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1.1 Granular gases and kinetic theory

Granular gases and flows of granular particles have been studied well due to the importance in technol-
ogy, geophysics, astrophysics, and science. The peculiar properties of the granular gases are mainly
caused by the energy dissipation during the collisions of particles. Due to thedissipative collisions, the
equilibrium state does not exist and the steady state or steady flow of granular particles can be retained
only if the external force fields exist. In this sense, the granular gases are intrinsicallynon-equilibrium
and quite different from molecular gases and usual fluids. To describe the macroscopic properties of
the granular gases,kinetic theoryof granular gases has been developed by many authors in the last
decades [1,2]. We know the kinetic theory of molecular gases predicts thetransport coefficients start-
ing from theBoltzmann equation. Chapman-Enskog method, Sonine polynomials expansionandGrad
expansionare the successful tools to evaluate the distribution functions and the transport coefficients,
and we find the kinetic theory bridges the gap between the microscopic princiles and the macroscopic
properties of molecular gases [3, 4]. Although the application of kinetic theory to granular gases in-
volves several problems, for example, the lack of scale separation, the long range correlations, etc [5],
thegranular hydrodynamic equationsderived by the kinetic theory of granular gases well describe the
dynamics of granular flows.

1.2 Basic assumption

To apply kinetic theory to granular gases, we need basic assumption as wellas molecular gases. That is
binary collisionof granular particles, where we assume the statistical properties of granular gases are
mainly determined by the binary collisions and collisions accompanied by more thanthree particles
are too rare to take into account. This assumption is related to the density of granular gases, the
duration time of particle collisions and rigidity of granular particles. To satisfy the basic assumption,
the densityφ has to be low enough. It is known that, above thejamming densityφJ, the mean numbebr
of contacts per particle, i.e., the coordination numberz, jumps to the isostatic valuezc = 2d from zero
in d-dimension. Clearly,φ should be much lower thanφJ and there may be a limit of the basic
assumption atφm, thus, our density should beφ < φm < φJ. The duration time of each collision is
also important, because the long duration time of collision causes to invite anotherparticles to the
multibody collision. The duration time is related to the rigidity of granular particles. The harder the
granular particles are, the shorter the duration time is. Thus, our granularparticles have to beslightly
inelasticor inelastic hardsphereto avoid the multibody collisions.

1.3 Restitution coefficient

Inelastic collision of granular particles are characterized by therestitution coefficient e. In general,
the restitution coefficient depends on the incident velocities of granular particles and many effects
influence the value ofe, for example, the surface tension, the asperities, the fracture, the shape of
granular particles, etc. Because of these effects, the restitution coefficient can be changed in each
collision, however, we restrict our study to the simplest case thate = const in 0< e < 1. We also
assume the granular particles are spherical and identical with the same mass and diameter. The kinetic
theory with the velocity dependent restitution coefficient has been found in Ref. [1]. We also notice
that in some cases, the restitution coefficient can be negativee< 0 [18,21] and there is a critical point
ec = 0 [18]. This critical point could violate the Boltzmann equation and the kinetic theory of granular
gases, because we will see the prefactor 1/e2 in the first term of the collision integral (see Eq. (2.30)
in Chap. 2) and 1/e2 diverges at the critical pointec = 0.
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Figure 1.1: Development of spatial inhomogeneity in two-dimensional granular shear flow.

1.4 Instabilities of granular flows

Because of the inelastic collisions and the energy dissipation, homogeneoussolutions of the granular
hydrodynamic equations are often unstable. For example,clustering in the homogeneous cooling
state[1], shear band in the granular shear flow [19, 22] and convections inthe vibrated granular thin
layer [23]. Figure 1.1 displays the time development of granular particles under the Lees-Edwards
boundary condition, where the homogeneous flow becomes unstable by shear and the shear band
is generated in the steady state. It is notable the time development of the hydrodynamic fields of
granular shear flow can be well described by the numerical solutions of the granular hydrodynamic
equations [19]. Such instabilities in granular flows can be expected by thelinear stability analysis
[24, 25]. More developed analyses, i.e.,weakly nonlinear analysesare also paid much attention in
these days [20,26–28].

1.5 Organization of this lecture note

In this lecture, we explain the kinetic theory of granular gases. In Chap. 2, we derive the Boltzmann
equation of pairs of granular particles. In Chap. 3, we explain the homogeneous cooling state of
granular gases. In Chap. 4, we derive the hydrodynamic equations ofgranular gases by the Chapman-
Enskog method. In Chap. 5, we explain the collisional transfer of granular particles which is important
in the dense flows of granular particles. This lecture note is based on the books

[1] ” Kinetic Theory of Granular Gases”, N. V. Brilliantov and T. P̈oschel
[2] ” Granular Gases”, T. Pöschel and S. Luding

and we also refer to the text books of kinetic theory of molecular gases

[3] ” The Mathematical Theory of Non-uniform Gases”, S. Chapman and T. G. Cowling,
[4] ” Classical Kinetic Theory of Fluids”, P. Résibois and M. de Leener.

For collisional transfer, we refer to some papers [6–8]. There are several applications of the kinetic
theory of granular gases, for instance, the kinetic theory of frictional granular particles [9–11], bi-
nary mixtures [12, 13], polydisperse granular particles [14, 15], andthe granular particles with the
long range interaction [16]. We do not explain the important properties of the linearized Boltzmann
equationin this lecture, however, this topic can be seen in the references [4,17].
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2.1 Distribution functions

If the number of granular particles are large enough, we may adopt the approach of the statistical me-
chanics for the description of the macroscopic properties of granular gases. Macroscopic properties
of molecular gases are governed by the velocity distribution function and thisfunction is determined
by a certain integral equation so-called theBoltzmann equationfirst derived by Boltzmann in 1872.
Because the collisions between granular particles are inelastic, we have to modify the velocity dis-
tribution function to take into account the inelasticity and the Boltzmann equation is also derived in
a little different way from the case of molecular gases. At first, we introduce thesingle distribution
functionsuch that

f (r , v, t)drdv (2.1)

is the number of particles placed in a small volumedr around the positionr and have velocities in a
small elementdv around the velocityv at timet. The number of particles in the system is given by

N =
∫

dr
∫

dv f (r , v, t) , (2.2)

where the integrals are defined in−∞ ≤ {r , v} ≤ ∞. If any particles do not collide during the time
intervaldt, the position and the velocity are respectively changed to

r → r + vdt , (2.3)

v → v + (F/m)dt , (2.4)

wherem is the particle mass and

F = m
∂v
∂t

(2.5)

is the external body force. Because there is no collision, all particles develop as Eqs. (2.3) and (2.4),
thus the number of particles Eq. (2.1) does not change, i.e.,

{ f (r + vdt, v + Fdt/m, t + dt) − f (r , v, t)}drdv = 0 . (2.6)

In acutual case, some particles collide with each other duringdt and the left-hand-side of Eq. (2.6)
is not equal to zero. The change of the number of particles may be proportional to drdvdt and the
left-hand-side of Eq. (2.6) can be written as

{ f (r + vdt, v + Fdt/m, t + dt) − f (r , v, t)}drdv =
(

∂ f
∂t

)

col
drdvdt , (2.7)

where (∂ f /∂t)col represents the rate of change due to the collisions. Then, we divide Eq. (2.7) by
drdvdt and find

∂ f
∂t
+ v · ∇ f +

F
m
· ∂ f
∂v
=

(

∂ f
∂t

)

col
, (2.8)

where∇ = ∂/∂r is the gradient. For simplicity, we do not take into account the external body force
F = 0, thus we find

∂ f
∂t
+ v · ∇ f =

(

∂ f
∂t

)

col
. (2.9)

In the following, we assume the particles are spherical and identical with the same massm and the
same diameterσ.

For later use, we also introduce thepair distribution functionsuch that

f (r1, v1; r2, v2; t)dr1dr2dv1dv2 (2.10)

is the number of pairs of particles placed in small volumesdr1 anddr2 aroundr1 andr2, respectively,
and have velocities in small elementsdv1 anddv2 aroundv1 andv2, respectively, at timet.
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2.2 Inelastic collision

The collision between two granular particles is inelastic and the part of the kinetic energy is lost by
each collision. Such an inelastic collision is characterized by the normal restitution coefficient e.
In general, the normal restitution coefficient depends on the relative velocity and the duration time
of colliding two granular particles, however, we consider the simplest casethat e is a constant and
satisfies 0< e< 1. If the velocitiesv1 andv2 of two granular particles are respectively changed tov′1
andv′2 by the collision, the normal restitution coefficient is defined as

g′ · e= −e(g · e) , (2.11)

where we introduced the relative velocitiesg ≡ v1 − v2 andg′ ≡ v′1 − v′2, ande is the normal unit
vector connecting the centers of the colliding two granular particles. In the same way, if the velocities
v′′1 andv′′2 are respectively changed tov1 andv2 by the collision, we find

g′′ · e= −1
e

(g · e) , (2.12)

whereg′′ ≡ v′′1 − v′′2 . Then, the tangential components ofg andg′′ are given by

t = g− (g · e)e , (2.13)

t′′ = g′′ − (g′′ · e)e , (2.14)

respectively. If the granular particles are frictionless, the tangential velocity does not change by the
collision t = t′′, i.e.,

g− (g · e)e= g′′ − (g′′ · e)e . (2.15)

Therefore, from Eq. (2.12), we find

g′′ = g−
(

1+
1
e

)

(g · e)e . (2.16)

The velocity of the center-of-mass of the two granular particlesG ≡ (v1+v2)/2 andG′′ = (v′′1 +v′′2 )/2
also do not change by the collisionG = G′′, becuase of the conservation law of the momentum
mv′′1 +mv′′2 = mv1 +mv2. From the definition, the relation betweenG andg is given by

G = v1 −
1
2

g . (2.17)

Then, we convertdv1dv2 to dGdg as

dGdg =
∣

∣

∣

∣

∣

∂(G,g)
∂(v1, v2)

∣

∣

∣

∣

∣

dv1dv2 , (2.18)

where the Jacobian is given by

∂(G,g)
∂(v1, v2)

=
∂(v1,g)
∂(v1, v2)

− 1
2
∂(g,g)
∂(v1, v2)

=
∂(v1, v1)
∂(v1, v2)

− ∂(v1, v2)
∂(v1, v2)

= −∂(v1, v2)
∂(v1, v2)

= −1 . (2.19)
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Figure 2.1: Collision cylinder.

Therefore,dv1dv2 = dGdg. In the same way, we also finddv′′1 dv′′2 = dG′′dg′′. If we choose thez-axis
in the same direction ofe, i.e.,e= (0,0,1), the components ofg′′ given by Eq. (2.16) are written as

g′′x = gx , g′′y = gy , g′′z = gz−
(

1+
1
e

)

gz , (2.20)

respectively, and we find

dg′′ =
∣

∣

∣

∣

∣

∂(g′′)
∂(g)

∣

∣

∣

∣

∣

dg = abs

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 −1/e

∣

∣

∣

∣

∣

∣

∣

∣

∣

dg =
1
e

dg . (2.21)

From Eq. (2.21) anddG′′ = dG, we finddv′′1 dv′′2 = (1/e)dGdg and the conversion ofdv′′1 dv′′2 into
dv1dv2 is given by

dv′′1 dv′′2 =
1
e

dv1dv2 . (2.22)

2.3 Boltzmann equation

In this section, we show the microscopic expression of the change rate, (∂ f /∂t)col, in Eq. (2.9) and
derive the Boltzmann equation. Let us consider that the particle 1 with velocityv1 will collide with
the particle 2 with velocityv2 during the time intervaldt, where both of them are placed in a small
volumedr aroundr . Figure 2.1 shows the configuration of these two particles, whereθ is the angle
betweeng ande, and is defined between 0≤ θ ≤ π/2 so that the two particles can collide with each
other. In this figure, the volume of thecollision cylinderis given by the area,bdϕ × db (the yellow
shaded area in Fig. 2.1(b)), multiplied by the height,gdt, i.e.

dV = bgdbdϕdt = σ2gcosθ sinθdθdϕdt ≡ σ2|g · e|dΩdt , (2.23)

where we usedb = σ sinθ, db= σ cosθdθ, and|g · e| = |gcos(π − θ)| = gcosθ, and introduce a solid
angle asdΩ ≡ sinθdθdϕ. We call the particles 1 and 2collider andscatter, respectively. The scatters
are placed in a volumedr aroundr and have the velocities in an elementdv2 aroundv2. On the other
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hand, the colliders are placed in the collision cylinderdV to collide with the scatters and have the
velocities in an elementdv1 aroundv1. Then, the number of pairs of such particles are given by using
the pair distribution function as

f (r , v1; r , v2; t)dVdrdv1dv2 . (2.24)

Strictly speaking, the positions of the colliders should ber+σeor somewhere in the collision cylinder,
however, if the system is dilute, we can assume the velocity distribution functiondoes not change with
slightly changing the positionf (r+σe, v1; r , v2; t) ≃ f (r , v1; r , v2; t). Moreover, if the system is dilute,
we can also assume the correlation between the colliders and the scatters canbe negligible. Therefore,
the pair distribution function can be decomposed into the single distribution functions as

f (r , v1; r , v2; t) ≃ f (r , v1, t) f (r , v2, t) . (2.25)

Above assumptions are not correct if the system is dense and we will discuss the case of

f (r + σe, v1; r , v2; t) , f (r , v1, t) f (r , v2, t) . (2.26)

in the final chapter ”Collisional transfer”. From Eqs. (2.23) and (2.25), the number ofdirect collisions
Eq. (2.24) is given by

f (r , v1, t) f (r , v2, t)σ
2|g · e|dΩdv1dv2drdt . (2.27)

In the same way, the number ofinverse collisionsis given by

f (r , v′′1 , t) f (r , v′′2 , t)σ
2|g′′ · e|dΩdv′′1 dv′′2 drdt . (2.28)

From Eqs. (2.12) and (2.22), Eq. (2.28) is rewritten as

1
e2

f (r , v′′1 , t) f (r , v′′2 , t)σ
2|g · e|dΩdv1dv2drdt . (2.29)

The direct collisions contribute to decrease the number of particlesf (r , v1, t)drdv1 and the inverse
collisions contribute to increasef (r , v1, t)drdv1. If we integratev2 ande in Eqs. (2.27) and (2.29),
the right-hand-side of Eq. (2.7) is given by the difference of them

(

∂ f
∂t

)

col
= σ2

∫

dv2

∫

g·e<0
dΩ|g · e|

{

1
e2

f (r , v′′1 , t) f (r , v′′2 , t) − f (r , v1, t) f (r , v2, t)

}

≡ I ( f , f ) , (2.30)

where we divided the factordv1drdt and the second integral is restricted to the case ofg · e< 0, oth-
erwise the two particles do not collide with each other. Eq. (2.30) is the so-called collision integrals.
From Eq. (2.9), the Boltzmann equation is given by

∂ f
∂t
+ v · ∇ f = I ( f , f ) . (2.31)

Clealy, the collision integralI ( f , f ) satisfies the following algebra

I ( f + p, f + q) = I ( f , f ) + I ( f ,q) + I (p, f ) + I (p,q) , (2.32)

I (a f,b f) = abI( f , f ) , (2.33)

wherep andq are functions of the velocity, anda andb are constants. From Eqs. (2.32) and (2.33),
we readily find

I (a f + bp, c f + dq) = acI( f , f ) + adI( f ,q) + bcI(p, f ) + bdI(p,q) , (2.34)

wherec andd are constants.
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2.4 Collision invariant

If we multiply the function of the velocityψ(v1) to I ( f , f ) and integrate overv1, we find
∫

dv1ψ(v1)I ( f , f ) = σ2
∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e| 1

e2
f (r , v′′1 , t) f (r , v′′2 , t)ψ(v1)

−σ2
∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e| f (r , v1, t) f (r , v2, t)ψ(v1) . (2.35)

If we notice the relation
1
e2
|g · e|dv1dv2 = |g′′ · e|dv′′1 dv′′2 , (2.36)

the first term in the reft-hand-side of Eq. (2.35) becomes

σ2
∫

dv′′1

∫

dv′′2

∫

g′′·e<0
dΩ|g′′ · e| f (r , v′′1 , t) f (r , v′′2 , t)ψ(v1) . (2.37)

Since the relation (v′′1 , v
′′
2 ) → (v1, v2) (the relation between the velocities before the collision and the

velocities after the collision) is equivalent to (v1, v2)→ (v′1, v
′
2), we can rewrite Eq. (2.37) as

σ2
∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e| f (r , v1, t) f (r , v2, t)ψ(v′1) . (2.38)

Eq. (2.38) is symmetric aboutv1 andv2 and does not change by exchanging the indices 1 and 2. Thus,
Eq. (2.38) is equivalent to

σ2
∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e| f (r , v1, t) f (r , v2, t)ψ(v′2) . (2.39)

From Eqs. (2.38) and (2.39), the first term in the reft-hand-side of Eq.(2.35) is rewritten as

σ2

2

∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e| f (r , v1, t) f (r , v2, t)[ψ(v′1) + ψ(v′2)] , (2.40)

which is completely symmetric about the indices 1 and 2. The second term in the reft-hand-side of
Eq. (2.35) is also symmetric aboutv1 andv2, and in the same way with Eq. (2.40), this term is also
rewritten as

σ2

2

∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e| f (r , v1, t) f (r , v2, t)[ψ(v1) + ψ(v2)] , (2.41)

which is also symmetric about the indices 1 and 2. Then, Eq. (2.35) is given by
∫

dv1ψ(v1)I ( f , f ) =
σ2

2

∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e|∆[ψ(v1) + ψ(v2)] f1 f2 , (2.42)

where we denotedfa ≡ f (r , va, t) with a = 1,2 and we introduced∆ψ(v) ≡ ψ(v′)−ψ(v). The function
ψ(v) defines the set ofcollision invariant

ψ(v) =
{

m,mv,
m
2

v2
}

, (2.43)

where each component satisfies

∆ [m+m] = 0 , (2.44)

∆ [mv1 +mv2] = 0 , (2.45)

∆

[m
2

v2
1 +

m
2

v2
2

]

= −m
4

(1− e2)(g · e)2 , (2.46)

corresponding to theconservation of mass, the conservation of momentum, and theenergy balance,
respectively.
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3.1 Granular temperature

Even though the granular gases include a huge amount of granular particles, each granular particle is
still macroscopic material and is not affected by thethermal fluctuation. Therefore, the temperature
may not have so much importance in granular gases. However, we can introduce an analogical expres-
sion of ”temperature” in granular gases and keep consistency with the molecular gases. If the system
is in a homogeneous state, where the density is uniformn = const and the velocity fields are zero
u = 0, the distribution functions are independent on the space andgranular temperatureis defined as
the average of the kinetic energy of granular particles

∫

dv
m
2

v2 f (v, t) =
3
2

nT(t) . (3.1)

Due to the inelastic collisions between granular particles, the kinetic energy decreases as time goes on.
Thus, the granular temperature continuously decays if any external fields do not exist.Homogeneous
cooling stateis defined withn = const andu = 0, thus the system behaves like an equilibrium state at
each time instant, except for the decay of the granular temperature. Then,the Boltzmann equation is
written as

∂

∂t
f (v, t) = I ( f , f ) . (3.2)

Because the homogeneous cooling state is governed by the time dependent granular temperatureT(t),
we scale the velocity of each granular particles by thethermal velocity vT(t) ≡

√
2T(t)/m and the

distribution function is scaled as
f (v, t) ≡ n

vT(t)3
f̃ (c) , (3.3)

where we defined the scaled velocityc ≡ v/vT(t) and the absolute valuec ≡ |c|.

3.2 Sonine polynomials expansion

If the granular particles are slightly inelastice . 1, f̃ (c) can be expanded around the Maxwell distri-
bution function. Therefore, we assumef̃ (c) can be expanded into the series of the orthogonal function
as

f̃ (c) = φ(c)



















1+
∞
∑

p=1

apSp(c2)



















, (3.4)

where the leading term is the Maxwell distribution function

φ(c) ≡ 1

π3/2
exp(−c2) , (3.5)

and the series of the orthogonal functionSp(x) represent the deviation from the elastic gases. In the
following, we adopt the Sonine polynomials for the orthogonal functionSp(x). The Sonine polyno-
mials are defined as the associated Laguerre polynomials

S(m)
p (x) =

p
∑

n=0

(−1)n(m+ p)!
(m+ n)!(p− n)!n!

xn , (3.6)

where we definem= d/2−1 in thed-dimension. In the following, we consider the 3-dimensional case,
i.e.,m = 3/2− 1 = 1/2 and omit the upperscript such asSp(x) ≡ S(1/2)

p (x). The Sonine polynomials
satisfy the orthogonal condition

∫

dcφ(c)Sp(c2)Sq(c2) =
2(p+ 1/2)!
√
πp!

δpq ≡ Npδpq , (3.7)
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wherep,q = 0 are also included and we notice the expression

(

p+
1
2

)

! =
√
π

p
∏

k=0

(

k+
1
2

)

. (3.8)

Thus, from Eq. (3.4), the coefficientap is given by

ap =
1
Np

∫

dcSp(c2) f̃ (c) . (3.9)

The first few terms of the Sonine polynomials are given by

S0(x) = 1 , (3.10)

S1(x) = −x+
3
2
, (3.11)

S2(x) =
x2

2
− 5x

2
+

15
8
, (3.12)

thun, the powers of the scaled velocity are written as

1 = S0(c2) , (3.13)

c2
=

3
2
− S1(c2) , (3.14)

c4
= 2S2(c2) − 5S1(c2) +

15
4
, (3.15)

respectively. From Eq. (3.10), we also writef̃ (c) in the form

f̃ (c) = φ(c)
∞
∑

p=0

apSp(c2) , (3.16)

where we defineda0 = 1. Using Eqs. (3.13)-(3.15), we also find the moments of the scaled velocity

〈cp〉 ≡
∫

dccp f̃ (x) , (3.17)

for instance,

〈c2〉 =
∫

dcc2 f̃ (c)

=

∫

dcφ(c)

{

3
2

S0(c2) − S1(c2)

} ∞
∑

p=0

apSp(c2)

=
3
2

a0N0 − a1N1

=
3
2

(1− a1) , (3.18)

〈c4〉 =
∫

dcc4 f̃ (c)

=

∫

dcφ(c)

{

2S2(c2) − 5S1(c2) +
15
4

} ∞
∑

p=0

apSp(c2)

= 2a2N2 − 5a1N1 +
15
4

a0N0

=
15
4

(a2 − 2a1 + 1) , (3.19)
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where we usedN0 = 1,N1 = 3/2 andN2 = 15/8. Thus, the coefficientsa1 anda2 are respectively
represented by the moments as

a1 = 1− 2
3
〈c2〉 , (3.20)

a2 =
4
15
〈c4〉 − 4

3
〈c2〉 + 1 . (3.21)

3.3 Dimensionless Boltzmann equation

From Eq. (3.3), the left-hand-side of the Boltzmann equation Eq. (2.31) is written as

∂ f
∂t
=

∂vT

∂t
∂

∂vT















n

v3
T

f̃ (c)















=















−3n

v4
T

f̃ (c) +
n

v3
T

∂c
∂vT

∂

∂c
f̃ (c)















∂vT

∂t

= − n

v4
T

∂vT

∂t

(

3+ c
∂

∂c

)

f̃ (c) , (3.22)

where we used
∂c
∂vT
=

∂

∂vT

(

v
vT

)

= − v

v2
T

= − c
vT

. (3.23)

The right-hand-side of the Boltzmann equation Eq. (2.31) is written as

I ( f , f ) = σ2v3
TvT

n2

v6
T

∫

dc2

∫

c12·e<0
dΩ|c12 · e|

{

1
e2

f̃ (c′′1 ) f̃ (c′′2 ) − f̃ (c1) f̃ (c2)

}

=
σ2n2

v2
T

∫

dc2

∫

c12·e<0
dΩ|c12 · e|

{

1
e2

f̃ (c′′1 ) f̃ (c′′2 ) − f̃ (c1) f̃ (c2)

}

≡ σ2n2

v2
T

Ĩ ( f̃ , f̃ ) , (3.24)

where we definedc12 ≡ c1 − c2 = vTg and useddv2 = dvxdvydvz = v3
Tdcxdcydcz = v3

Tdc2 and
|g · e| = vT|c12 · e|. From Eqs. (3.22) and (3.24), the Boltzmann equation is written as

− 1

v2
T

∂vT

∂t

(

3+ c
∂

∂c

)

f̃ (c) = σ2nĨ ( f̃ , f̃ ) . (3.25)

From the definition of the granular temperature, we find

d
dt

(

3
2

nT

)

=

∫

dv1
m
2

v2
1
∂ f
∂t

=

∫

dv1
m
2

v2
1I ( f , f )

=
m
2

v3
Tσ

2n2
∫

dc1c2
1Ĩ ( f̃ , f̃ )

= σ2n2vTT
∫

dc1c2
1Ĩ ( f̃ , f̃ )

≡ −σ2n2vTTµ2 , (3.26)
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where we defined the moment of the dimensionless collision integral

µp ≡ −
∫

dc1cp
1 Ĩ ( f̃ , f̃ ) . (3.27)

Therefore, we find the cooling law as

dT
dt
= −2

3
σ2nvTTµ2 . (3.28)

From the definition of the thermal velocityT = mv2
T/2, the time derivative ofT is given bydT/dt =

mvTdvT/dt. Then, we find

1

v2
T

∂vT

∂t
=

m
2T

1
mvT

∂T
∂t
=

1
2vTT

∂T
∂t
= −1

3
σ2nµ2 , (3.29)

where we used the cooling law Eq. (3.28). From Eq. (3.25), we find the dimensionless Boltzmann
equation

µ2

3

(

3+ c
∂

∂c

)

f̃ (c) = Ĩ ( f̃ , f̃ ) . (3.30)

Eq. (2.42) can be also written in the dimensionless form. The left-hand-side of Eq. (2.42) with
changing the functionψ(v1)→ ψ(c1) gives

∫

dv1ψ(c1)I ( f , f ) = σ2n2vT

∫

dc1ψ(c1)Ĩ ( f̃ , f̃ ) , (3.31)

where we used Eq. (3.24). The right-hand-side of Eq. (2.42) with changing the functionψ(v1), ψ(v2)→
ψ(c1), ψ(c2) gives

σ2

2

∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e|∆[ψ(c1) + ψ(c2)] f1 f2

=
1
2
σ2n2vT

∫

dc1

∫

dc2

∫

c12·e<0
dΩ|c12 · e|∆[ψ(c1) + ψ(c2)] f̃ (c1) f̃ (c2) . (3.32)

Thus, we find
∫

dc1ψ(c1)Ĩ ( f̃ , f̃ ) =
1
2

∫

dc1

∫

dc2

∫

c12·e<0
dΩ|c12 · e|∆[ψ(c1) + ψ(c2)] f̃ (c1) f̃ (c2) . (3.33)

3.4 Dimensionless moments

The coefficients of the Sonine polynomials are given by the moments of the scaled velocity as Eqs.
(3.20) and (3.21). At first, we find

∫

dv
m
2

v2 f = n
m
2

v2
T

∫

dcc2 f̃ (c) = n
m
2

v2
T〈c

2〉 = nT〈c2〉 . (3.34)

On the other hand, we also find the following relation from the definition of the granular temperature
∫

dv
m
2

v2 f =
3
2

nT . (3.35)

Eqs. (3.34) and (3.35) are the same equations, thus we find

〈c2〉 = 3
2
. (3.36)
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From Eq. (3.20),

a1 = 1− 2
3
〈c2〉 = 0 . (3.37)

Therefore,a2 may be the first non-zero coefficient of the expansion Eq. (3.4). To calculatea2, let
us multiplycp to the dimensionless Boltzmann equation Eq. (3.30) and integrate overc1. From the
definition of the momentµp Eq. (3.27), the right-hand-side gives−µp. The left-hand-side is written
as

µ2

3

∫

dccp
(

3+ c
∂

∂c

)

f̃ (c) , (3.38)

where the first term is given by

µ2

∫

dccp f̃ (c) = µ2〈cp〉 , (3.39)

and the second term is given by

∫

dccp+1 ∂

∂c
f̃ (c) =

∫ 2π

0
dϕ

∫ π

0
sinθdθ

∫ ∞

0
cp+3 ∂

∂c
f̃ (c)dc

= 4π

{

[

cp+3 f̃ (c)
]∞
0
− (p+ 3)

∫ ∞

0
cp+2 f̃ (c)dc

}

= −4π(p+ 3)
∫ ∞

0
cp+2 f̃ (c)dc

= −(p+ 3)
∫

dccp f̃ (c)

= −(p+ 3)〈cp〉 , (3.40)

where we used the spherical coordinate in the integralc and assume that̃f (c) decays much faster than
any powers ofc, i.e., limc→∞ cp f̃ (c) = 0. We also notice the relation

4π
∫

dcc2 · · · =
∫

dc . . . . (3.41)

Then, from Eq. (3.38), we find
p
3
µ2〈cp〉 = µp . (3.42)

In Eq. (3.42),p = 2 is trivial andp = 4 gives

µ4 =
4
3
µ2〈c4〉 = 5µ2(a2 + 1) , (3.43)

where we used Eq. (3.21) witha1 = 0. Therefore, the momentsµ2 andµ4 give the first non-zero
coefficienta2.

3.5 Kinetic integrals

To determine the Sonine coefficients, we need to evaluate the momentµp. From Eq. (3.33),µp is
given by

µp = −
∫

dc1cp
1 Ĩ ( f̃ , f̃ )

= −1
2

∫

dc1

∫

dc2

∫

c12·e<0
dΩ|c12 · e|∆[cp

1 + cp
2] f̃ (c1) f̃ (c2) . (3.44)
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We assume the coefficienta2 is small and the distribution function can be well described by the linear
approximation

f̃ (c) ≃ φ(c)[1 + a2S2(c2)] . (3.45)

Then, if we neglect the second order terms ofa2, Eq. (3.44) can be written as

µp ≃ −
1
2

∫

dc1

∫

dc2

∫

c12·e<0
dΩ|c12 · e|φ(c1)φ(c2)

[

1+ a2

{

S2(c2
1) + S2(c2

2)
}]

∆[cp
1 + cp

2] . (3.46)

Let us evaluate Eq. (3.46). At first, we transform the velocityc1 andc2 to the velocity of the center
of massC ≡ (c1 + c2)/2 and the relative velocityc12 = c1 − c2. In the same way with Eq. (2.18), the
Jacobian is unity

dc1dc2 = dCdc12 . (3.47)

The Gaussian distribution functions can be rewritten as

φ(c1)φ(c2) =
1

(2π)3/2
e−

1
2c2

12

(

2
π

)3/2

e−2C2 ≡ φ(c12)φ(C) . (3.48)

The Sonine polynomials can be rewritten as

[

1+ a2

{

S2(c2
1) + S2(c2

2)
}]

= C4
+

1
2

C2c2
12+

1
16

c4
12+ (C · c12)

2 − 5C2 − 5
4

c2
12+

15
4
. (3.49)

We also find

∆[c2
1 + c2

2] = −1
2

(1− e2)(c12 · e)2 , (3.50)

∆[c4
1 + c4

2] = 2(1+ e)2(c12 · e)2(C · e)2
+

1
8

(1− e2)2(c12 · e)4

−1
4

(1− e2)(c12 · e)2c2
12− (1− e2)C2(c12 · e)2

−4(1+ e)(C · c12)(C · e)(c12 · e) , (3.51)

respectively. Then, it is readily found that Eq. (3.46) is given by the combination of thekinetic
integrals

Jk,l,m,n,q ≡
∫

dC
∫

dc12

∫

c12·e<0
dΩ|c12 · e|φ(c12)φ(C)Ckcl

12(C · c12)
m(C · e)n(c12 · e)q . (3.52)

For example,Jk,l,m,0,q, Jk,l,m,1,q andJk,l,m,2,q are respectively given by the formulae

Jk,l,m,0,q =
8(−1)q2(−k+l+q−1)/2

(q+ 2)(m+ 1)
[1 − (−1)m+1]Γ

(

k+m+ 3
2

)

Γ

(

l +m+ q+ 4
2

)

,

Jk,l,m,1,q =
4(−1)q+12(−k+l+q)/2

(q+ 3)(m+ 2)
[1 − (−1)m]Γ

(

k+m+ 4
2

)

Γ

(

l +m+ q+ 4
2

)

,

Jk,l,m,2,q =
4(−1)q2(−k+l+q−1)/2

(q+ 4)(p+ 2)
[1 − (−1)m+1]Γ

(

k+m+ 5
2

)

Γ

(

l +m+ q+ 4
2

) (

q+ 1
m+ 3

+
1

m+ 1

)

.

Then,µ2 is evaluated as

µ2 =
1− e2

4

[

J0,0,0,0,2 + a2

(

J4,0,0,0,2 + J0,0,2,0,2 +
1
16

J0,4,0,0,2

+
1
2

J2,2,0,0,2 − 5J2,0,0,0,2 −
5
4

J0,2,0,0,2 +
15
4

J0,0,0,0,2

)]

=

√
2π(1− e2)

(

1+
3
16

a2 +O(a2
2)

)

. (3.53)
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In the same way,µ4 is evaluated as

µ4 = 4
√

2π

[

1− e2

4

(

9
2
+ e2

)

+ a2

{

3(1− e2)
128

(69+ 10e2) +
1
2

(1+ e)

}

+O(a2
2)

]

. (3.54)

Substituting Eqs. (3.53) and (3.54) to Eq. (3.43) and neglecting the secondorder terms ofa2, we find
the second Sonine coefficient

a2 =
16(1− e)(1− 2e2)

81− 17e+ 30e2(1− e)
. (3.55)
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Chapter 4

Inhomogeneous granular gases
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4.1 Hydrodynamic equations of granular gases

Although our system of granular gases is discretized into the individual particles, the system includes a
number of granular particles and the macroscopic aspects of the granulargases can be described by the
continuum description. We adopt the local averages of the collision invariant ψ(v) for the continuum
variables, since these averages give the hydrodynamic fields, i.e., thedensity field, thevelocity field
and thegranular temperature, respectively. From the definition of the velocity distribution function
Eq. (2.2), the density field is defined as

n(r , t) =
∫

f (r , v, t)dv , (4.1)

and any macroscopic fieldsA(r , t) are given by the average of the function ofv as

A(r , t) =

∫

ψ(v) f (r , v, t)dv
∫

f (r , v, t)dv
=

1
n(r , t)

∫

ψ(v) f (r , v, t)dv . (4.2)

Then, the velocity field is defined as

u(r , t) =
1

n(r , t)

∫

v f (r , v, t)dv , (4.3)

and the granular temperature is defined as

d
2

T(r , t) =
1

n(r , t)

∫

1
2

mV2 f (r , v, t)dv (4.4)

in d-dimension, where the local velocity is introduced asV ≡ v − u(r , t).

4.1.1 Continuum equation

Continuum equationis the result of the mass conservation. Let us multiply 1 (orm) to the Boltzmann
equation Eq. (2.31) and integratev. Then, the right-hand-side is equal to zero because of Eq. (2.44)
and the left-hand-side is given by

∫

dv
∂

∂t
f +

∫

dvvi∇i f =
∂

∂t

∫

dv f + ∇i

∫

dvvi f

=
∂n
∂t
+ ∇i(nui) , (4.5)

where we used the summation rule for the twice appearance of the indices. Wenotice the time deriva-
tive ∂/∂t and the integral ofv can be exchanged and the gradient∇i does not act onvi . Thus, the
continuum equation is derived as

∂n
∂t
+ ∇i(nui) = 0 . (4.6)

4.1.2 Equation of motion

Equation of motionis the result of the conservation of momentum. Let us multiplymvi to the Boltz-
mann equation and integratev. Then, the right-hand-side is equal to zero because of Eq. (2.45) and
the left-hand-side is given by

∫

dvmvi
∂

∂t
f +

∫

dvmviv j∇ j f = m
∂

∂t

∫

dvvi f −m
∫

dv
∂vi

∂t
f + ∇ j

∫

dvmviv j f . (4.7)
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The first term in the right-hand-side of Eq. (4.7) gives

m
∂

∂t

∫

dvvi f = m
∂

∂t
(nui)

= mn
∂ui

∂t
+mui

∂n
∂t

= mn
∂ui

∂t
−mui∇ j(nuj) , (4.8)

where we used Eqs. (4.3) and (4.6). The second term in the right-hand-side of Eq. (4.7) gives

m
∫

dv
∂vi

∂t
f =

∫

dvFi f = 0 , (4.9)

becuase the external body force is zeroFi = 0. The last term in the right-hand-side of Eq. (4.7) can
be written as

∇ j

∫

dvmviv j f = ∇ j

∫

dvm(Vi + ui)(V j + u j) f

= ∇ j

∫

dvmViV j f + ∇ j(mnuiu j) +m∇ ju j

∫

dvVi f +m∇ jui

∫

dvV j f

= ∇ jPi j +mnuj∇ jui +mui∇ j(nuj) , (4.10)

where the average of the local velocity is zero
∫

dvVi f =
∫

dvvi f − ui

∫

dv f = nui − nui = 0 , (4.11)

and we defined thestress tensor

Pi j ≡
∫

dvmViV j f . (4.12)

From Eqs. (4.8) and (4.10), we obtain the equation of motion

∂ui

∂t
+ u j∇ jui = −

1
nm
∇ jPi j , (4.13)

where the termmui∇ j(nuj) was canceled and we dividednm. The stress tensorPi j can be also ex-
pressed as

Pi j =
1
3
δi j

∫

dvmV2 f +
∫

dvm

(

ViV j −
1
3
δi j V

2
)

f

≡ nTδi j +

∫

dvDi j f , (4.14)

where we defined the deviatric part of the stress tensor

Di j = m

(

ViV j −
1
3
δi j V

2
)

, (4.15)

andp ≡ nT is the hydrostatic pressure.

4.1.3 Equation of energy

Equation of energydescribes the time development of the granular temperature. In the case of molec-
ular gases, the total energy of the system is conserved, however, in thecase of the granular gases, the
kinetic energy decreases by inelastic collisions and the total energy is not conserved. Let us multiply
mV2/2 to the Boltzmann equation and integratev so as we can derive the equation of energy.

21



Right-hand-side

The right-hand-side is given by

(r.h.s.) =
∫

dv
m
2

V2I ( f , f ) ≡ −3
2

nTζ(r , t) , (4.16)

where we defined thecooling rateas

ζ(r , t) ≡ − m
3nT

∫

dvV2I ( f , f ) . (4.17)

Because ofV2
= v2 − 2viui + u2, we find

∫

dvV2I ( f , f ) =
∫

dvv2I ( f , f ) − 2ui

∫

dvvi I ( f , f ) + u2
∫

dvI ( f , f )

=

∫

dvv2I ( f , f ) , (4.18)

where we used Eqs. (2.42), (2.44) and (2.45). Then, the cooling rate isrewritten as

ζ(r , t) = − m
3nT

∫

dvv2I ( f , f )

= (1− e2)
mσ2

12nT

∫

dv1

∫

dv2

∫

g·e<0
dΩ|g · e|(g · e)2 f1 f2

= (1− e2)
πmσ2

24nT

∫

dv1

∫

dv2g3 f1 f2 , (4.19)

where we used Eqs. (2.42) and (2.46), and the integral ofΩ was calculated as follows. The inner
product is given byg · e= −gcosθ < 0 (0≤ θ ≤ π/2). Then, the integral overΩ becomes

∫

g·e<0
dΩ|g · e|(g · e)2

= g3
∫ 2π

0
dϕ

∫ π/2

0
dθ sinθ cos3 θ

= 2πg3
∫ 0

π/2
cos3 θ(− sinθdθ)

= 2πg3
∫ 1

0
χ3dχ

=
π

2
g3 , (4.20)

where we definedχ = cosθ which givesdχ = − sinθdθ.

Left-hand-side

The left-hand-side is given by

(l.h.s.) =
∫

dv
m
2

V2 ∂

∂t
f +

∫

dv
m
2

V2vi∇i f . (4.21)

The first term of Eq. (4.21) is written as
∫

dv
m
2

V2 ∂

∂t
f =

∂

∂t

(∫

dv
m
2

V2 f

)

−
∫

dv
m
2

(

∂

∂t
V2

)

f

=
∂

∂t

(

3
2

nT

)

−
∫

dvmVi
∂Vi

∂t
f

=
∂

∂t

(

3
2

nT

)

, (4.22)
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where the second term was vanished as
∫

dvmVi
∂Vi

∂t
f =

∫

dvmVi

{

∂

∂t
(vi − ui)

}

f =
∫

dvViFi f −m
∂ui

∂t

∫

dvVi f = 0 , (4.23)

because ofFi = 0 and Eq. (4.11). The second term of Eq. (4.21) is written as
∫

dv
m
2

V2vi∇i f =

∫

dv
m
2

V2Vi∇i f +
∫

dv
m
2

V2ui∇i f

= ∇i

(∫

dv
m
2

V2Vi f

)

−
∫

dv
m
2

(

∇iV
2Vi

)

f +
∫

dv
m
2

V2ui∇i f

= ∇iqi −
∫

dv
m
2

(

∇iV
2Vi

)

f +
∫

dv
m
2

V2ui∇i f , (4.24)

where we defined theheat fluxas

qi ≡
∫

dv
m
2

V2Vi f . (4.25)

If we notice the relation

∇iV
2Vi = ∇i(V

2
xVi + V2

y Vi + V2
z Vi)

= 2VxVi∇iVx + 2VyVi∇iVy + 2VzVi∇iVz+ V2
x∇iVi + V2

y∇iVi + V2
z∇iVi

= 2ViV j∇iV j + V2∇iVi , (4.26)

Eq. (4.24) is written as

∇iqi −
∫

dvmViV j(∇iV j) f −
∫

dv
m
2

V2(∇iVi) f +
∫

dv
m
2

V2ui∇i f

= ∇iqi + (∇iu j)
∫

dvmViV j f + (∇iui)
∫

dv
m
2

V2 f +
∫

dv
m
2

V2ui∇i f

= ∇iqi + Pi j∇iu j +
3
2

nT∇iui +

∫

dv
m
2

V2ui∇i f , (4.27)

where we notice the relations∇iV j = −∇iu j and∇iVi = −∇iui , and used the definition of the stress
tensor Eq. (4.12). The last term of Eq. (4.27) is rewritten as

∫

dv
m
2

V2ui∇i f = ui∇i

(∫

dv
m
2

V2 f

)

− ui

∫

dv
m
2

(∇iV
2) f

= ui∇i

(

3
2

nT

)

− m
2

ui

∫

dv(∇iV
2) f . (4.28)

If we notice the relation

∇iV
2
= ∇i(V

2
x + V2

y + V2
z )

= 2Vx∇iVx + 2Vy∇iVy + 2Vz∇iVz

= 2V j∇iV j , (4.29)

the second term of Eq. (4.28) is vanihsed as

m
2

ui

∫

dv(∇iV
2) f = mui

∫

dvV j(∇iV j) f = −mui(∇iu j)
∫

dvV j f = 0 , (4.30)

where we used∇iV j = −∇iu j and Eq. (4.11). From Eqs. (4.22), (4.27) and (4.30), we find that the
left-hand-side Eq. (4.21) is given by

(l.h.s.) =
∂

∂t

(

3
2

nT

)

+ ∇iqi + Pi j∇iu j +
3
2

nT∇iui + ui∇i

(

3
2

nT

)

=
∂

∂t

(

3
2

nT

)

+ ∇iqi + Pi j∇iu j + ∇i

(

3
2

nTui

)

. (4.31)
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If we notice

∂

∂t

(

3
2

nT

)

=
3
2

n
∂T
∂t
+

3
2

T
∂n
∂t

=
3
2

n
∂T
∂t
− 3

2
T∇i(nui) , (4.32)

∇i

(

3
2

nTui

)

=
3
2

nui∇iT +
3
2

T∇i(nui) , (4.33)

where we used the continuum equation Eq. (4.6), Eq. (4.31) is rewritten as

(l.h.s.) =
3
2

n
∂T
∂t
+

3
2

nui∇iT + ∇iqi + Pi j∇iu j . (4.34)

From Eqs. (4.16) and (4.34), the equation of energy is obtained as

∂T
∂t
+ ui∇iT = −

2
3n

(

∇iqi + Pi j∇iu j

)

− ζT . (4.35)

It should be noticed, if we use Eq. (4.11), the heat fluxqi can be also written as

qi =

∫

dvSi f , (4.36)

where we defined

Si ≡
(

m
2

V2 − 5
2

T

)

Vi , (4.37)

and the second term ofSi is vanished because of (5T/2)
∫

vVi f = 0.

4.1.4 Phenomenological transport coefficients

In linear approximation with respect to the gradient∇, the stress tensor and the heat flux ind-
dimension are given in the phenomenological expressions as

Pi j = pδi j − η
(

∇iu j + ∇ jui −
2
d
δi j∇kuk

)

, (4.38)

qi = −κ∇iT − µ∇in , (4.39)

respectively, wherep, η, κ, andµ are thehydrostatic pressure, theshear viscosity, the thermal con-
ductivity, and the coefficient of the density gradient, respectively. The coefficient µ does not have
an analogue in the usual hydrodynamics, becuase the heat flux−µ∇in is the results of the inelastic
collisions of the granular particles, where the collision frequency in denseregion is higher than that in
dilute region and the heat flows from the dilute region to the dense region. Byusing the expressions
Eqs. (4.38) and (4.39), the gradient of the stress tensor is given by

∇ jPi j = δi j∇ j p− η
(

∇ j∇iu j + ∇ j∇ jui −
2
3
δi j∇ j∇kuk

)

= ∇i p− η
(

∇i∇ ju j + ∇2ui −
2
3
∇i∇kuk

)

= ∇i p− η
{

∇2ui +
1
3
∇i(∇ ju j)

}

, (4.40)

where we introduced the Laplacian∇2, and the gradient of the heat flux is given by

∇iqi = −κ∇2T − µ∇2n , (4.41)
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and the second term in the right-hand-side of Eq. (4.35) is given by

Pi j∇iu j = pδi j∇iu j − η
{

(∇iu j)(∇iu j) + (∇ jui)(∇iu j) −
2
3
δi j (∇kuk)(∇iu j)

}

= p∇iui − η
{

(∇iu j)(∇iu j) + (∇ jui)(∇iu j) −
2
3

(∇iui)
2
}

. (4.42)

4.2 Chapman-Enskog theory

We develop the Boltzmann theory explained in the previous sections to slightly non-uniform gases.
The aim of the Chapman-Enskog theory is to construct a perturbative expansion of the velocity distri-
bution function and gives the microscopic expressions of the phenomenological transport coefficients
η, κ andµ. The first step of the Chapman-Enskog theory is to assume the velocity distribution f (r , v, t)
develops in the long time scale and spatially changes in the long wave length, whichmeans the time
development and the spatial changes of the velocity distribution function happen through the hydro-
dynamic fieldsn(r , t), u(r , t) andT(r , t). Therefore, the time derivative and the gradient off (r , v, t)
are given by

∂ f
∂t
=

∂ f
∂n

∂n
∂t
+
∂ f
∂ui

∂ui

∂t
+
∂ f
∂T

∂T
∂t

, (4.43)

∇ f =
∂ f
∂n
∇n+

∂ f
∂ui
∇ui +

∂ f
∂T
∇T , (4.44)

respectively. Such dependence of the velocity distribution function on thehydrodynamic fields can
be justified if the spatial gradient of non-uniformity is small enough. Then, we introduce the small
parameterλ as the measure of the gradient

λ ∼ O(k) ≪ 1 , (4.45)

wherek is the wave number which is the same order with the gradient∇ = ik. Thus, we scale the
gradient as

∇ −→ λ∇ . (4.46)

Generally, the dispersion relation gives the frequency as a function of the wave numberω(k), and if
k≪ 1, we can expandω(k) into the series ofk as

ω(k) = ω0 + ω1k+ ω2k2
+ . . .

∼ ω0 + λω1 + λ
2ω2 + . . . (4.47)

Therefore, from the relation∂/∂t = iω, the time derivative can be also expanded as

∂

∂t
=
∂(0)

∂t
+ λ

∂(1)

∂t
+ λ2∂

(2)

∂t
+ . . . . (4.48)

4.2.1 Expansion of the Boltzmann equation

The velocity distribution function is also expanded into the series of the gradient

f = f (0)
+ λ f (1)

+ λ2 f (2)
+ . . . , (4.49)

and the Boltzmann equation Eq. (2.31) is expanded as
(

∂(0)

∂t
+ λ

∂(1)

∂t
+ · · · + λv · ∇

)

(

f (0)
+ λ f (1)

+ . . .
)

= I ( f (0)
+ λ f (1)

+ . . . , f (0)
+ λ f (1)

+ . . . ) . (4.50)
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From Eq. (2.34), the zero-th and the first orders ofλ are respectively given by

∂(0)

∂t
f (0)

= I ( f (0), f (0)) , (4.51)

∂(0)

∂t
f (1)
+

(

∂(1)

∂t
+ v · ∇

)

f (0)
= I ( f (0), f (1)) + I ( f (1), f (0)) . (4.52)

Corresponding to the expansion Eq. (4.49), the cooling rate Eq. (4.19) isalso expanded into the series
of λ as

ζ = ζ(0)
+ λζ(1)

+ λ2ζ(2)
+ . . . , (4.53)

where the zero-th order term is given by

ζ(0)
= (1− e2)

πmσ2

24nT

∫

dv1

∫

dv2g3 f (0)
1 f (0)

2 , (4.54)

and the first order term is given by

ζ(1)
= (1− e2)

πmσ2

24nT

(∫

dv1

∫

dv2g3 f (0)
1 f (1)

2 +

∫

dv1

∫

dv2g3 f (1)
1 f (0)

2

)

= (1− e2)
πmσ2

12nT

∫

dv1

∫

dv2g3 f (0)
1 f (1)

2 . (4.55)

We notice that we exchanged the indices 1 and 2 in the second term of the first line of Eq. (4.55),
which does not change the absolute valueg.

4.2.2 Expansion of the hydrodynamic equations

Because we scale the gradient asλ∇, the hydrodynamic equations with the phenomenological trans-
port coefficients are also scaled as

∂n
∂t
= −λ∇i(nui) , (4.56)

∂ui

∂t
= −λ

(

u j∇ jui +
1

nm
∇i p

)

+ λ2 η

nm

{

∇2ui +
1
3
∇i(∇ ju j)

}

, (4.57)

∂T
∂t

= −ζ(0)T − λ
(

ui∇iT +
2
3n

p∇iui + ζ
(1)T

)

+ λ2Q+O(λ3) , (4.58)

where we used Eqs.(4.40), (4.41) and (4.42), and defined

Q ≡ 2
3n

(κ∇2T + µ∇2n) +
2η
3n

{

(∇iu j)(∇iu j) + (∇ jui)(∇iu j) −
2
3

(∇iui)
2
}

− ζ(2)T . (4.59)

Becuase of the expansion of the time derivative Eq. (4.48), the zero-th order hydrodynamic equations
is given by

∂(0)

∂t
n = 0 , (4.60)

∂(0)

∂t
ui = 0 , (4.61)

∂(0)

∂t
T = −ζ(0)T , (4.62)
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and the first order hydrodynamic equations is given by

∂(1)

∂t
n = −∇i(nui) , (4.63)

∂(1)

∂t
ui = −u j∇ jui −

1
nm
∇i p , (4.64)

∂(1)

∂t
T = −ui∇iT −

2
3

T∇iui − ζ(1)T , (4.65)

where we used the equation of statep = nT in Eq. (4.65). We note that the zero-th order hydro-
dynamic equations Eqs. (4.60)-(4.62) represent thehomogeneous cooling stateand the first order
hydrodynamic equations Eqs. (4.63)-(4.65) are theEuler equations. We also give another expression
of Eqs. (4.63)-(4.65):

D(1)

Dt
n = −n∇iui , (4.66)

D(1)

Dt
ui = − 1

nm
∇i p , (4.67)

D(1)

Dt
T = −2

3
T∇iui − ζ(1)T , (4.68)

where we introduced thematerial derivative

D(1)

Dt
≡ ∂(1)

∂t
+ ui∇i . (4.69)

4.2.3 Zero-th order equation

The zero-th order Boltzmann equation Eq. (4.51)

∂(0)

∂t
f (0)
= I ( f (0), f (0)) (4.70)

is the same form with the Boltzmann equation in the homogeneous cooling state Eq. (3.2) and f (0)

corresponds to the distribution function of the homogeneous cooling. Thus, we also scalef (0) by the
thermal velocity

f (0)
=

n
vT

f̃ (c) , (4.71)

where we note thatc ≡ V/vT and bothn andvT depend on the space and time, i.e.,n(r , t) andvT(r , t),
which is different from the previous definition Eq. (3.3). Since the distribution function inthe homo-
geneous state can be written by the Sonine polynomials expansion,ζ(0) can be calculated. From Eq.
(4.17),ζ(0) is given by

ζ(0)
= − m

3nT

∫

dVV2I ( f (0), f (0)) , (4.72)

where we changed the integration variable fromv to V, sincedv = dV and both variables cover the
range−∞ < v,V < ∞. From Eq. (3.24), Eq. (4.72) is scaled as

ζ(0)
= − m

3nT
v3

Tv2
T
σ2n2

v2
T

∫

dcc2Ĩ ( f̃ , f̃ )

= −mσ2n
3T

v3
T

∫

dcc2Ĩ ( f̃ , f̃ )

= −2
3
σ2n

√

2T
m

∫

dcc2Ĩ ( f̃ , f̃ )

=
2
3
σ2n

√

2T
m
µ2 , (4.73)
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where we usedvT =
√

2T/m andµ2 is given by Eq. (3.53). Therefore,ζ(0) ∝ nT1/2 and we find the
derivatives

∂ζ(0)

∂n
=
ζ(0)

n
,

∂ζ(0)

∂T
=
ζ(0)

2T
. (4.74)

4.2.4 First order equation

The first order Boltzmann equation is given by Eq. (4.52)

∂(0)

∂t
f (1)
+

(

∂(1)

∂t
+ v · ∇

)

f (0)
= I ( f (0), f (1)) + I ( f (1), f (0)) . (4.75)

Since the zero-th order distribution functionf (0) is known, the second term in the left-hand-side
(

∂(1)

∂t
+ v · ∇

)

f (0)
=

(

D(1)

Dt
+ V · ∇

)

f (0) (4.76)

can be calculated. Because of Eqs. (4.43) and (4.44), Eq. (4.76) is written as
(

∂(1)

∂t
+ v · ∇

)

f (0)
=

(

D(1)n
Dt
+ V j∇ jn

)

∂ f (0)

∂n
+

(

D(1)ui

Dt
+ V j∇ jui

)

∂ f (0)

∂ui
+

(

D(1)T
Dt
+ V j∇ jT

)

∂ f (0)

∂T

= (V j∇ jn− n∇iui)
∂ f (0)

∂n
+

(

V j∇ jui −
1

nm
∇i p

)

∂ f (0)

∂ui

+

(

V j∇ jT −
2
3

T∇iui − ζ(1)T

)

∂ f (0)

∂T
, (4.77)

where we used Eqs. (4.66), (4.67) and (4.68). Then, the derivatives∂ f (0)/∂n, ∂ f (0)/∂ui and∂ f (0)/∂T
are calculated as

∂ f (0)

∂n
=

1

v3
T

f̃ (0)(c)

=
1
n

f (0) , (4.78)

∂ f (0)

∂ui
=

∂V
∂ui

∂

∂V
f (0)

= −Vi

V
∂ f (0)

∂V
, (4.79)

∂ f (0)

∂T
=

∂vT

∂T
∂

∂vT















n

v3
T

f̃ (0)(c)















=
1

mvT















−3n

v4
T

f̃ (0)(c) +
n

v3
T

∂c
∂vT

∂

∂c
f̃ (0)(c)















= − n

mv5
T

(

3+ c
∂

∂c

)

f̃ (0)(c)

= − 1

mv2
T

(

3+ V
∂

∂V

)

f (0)

= − 1
2T

(

3+ V
∂

∂V

)

f (0) , (4.80)

respectively, where we used the relations

∂V
∂ui
= −Vi

V
,

∂vT

∂T
=

1
mvT

,
∂c
∂vT
= − c

vT
, c

∂

∂c
= V

∂

∂V
. (4.81)
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Therefore, Eq. (4.77) is given by
(

∂(1)

∂t
+ v · ∇

)

f (0)
=

(

V j
1
n
∇ jn− ∇iui

)

f (0) −
(

V j∇ jui −
1

nm
∇i p

)

Vi

V
∂ f (0)

∂V

−
(

Vi

2
1
T
∇iT −

1
3
∇iui −

1
2
ζ(1)

) (

3+ V
∂

∂V

)

f (0)

= (Vi∇i logn− ∇iui) f (0) −
(

V j∇ jui −
1

nm
∇i p

)

Vi

V
∂ f (0)

∂V

−
(

Vi

2
∇i logT − 1

3
∇iui −

1
2
ζ(1)

) (

3+ V
∂

∂V

)

f (0) . (4.82)

From the equation of statep = nT, we find

1
nm
∇i p =

1
nm
∇i(nT)

=
1

nm
T∇in+

1
m
∇iT

=
T
m

(∇i logn+ ∇i logT) , (4.83)

and Eq. (4.82) is written as
(

∂(1)

∂t
+ v · ∇

)

f (0)
=

{

T
m

Vi

V
∂ f (0)

∂V
− Vi

2

(

3+ V
∂

∂V

)

f (0)
}

∇i logT +

(

T
m

Vi

V
∂ f (0)

∂V
+ Vi f (0)

)

∇i logn

+

(

1
3

V
∂ f (0)

∂V
∇iui −

ViV j

V
∂ f (0)

∂V
∇ jui

)

+
1
2
ζ(1)

(

3+ V
∂

∂V

)

f (0)

= −Vi

{

T
m

(

mV2

2T
− 1

)

1
V

∂

∂V
+

3
2

}

f (0)∇i logT + Vi

(

T
m

1
V

∂

∂V
+ 1

)

f (0)∇i logn

−
(

ViV j −
1
3
δi j V

2
)

1
V
∂ f (0)

∂V
∇ jui +

1
2
ζ(1)

(

3+ V
∂

∂V

)

f (0) . (4.84)

If we define the prefactors of∇i logT, ∇i logn and∇ jui as

Ai ≡ Vi

{

T
m

(

mV2

2T
− 1

)

1
V

∂

∂V
+

3
2

}

f (0) , (4.85)

Bi ≡ −Vi

(

T
m

1
V

∂

∂V
+ 1

)

f (0) , (4.86)

Ci j ≡
(

ViV j −
1
3
δi j V

2
)

1
V
∂ f (0)

∂V
, (4.87)

respectively, the first order Boltzmann equation Eq. (4.52) is given by

∂(0)

∂t
f (1)
+ J

(

f (0), f (1)
)

+
1
2
ζ(1)

(

3+ V
∂

∂V

)

f (0)
= Ai∇i logT + Bi∇i logn+Ci j∇ jui , (4.88)

where we defined
J
(

f (0), f (1)
)

≡ −I
(

f (0), f (1)
)

− I
(

f (1), f (0)
)

. (4.89)

From Eqs. (4.85)-(4.87), we note bothAi andBi are proportional toVi

Ai ∝ Vi , Bi ∝ Vi , (4.90)

andCi j is traceless

Cii =

(

ViVi −
1
3

3V2
)

1
V
∂ f (0)

∂V
=

(

V2 − V2
) 1

V
∂ f (0)

∂V
= 0 . (4.91)
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4.2.5 Correction of the distribution function

The deviation of the distribution functionf (1) can be obtained by solving Eq. (4.88). Except for the
term related toζ(0), Eq. (4.88) is proportional tof (1). On the other hand, the right-hand-side contains
the terms proportional to logT, logn and∇ jui , respectively. Thus, we can assumef (1) can be written
in the form

f (1)
= αi∇i logT + βi∇i logn+ γi j∇ jui , (4.92)

where the coefficientsαi , βi andγi j are the functions ofVi and the hydrodynamic fields. If we adopt
Eq. (4.92) forf (1), ζ(0) is vanished as follows. Substituting Eq. (4.92) to Eq. (4.88), we compare the
prefactors of logT, logn and∇ jui in both sides. Then, we findαi , βi andγi j are proportional toAi , Bi

andCi j , respectively, and from Eqs. (4.90) and (4.91), bothαi andβi are also proportional toVi

αi ∝ Vi , βi ∝ Vi , (4.93)

andγi j also satisfies

γi j ∝ ViV j −
1
3
δi j V

2 , (4.94)

and tracelessγii = 0. From Eq. (4.55)

ζ(1)
= (1− e2)

πmσ2

12nT

∫

dg
∫

dV2g3 f (0)(V2 + g) f (1)(V2) , (4.95)

where we changed the integration variables as (v1, v2)→ (g,V2) sincedv1dv2 = dgdV2. Because the
zero-th order distribution function is homogeneous,f (0)(V2 + g) is symmetric aboutV2 = −g and we
can always find the counterpartf (0)(V2 − g) by the integral

∫

dg. From Eqs. (4.93) and Eq. (4.94),
f (1)(V2) is always odd function ofV2. Of course, the absolute valueg3 is even function. Therefore,
the integral in Eq. (4.95) is vanished andζ(1)

= 0.
Becuase of Eqs. (4.60)-(4.62), the time derivatives ofαi , βi andγi j in the zero-th order are given

by

∂(0)αi

∂t
=

∂αi

∂T
∂(0)T
∂t
= −ζ(0)T

∂αi

∂T
, (4.96)

∂(0)βi

∂t
=

∂βi

∂T
∂(0)T
∂t
= −ζ(0)T

∂βi

∂T
, (4.97)

∂(0)γi j

∂t
=

∂γi j

∂T
∂(0)T
∂t
= −ζ(0)T

∂γi j

∂T
, (4.98)

respectively, and we also find

∂(0)

∂t
∇i logT = ∇i

(

1
T
∂(0)T
∂t

)

= −∇iζ
(0)

= −∂ζ
(0)

∂n
∇in−

∂ζ(0)

∂T
∇iT

= −ζ(0)
(

∇i logn+
1
2
∇i logT

)

, (4.99)

where we used Eq. (4.74). Then, we find the time derivative off (1) as

∂(0) f (1)

∂t
=

(

∂αi

∂t

)

∇i logT + αi

(

∂

∂t
∇i logT

)

+

(

∂βi

∂t

)

∇i logn+

(

∂γi j

∂t

)

∇ jui

= −
(

ζ(0)T
∂αi

∂T
+

1
2
ζ(0)αi

)

∇i logT −
(

ζ(0)T
∂βi

∂T
+ ζ(0)αi

)

∇i logn

−ζ(0)T
∂γi j

∂T
∇ jui . (4.100)
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If we substitute Eq. (4.100) to the first order Boltzmann equation Eq. (4.88)and compare the prefac-
tors of logT, logn and∇ jui in both sides, we find

−ζ(0)
(

T
∂

∂T
+

1
2

)

αi + J
(

f (0), αi

)

= Ai , (4.101)

−ζ(0)
(

T
∂βi

∂T
+ αi

)

+ J
(

f (0), βi

)

= Bi , (4.102)

−ζ(0)T
∂γi j

∂T
+ J

(

f (0), γi j

)

= Ci j . (4.103)

The coefficientsAi , Bi andCi j are calculated by Eqs. (4.85)-(4.87), and the coefficientsαi , βi and
γi j can be determined from Eqs. (4.101)-(4.103). Then, we can obtain the first correction to the
distribution functionf (1) from Eq. (4.92).

4.3 Transport coefficients

Comparing the definition of the stress tensor Eq. (4.14) with the phenomenological expression of the
stress tensor Eq. (4.38), we findp = nT and

∫

dvDi j f = −η
(

∇iu j + ∇ jui −
2
3
δi j∇kuk

)

. (4.104)

Substitutingf = f (0)
+ λ f (1) to Eq. (4.104), we find the zero-th order gradient gives

∫

dvDi j f (0)
= 0 . (4.105)

Substitutingf (1)
= αi∇i logT + βi∇i logn+ γi j∇ jui , we find the first order gradient gives

∫

dvDi jαk =

∫

dvDi jβk = 0 , (4.106)

because the right-hand-side of Eq. (4.104) does not include the corresponding terms of∇iT and∇in,
and

∫

dvDi jγkl∇luk = −η
(

∇iu j + ∇ jui −
2
3
δi j∇kuk

)

= −η
(

δliδk j + δl jδki −
2
3
δi jδlk

)

∇luk . (4.107)

Therefore, we find
∫

dvDi jγkl = −η
(

δliδk j + δl jδki −
2
3
δi jδlk

)

. (4.108)

If we usek = j andl = i in Eq. (4.108),

∫

dvDi jγ ji = −η
(

δiiδ j j + δi jδ ji −
2
3
δi jδi j

)

= −10η , (4.109)

where we notice the relationsδii = δ j j = 3 andδi jδ ji = δi jδi j = 3. Then, we find the formal expression
of the shear viscosity as

η = − 1
10

∫

dvDi jγ ji . (4.110)
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In the same way, we compare the definition of the heat flux Eq. (4.36) with the phenomenological
expression of the heat flux Eq. (4.39) and find

∫

dvSi f = −κ∇iT − µ∇in . (4.111)

Substitutingf = f (0)
+ λ f (1) to Eq. (4.111), we find the zero-th order gradient gives

∫

dvSi f (0)
= 0 . (4.112)

Substitutingf (1)
= αi∇i logT + βi∇i logn+ γi j∇ jui , we find the first order gradient gives

∫

dvSiγkl = 0 , (4.113)

because the right-hand-side of Eq. (4.111) does not include the corresponding term of∇luk, and
∫

dvSiα j∇ j logT = −κ∇iT , (4.114)
∫

dvSiβ j∇ j logn = −µ∇in . (4.115)

Eqs. (4.114) and (4.115) reduce to

1
T

∫

dvSiα j∇ jT = −κ∇iT , (4.116)

1
n

∫

dvSiβ j∇ jn = −µ∇in , (4.117)

or

1
T

∫

dvSiα j = −κδi j , (4.118)

1
n

∫

dvSiβ j = −µδi j . (4.119)

Then, we usei = j in Eqs. (4.118) and (4.119) and find

1
T

∫

dvSiαi = −3κ , (4.120)

1
n

∫

dvSiβi = −3µ , (4.121)

where we noticeδii = 3. Therefore, the formal expressions of the thermal conductivity and the
coefficient of the density gradient are respectively given by

κ = − 1
3T

∫

dvSiαi , (4.122)

µ = − 1
3n

∫

dvSiβi . (4.123)

Now, we have the formal expressions ofη, κ andµ which are the functions ofγ ji , αi andβi ,
respectively. The coefficientsαi , βi andγi j can be obtained by solving Eqs. (4.101)-(4.103), where
the coefficientsAi , Bi andCi j defined as Eqs. (4.85)-(4.87) can be calculated by using the zero-th
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order distribution functionf (0). To evaluate the transport coefficients, we truncatef (0) at the second
Sonine polynomials

f (0) ≃ n

vT(t)3
φ(c)

{

1+ a2S2(c2)
}

. (4.124)

Then, we will see the kinetic integrals Eq. (3.52) in Eqs. (4.101)-(4.103) and η, κ andµ can be
written by the combination of the kinetic integrals. The evaluations of the transport coefficients are
straightforward, thus we refer the details in the reference and only showthe final results

η =
15

2(1+ e)(13− e)σ2

√

mT
π

(

1+
3(4− 3e)
8(13− e)

a2

)

, (4.125)

κ =
75

2(1+ e)(9+ 7e)σ2

√

T
πm

(

1+
797+ 211e
32(9+ 7e)

a2

)

, (4.126)

µ =
750(1− e)

(1+ e)(9+ 7e)(19− 3e)nσ2

√

T3

πm
(1+ h(e)a2) , (4.127)

where we defined

h(e) ≡ 50201− 30971e− 7253e2
+ 4407e3

80(1− e)(19− 3e)(9+ 7e)
. (4.128)
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Chapter 5

Collisional transfer
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