crystal always appear. From the random
initial condition, a solution of PFC may be trapped at metastable states. In a larger system, a pattern is more likely
to be trapped because the energy barrier between the metastable states is larger. Topological defects are also likely
to appear. Nevertheless, our method is capable of estimating the model that can reproduce the target pattern from a
random initial condition. This is ensured at least at the system size we used for the estimate, but here we demonstrate
the target pattern is also reproduced in the larger system.

FIG. S5. A pattern from two-length-scale model under the estimated parameters in the system size of 5122.
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To confirm that the BM-PDE indeed reproduces the target pattern, we compare the estimated parameters with the
phase diagram. The phase diagram is based on a variational function H[ψ(x)], whose minimum implies most stable
pattern. Our family of PFC models has H[ψ(x)] and thus equation (S1) is rewritten as

∂tψ = ∆
δH[ψ(x)]

δψ
. (S54)

In Fig. S6, the phase boundary is calculated by comparing H[ψ(x)] under each pattern. Each pattern is approximated
under the one-mode approximation; namely, the pattern is expressed only by the single mode such as for the stripe
pattern

ψstripe(x) = A∗stripe

∑
i

cos qi · x (S55)

where A∗stripe is amplitude of the pattern[69, 83]. The wavenumber qi is chosen appropriately to reproduce the pattern

(see Methods). At the stable state, the amplitude is, in fact, a function of the mean density ψ̄ and the spectrum
amplitude ai at the characteristic wavenumber ki.

For each pattern of the stripe, hexagonal, and dodecagonal quasi-crystal patterns, most of the sample of estimated
parameters from the REMC at the optimal temperature are distributed inside each region in the phase diagram. This
result suggests that the generated patterns from the estimated PDE are indeed the same as the target pattern. Note
that between the two phases, there are coexistence regions where both patterns are possible; one is most stable and
the other is meta-stable.

FIG. S6. The estimated parameters for the target patterns of stripe (blue), hexagonal (red), and dodecagonal quasi-crystals
(green) in the parameter space spanned by the mean density ψ̄ and spectrum amplitude (a0 for stripe and hexagonal patterns,
and a1 for the quasi-crystal patterns). The target patterns are synthesised by functions, and therefore, there is no point of
ground truth in the phase diagram. The phase boundaries are obtained by the condition of minimum H in equation (S54)
under the one-mode approximation.

C. Target pattern synthesised by a function: stripe and hexagonal patterns

We apply our method to stripe and hexagonal patterns. These patterns are simpler than the dodecagonal quasi-
crystal, and the one length scale is enough to reproduce the patterns. The energy histogram is shown in Fig. S7 for the
stripe pattern and in Fig. S9 for the hexagonal pattern. In contrast with the dodecagonal quasi-crystals, the energy
of these patterns can be very low up to about E ≈ 10−5 − 10−4. In addition, the shapes of energy histogram under
different models are qualitatively similar. Accordingly, the minimum free energy and probability of each model are
comparable among different models. Nevertheless, we estimate the one-length-scale model m = m1 is the best model
in both stripe and hexagonal patterns (Table 3(a,b)). Temperature dependence of the free energy is indistinguishable
among the three models. The free energy monotonically decreases as the temperature decreases (or β increases),
and therefore, the minimum free energy is attained at the highest β (lowest temperature). The difference of the free
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energy among the three models is small, but still by looking at maginalised probability, we find the one-length-scale
model is more likely than other models as shown in Table 3(a,b).

The generated patterns from the estimated PDE are similar to the target pattern in both stripe (Fig. S7) and
hexagonal patterns (Fig. S9). We stress that thanks to the order parameter Ψ, we are able to identify two patterns
up to translation and rotation. In fact, the generated pattern from the estimated parameters in Fig. S7 has a different
orientation.

FIG. S7. (Top) The target pattern and the generated pattern from the estimated PDE in real and Fourier space. (Bottom)
Energy histograms of the REMC sampling for the target pattern of a stripe pattern that is synthesised by the function. The
horizontal axis is shown in the logarithmic scale.

The estimated parameters under the one-length-scale model are shown in Fig. S8 for the stripe pattern and in
Fig. S10 for the hexagonal pattern. The estimated wavenumber is close to the choice of that of the target pattern
q0 = 0.5 in both patterns. The relevant parameter to distinguish between the stripe and hexagonal patterns is the
mean density ψ̄. It is known that the stripe pattern appears near ψ̄ = 0 because in this region, the pattern has parity
symmetry, ψ = −ψ [15]. The hexagonal pattern breaks this symmetry and also it requires the three-body interaction,
which is the quadratic term in ψ in the dynamical equation (2). The hexagonal pattern is expressed by superposition

of three plain waves ψ1 = eix and ψ2,3 = ei(−
1
2x±

√
3

2 y). The coupling between ψ2 and ψ3 gives rise to e−ix, which
is the complex conjugate to ψ1, and thus this quadratic term appear in the equation of ψ1. In Fig. S6, the phase
diagram based on the one-mode approximation is shown. In fact, the stripe pattern appears near ψ̄ = 0, whereas
the hexagonal pattern appears ψ̄ � 0. As in the case of the dodecagonal quasi-crystal, the estimated parameters are
more or less inside each region in the phase diagram. This argument also justifies the successful estimation of the
parameters also for the stripe and hexagonal target patterns.



18

FIG. S8. Histogram of the estimated parameters for the target pattern of a stripe pattern that is synthesised by the function.

TABLE S3. The estimated parameters values for functionally synthesised stripe pattern. Errors are evaluated from the standard
deviation of each sample from the REMC at the optimal temperature.

parameters estimated (one length) estimated (two length) estimated (three length)

dx = dy 0.992± 0.0153 0.995± 0.0119 0.999± 0.0157

ψ̄ −0.0471± 0.0351 −0.0648± 0.0426 −0.0447± 0.0310

a0 0.0329± 0.0115 −0.0337± 0.0952 −0.0943± 0.0635

q1 - 0.571± 0.127 0.669± 0.142

a1 - 0.0112± 0.0420 −0.0490± 0.0944

q2 - - 0.387± 0.296

a2 - - −0.0144± 0.0966
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FIG. S9. (Top) The target pattern and the generated pattern from the estimated PDE in real ans Fourier space. (Bottom)
Energy histograms of the REMC sampling for the target pattern of a hexagonal pattern that is synthesised by the function.
The horizontal axis is shown in the logarithmic scale.

FIG. S10. Histogram of the estimated parameters for the target pattern of a hexagonal pattern that is synthesised by the
function.
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TABLE S4. The estimated parameters values for functionally synthesised hexagonal pattern. Errors are evaluated from the
standard deviation of each data.

parameters estimated (one length) estimated (two length) estimated (three length)

dx = dy 0.990± 0.00778 1.00720± 0.00642 0.991± 0.0149

ψ̄ −0.226± 0.0536 −0.171± 0.0445 −0.215± 0.0729

a0 0.0408± 0.0126 0.0438± 0.0341 −0.0240± 0.0800

q1 - 0.492± 0.0162 0.288± 0.102

a1 - 0.0534± 0.00713 −0.0245± 0.0970

q2 - - 0.431± 0.0953

a2 - - −0.0789± 0.106

D. Target pattern synthesised by a function: double gyroid and Frank Kasper A15

Estimation of a PDE that generate a three-dimensional pattern is performed similarly to a two-dimensional pattern.
The only difference is the definition of order parameter Ψ. As discussed in Se. SIII, three-dimensional patterns may
have several invariants for each l. We expect including all the invariants is necessary to classify complex patterns, but
in this study, we consider only one invariant similar to the two-dimensional problem. We found this assumption works
at least for the patterns that we study here: double gyroid (DG) and Frank Kasper A15 (FKA15). We have confirmed
our method also works for simpler pattern such as lamellae pattern (stripe in three dimensions) and cylindrical pattern
(hexagonal pattern in three dimensions).
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FIG. S11. (a,b) The target pattern and the generated pattern from the estimated PDE in real ψ(x) and Fourier |ψ̃(k)| space

for the target pattern of double gyroid. In Fourier space, each point corresponds to a peak of |ψ̃(k)|, and the intensity is
described by the size of the points. (c-e) Energy histogram of the REMC sampling for the target pattern of a double gyroid
pattern that is synthesised by the function. The horizontal axis is shown in the logarithmic scale. Patterns with higher energy
are also shown in the insets.

In Fig. S11, the energy histogram of each model is shown. The DG pattern is reproduced by one- (m = m1)
and two-length-scale (m = m2) models. In fact, the generated pattern from the estimated PDE is identical to the
target pattern up to translation, and they have almost the same patterns in the Fourier space (Fig. S11). The energy
histograms of m = m1 and m = m2 are qualitatively similar, but m = m2 has slightly smaller energy on average. The
probability of the two models shown in Fig. 3(d) is comparable, but m = m2 is chosen. The log marginal likelihood
decreases as the temperature decreases, and therefore, within the current choice of the range of temperature, the
minimum of the log marginal likelihood is not attained. If we use the temperature range containing larger β, the log
marginal likelihood may attain its minimum.
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FIG. S12. Histogram of the estimated parameters for the target pattern of a double gyroid pattern that is synthesised by the
function.

Estimated parameters are shown in Fig. S12 and Table. S5. The estimated wavenumber distributes near the
wavelength that we have imposed. The mean density ψ̄ is accumulated near ψ̄ = 0 but with slight deviation. This
is consistent from previous theoretical and numerical results; the double gyroid pattern, in fact, appears between
lamellae (stripe) and cylinder (hexagonal) patterns[11, 13, 84]. As discussed in Sec. SV B and Sec. SV C, the stripe
pattern appears near ψ̄ = 0 including ψ̄ = 0 whereas the hexagonal pattern appears at |ψ̄| � 0. The region where the
double gyroid pattern appears is between the two regions, and thus the mean density should be 1� |ψ̄| > 0. This is
exactly observed in Fig.S12(b).

TABLE S5. The estimated parameters values for functionally synthesised double gyroid pattern in three dimensions. Errors
are evaluated from the standard deviation of each sample from the REMC at the optimal temperature.

parameters estimated (one length) estimated (two length) estimated (three length)

dx = dy = dz 0.528± 0.0261 0.561± 0.00380 0.541± 0.00264

ψ̄ −0.0559± 0.0326 −0.090± 0.0266 −0.915± 0.0414

a0 0.0548± 0.0149 −0.127± 0.0236 −0.127± 0.0369

q1 - 0.838± 0.0187 0.0336± 0.00221

a1 - −0.112± 0.0208 −0.0797± 0.0410

q2 - - 0.974± 0.00233

a2 - - 0.157± 0.0236

The FKA15 pattern is expressed by 24 wave vectors q∗ = (±2,±1, 0), 24 wave vectors q∗ = (±2,±1,±1), 6 wave
vectors of q∗ = (±2, 0, 0) with their permutation along the x, y, z directions[85]. In the unit cell, a centre particle is
surrounded by 8 particles at the position of the corners, and 2 particles are located at each face (Fig. S13(a)). In
Fig. S13, the histogram of the cost function for each model is shown. The FKA15 pattern is reproduced by one-
(m = m1) and two-length-scale (m = m2) models. The generated pattern from the estimated PDE is similar to the
target pattern up to translation, and they have almost the same patterns in the Fourier space (Fig. S13(b)). The
similarity is also demonstrated in their side views. The energy histograms are shown in Fig. S13(c-e). The probability
of the two models shown in Fig. 3(e) is comparable, but m = m1 is chosen for this target pattern. The log marginal
likelihood decreases as the temperature decreases, and therefore, within the current choice of the range of temperature,
the minimum of the log marginal likelihood is not attained. If we use the temperature range containing larger β, the
log marginal likelihood may attain its minimum.

Estimated parameters are shown in Fig. S13(f-h). The estimated wavenumber distributes near the wavelength that
we have imposed q = 0.5. In contrast with the DG pattern, the mean density ψ̄ is away from ψ̄ = 0. In fact, FKA15
has been found in higher resolution of ψ̄ − a0 phase diagram using the self-consistent field theory, which describes
block copolymers[86]. The position of FKA15 in the phase diagram used to be BCC, but recently several Frank
Kasper phases have been found in this region. The BCC pattern has been found at ψ̄ � 0, and thus our estimated ψ̄
is consistent with the observation. We note that, to our knowledge, FKA15 has not been reported in the framework
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of PFC. Because PFC is considered as an approximation of various model including self-consistent field theory and
density functional theory of atomic alloy, this pattern should appear in various pattern forming systems.

FIG. S13. (a,b) The target (a) and estimated (b) patterns in real ψ(x) and Fourier |ψ(k)| space for the target pattern of Frank
Kasper A15. In Fourier space, each point corresponds to a peak of |ψ(k)|, and the intensity is described by the size of the
points. The side view of the real-space images is also shown in the middle panels. In the side view, neighbouring domains of
the periodic boundary are added around the main domain to clarify periodicity. (c-e) Histogram of the cost function in the
REMC sampling for the target pattern of a Frank Kasper A15 pattern that is synthesised by the function. The horizontal axis
is shown in the logarithmic scale. Patterns with higher energy are also shown in the insets. (f-h) Histogram of the estimated
parameters for the target pattern of a Frank Kasper A15 pattern that is synthesised by the function.
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TABLE S6. The estimated parameters values for functionally synthesised Frank Kasper A15 pattern in three dimensions.
Errors are evaluated from the standard deviation of each sample from the REMC at the optimal temperature.

parameters estimated (one length) estimated (two length) estimated (three length)

dx = dy = dz 0.529± 0.0142 0.459± 0.00378 0.545± 0.00136

ψ̄ −0.365± 0.0243 −0.377± 0.0265 −0.392± 0.090

a0 0.0144± 0.007 −0.106± 0.0373 −0.106± 0.0616

q1 - 0.885± 0.0278 0.0225± 0.0133

a1 - −0.0394± 0.0599 −0.0229± 0.0676

q2 - - 0.961± 0.0115

a2 - - 0.109± 0.0708

SVI. ROBUSTNESS AGAINST NOISE

We believe that the robustness is supported by our order parameter and marginalisation for an initial condition
of pattern formation. To confirm this, we performed parameter estimation using the regression method in which the
following cost function was used

E =
1

2

∫
[ψ∗ − fdt(ψ∗;µ)]

2
dx. (S56)

Here, the target pattern ψ∗ is numerically forward in dt by the model of equation (2) with a parameter set {µ} as
ψ(t + dt) = fdt(ψ(t);µ). If the target pattern is the stationary solution of the model, namely if the parameters are
ground truth to obtain the target pattern, the cost function must be zero. This approach is philosophically the same
as the regression method in previous studies in which the cost function is a difference between left-hand side (time
derivative) and right-hand side (force to change ψ), that is, E = (1/2)‖∂tψ − f(ψ;µ)‖, under an appropriate norm
‖ · ‖ [59, 60]. The norm is typically chosen as the L2 norm

E =
1

2

∫
[∂tψ − f(ψ;µ)]

2
dx. (S57)

In the current system, our model is no longer linear in the parameters, and therefore, we cannot use linear regression
(including conventional sparse regression). In order to carry out nonlinear regression, we used the REMC method to
minimise the cost function, equation (S56). The method is similar to our main algorithm to sample parameters and
to estimate the optimal noise by temperature β. Following Bayes’ theorem, we estimate the best parameters by the
sampled values and their error by the standard deviation.

The cost function, equation (S56), implies that uncertainty arises from state noise added in the equation

∂tψ = f(ψ;µ) + ξ(x, t) (S58)

where the noise ξ is taken from a normal distribution with zero mean and variance σ2. This is different from
measurement noise

ψ = ψ∗ + ξ (S59)

where the ψ(x) is a pattern reproduced by a model and ψ∗ is a target pattern. In this case, uncertainty arises from
incomplete measurement and the fact that the model does not contain ground truth and cannot reproduce exactly the
same pattern as the target pattern. This uncertainty results in correlation and nonlinear coupling by the nonlinear
function of f(ψ) with respect to ψ. Therefore, its likelihood is not necessarily given by the Gaussian distribution as
equation (S57).

To overcome measurement noise, trajectory matching, referred to as the shooting method or the dynamical method,
was proposed[54, 56]. In this method, ψ(x, t) is evaluated under the estimated parameters µ and initial conditions
ψ(x, 0), is compared with data ψ∗, and then minimise the cost function ‖ψ∗ − ψ‖ with respect to parameters µ and
the initial conditions ψ(x, 0). This method works only for time-series data because a stationary pattern does not have
information about its initial condition. We would like to estimate the PDE that can generate patterns similar to the
target pattern from a wide range of initial conditions. If the patterns are generated from very narrow initial conditions,
they are hardly accessed. For example, a given target stripe pattern can be rotated, and we obtain another stripe
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pattern (see Fig. 1(c) and Fig. S1). The rotated pattern is a solution of the same model with the same parameters
under a different initial condition. For time-series data, the original stripe and rotated patterns are different because
their initial conditions are different, and their structures during the relaxation process are also different. Estimation
of a model for a stationary pattern does not care about such structures during relaxation, but does care only the
model that results in the stationary pattern. This consideration suggests two things; one is to marginalise initial
conditions and the second is to define the cost function that is independent of the initial conditions. In BM-PDE, the
initial conditions are taken from random distribution each time a solution of a PDE model is evaluated. This process
marginalise probability with respect to the initial conditions. BM-PDE also uses the cost function based on the order
parameter, which identifies patterns under translation and rotation. These ingredients are necessary to consider an
inverse problem of a stationary problem.

The result of the regression method is shown in the black points in Fig. 4(a) and Fig. S14). This method works only
when the noise is small and it gives wrong estimation for larger noise. This result does not improve with the choice of
the initial condition of the parameters; even when we choose the ground truth parameters as an initial condition, this
method gives wrong estimates for the larger noise. This is because the noise is not along the relaxation path of the
pattern for the ground truth, and therefore, the pattern significantly changes even at the ground truth parameters.
As a result, the optimisation process tries to find the parameters to minimise the change, but those parameters are
very different from the ground truth parameters. We should, however, note that this nonlinear regression method is
much faster than our main algorithm, because we do not need to solve the PDE until a pattern reaches its stationary
state.

To confirm the role of the cost function, we consider the following cost function:

E =
∑
l

[
Ψ∗l −Ψl

[
f
{µ}
dt (ψ∗)

]]2
. (S60)

In this case, the target pattern is evolved in time by dt, we compute its cost function, and then we compare it by
the cost function of the target pattern. This cost function is similar to the nonlinear regression method in equation
(S56), but the order parameter is used instead of the density field itself. We should note that this method is also
based on the regression method, and relies on the state noise. In fact, the cost function, equation (S60), implies that
uncertainty arises from noise in the dynamical equation of Ψ, namely, ∂tΨ = fΨ(Ψ) + ξ where the function fΨ is
obtained from f(ψ) by nonlinear transformation. To avoid an artificial estimate near qi ≈ 0, we use the prior uniform
distribution qi ∈ [0.1, 1.0] in this case.

The result is shown in blue points in Fig. S14. The estimated wavenumbers are improved compared with the
regression based on equation (S56). Still, the estimation deviates from the acceptable range around 2% of the
noise amplitude. The acceptable range of the parameter is evaluated from the standard deviation of the estimated
parameters in the noiseless case of the BM-PDE (see Fig. 2(b)) at which the cost function is below the gap. These
parameters are taken from the samples in all temperatures as long as the corresponding cost function is E ≤ 10. We
can check all the sampled patterns below the gap are dodecagonal quasi-crystals. Note that this regression method
using the order parameter works relatively well only for the target pattern with ground truth. When the target pattern
is synthesised by the function, the method does not work and gives an entirely wrong estimate around q̂1 ≈ 0.3.

Finally, we note that the robust estimation of the BM-PDE is further improved by using a pre-process, which is
used for the target pattern synthesised by a function (see Methods). Under the application of the filter for the target
pattern, estimation works even at 100% noise amplitude (the green points in Fig. S14). In the current case, all the

peak of ψ̃(k) have similar amplitude, and therefore we use α = 0.6 in the pre-processing. When the target pattern
has several peaks with different amplitudes, the choice of the parameter in the pre-process may affect the estimation
because it may eliminate relevant peaks.
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FIG. S14. (a) Estimated wavenumbers for numerically produced quasi-crystal by BM-PDE (red and green points) and conven-
tional regression method by using equation (S56) (black points) and equation (S60) (blue points) under Gaussian white noise
added on the target pattern. In addition to Fig. 4(a), BM-PDE with pre-process (green points) and conventional regression
method using the cost function (blue points) are added. Noise amplitude with respect to the variance of the noiseless pattern
is defined as σ2/Var[ψ∗] where σ2 is variance of added noise. The horizontal dashed line indicates the ground truth of the
wavenumber q1 = 0.51764. The acceptable range of the parameter is shown by the gray area. The target patterns under the
different noise amplitude is shown in the insets.
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