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Chapter 1

Introduction



1.1 Granular gases and kinetic theory

Granular gases and flows of granular particles have been studieduset) the importance in technol-
ogy, geophysics, astrophysics, and science. The peculiar prapeftiee granular gases are mainly
caused by the energy dissipation during the collisions of particles. Duedistipative collisions, the
equilibrium state does not exist and the steady state or steady flow of@rpatticles can be retained
only if the external force fields exist. In this sense, the granular gasestensicallynon-equilibrium

and quite diferent from molecular gases and usual fluids. To describe the maprogcoperties of

the granular gasegijnetic theoryof granular gases has been developed by many authors in the last
decades [1, 2]. We know the kinetic theory of molecular gases predictsatisport cofficients start-

ing from theBoltzmann equatiarChapman-Enskog methd8onine polynomials expansiandGrad
expansiorare the successful tools to evaluate the distribution functions and thedransgficients,

and we find the kinetic theory bridges the gap between the microscopic psiacitethe macroscopic
properties of molecular gases [3,4]. Although the application of kineticryhimogranular gases in-
volves several problems, for example, the lack of scale separationniipednge correlations, etc [5],
thegranular hydrodynamic equatiomerived by the kinetic theory of granular gases well describe the
dynamics of granular flows.

1.2 Basic assumption

To apply kinetic theory to granular gases, we need basic assumption aswallecular gases. Thatis
binary collisionof granular particles, where we assume the statistical properties oflgrgases are
mainly determined by the binary collisions and collisions accompanied by mordhtemparticles
are too rare to take into account. This assumption is related to the densitynoflagrgases, the
duration time of particle collisions and rigidity of granular particles. To satisfylthsic assumption,
the densityy has to be low enough. It is known that, abovejimaming density, the mean numbebr
of contacts per particle, i.e., the coordination nunbéumps to the isostatic valug = 2d from zero
in d-dimension. Clearlyp should be much lower thap; and there may be a limit of the basic
assumption a#m, thus, our density should b < ¢m < ¢3. The duration time of each collision is
also important, because the long duration time of collision causes to invite ampattietes to the
multibody collision. The duration time is related to the rigidity of granular particldse Harder the
granular particles are, the shorter the duration time is. Thus, our grgrartesles have to bslightly
inelasticor inelastic hardspheréo avoid the multibody collisions.

1.3 Restitution codficient

Inelastic collision of granular particles are characterized byrdisétution cogficient e In general,
the restitution coicient depends on the incident velocities of granular particles and nféegte
influence the value og, for example, the surface tension, the asperities, the fracture, the shap
granular particles, etc. Because of theffeas, the restitution céigcient can be changed in each
collision, however, we restrict our study to the simplest casedhatconst in 0< e < 1. We also
assume the granular particles are spherical and identical with the samendassraeter. The kinetic
theory with the velocity dependent restitution ffic@ent has been found in Ref. [1]. We also notice
that in some cases, the restitution imgent can be negative< 0 [18,21] and there is a critical point
e. = 0[18]. This critical point could violate the Boltzmann equation and the kinetizrihef granular
gases, because we will see the prefact@? In the first term of the collision integral (see Eq. (2.30)
in Chap. 2) and 2€? diverges at the critical poirg; = 0.
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Figure 1.1: Development of spatial inhomogeneity in two-dimensional grashéar flow.

1.4 Instabilities of granular flows

Because of the inelastic collisions and the energy dissipation, homogeswatisns of the granular
hydrodynamic equations are often unstable. For exanmgilsteringin the homogeneous cooling
state[1], shear band in the granular shear flow [19, 22] and convectiotieinibrated granular thin
layer [23]. Figure 1.1 displays the time development of granular particlderuhe Lees-Edwards
boundary condition, where the homogeneous flow becomes unstablesly aid the shear band
is generated in the steady state. It is notable the time development of the Yyanaid fields of
granular shear flow can be well described by the numerical solution®afrémular hydrodynamic
equations [19]. Such instabilities in granular flows can be expected biynteg stability analysis
[24, 25]. More developed analyses, i.@gakly nonlinear analysegre also paid much attention in
these days [20, 26-28].

1.5 Organization of this lecture note

In this lecture, we explain the kinetic theory of granular gases. In Chape 2lerive the Boltzmann
equation of pairs of granular particles. In Chap. 3, we explain the honsoges cooling state of
granular gases. In Chap. 4, we derive the hydrodynamic equatignarilar gases by the Chapman-
Enskog method. In Chap. 5, we explain the collisional transfer of grapatécles which is important
in the dense flows of granular particles. This lecture note is based onaks bo

[1] " Kinetic Theory of Granular Gas&sN. V. Brilliantov and T. Rdschel
[2] " Granular Gases T. Pdschel and S. Luding

and we also refer to the text books of kinetic theory of molecular gases

[3] " The Mathematical Theory of Non-uniform Gasé&s Chapman and T. G. Cowling,
[4] " Classical Kinetic Theory of FluidsP. Résibois and M. de Leener.

For collisional transfer, we refer to some papers [6-8]. There ateraleapplications of the kinetic
theory of granular gases, for instance, the kinetic theory of frictiorahgar particles [9-11], bi-
nary mixtures [12, 13], polydisperse granular particles [14, 15], taedgranular particles with the
long range interaction [16]. We do not explain the important propertiesedintbarized Boltzmann
equationin this lecture, however, this topic can be seen in the references [4,17].



Chapter 2

Boltzmann equation



2.1 Distribution functions

If the number of granular particles are large enough, we may adopt pneamh of the statistical me-
chanics for the description of the macroscopic properties of granusasgaacroscopic properties
of molecular gases are governed by the velocity distribution function anéutinision is determined
by a certain integral equation so-called #eltzmann equatiofirst derived by Boltzmann in 1872.
Because the collisions between granular particles are inelastic, we havalify the velocity dis-
tribution function to take into account the inelasticity and the Boltzmann equatidedasiarived in
a little different way from the case of molecular gases. At first, we introducsitigge distribution
functionsuch that
f(r,v,t)drdv (2.1)

is the number of particles placed in a small voludnearound the position and have velocities in a
small elementlv around the velocity at timet. The number of particles in the system is given by

N:fdrfdvf(r,v,t), (2.2)

where the integrals are defined-# < {r,v} < co. If any particles do not collide during the time
intervaldt, the position and the velocity are respectively changed to

r — r+vdt, (2.3)
v — v+ (F/m)dt, (2.4)
wheremis the particle mass and
ov
F=m— 2.
m(9t (2.5)

is the external body force. Because there is no collision, all particledaf®eas Eqgs. (2.3) and (2.4),
thus the number of particles Eq. (2.1) does not change, i.e.,

{f(r +vdt,v+ Fdt/mt+dt)— f(r,v,t)}drdv=0. (2.6)

In acutual case, some particles collide with each other dwtramnd the left-hand-side of Eq. (2.6)
is not equal to zero. The change of the number of particles may be pimdrto drdvdt and the
left-hand-side of Eq. (2.6) can be written as

{f(r +vdt,v + Fdt/m,t + dt) — f(r,v,t)}drdv = (%) drdvdt, (2.7)
col
where 0f/dt)co represents the rate of change due to the collisions. Then, we divide2E€). bly
drdvdt and find

of F af_(af) ’ 2.8)
col

E+V'Vf+— a

m ov
whereV = 9/0r is the gradient. For simplicity, we do not take into account the external bwdg f
F = 0, thus we find

of of
i +v-Vf= (E)col . (2.9)

In the following, we assume the particles are spherical and identical withathe shassn and the
same diametar.
For later use, we also introduce thair distribution functionsuch that

f(r1,va;ro, vo; t)dr1drodvydvs (2.10)

is the number of pairs of particles placed in small volumiesanddr , aroundr; andr ,, respectively,
and have velocities in small elemenlis, anddv, aroundv, andvsy, respectively, at time
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2.2 Inelastic collision

The collision between two granular particles is inelastic and the part of thédkarmeergy is lost by
each collision. Such an inelastic collision is characterized by the normal tiestitodiicient e.

In general, the normal restitution déieient depends on the relative velocity and the duration time
of colliding two granular particles, however, we consider the simplest ttege is a constant and
satisfies O< e < 1. If the velocitiesv; andv; of two granular particles are respectively changed,to
andv’2 by the collision, the normal restitution dbeient is defined as

g-e=-€g-e, (2.11)

where we introduced the relative velocitigs= v — v andg’ = V] - Vv;, ande is the normal unit
vector connecting the centers of the colliding two granular particles. Iretime svay, if the velocities
v{ andvy are respectively changed g andv; by the collision, we find

/7 1
g’-e= —é(g - €), (2.12)

whereg” = v] —vj. Then, the tangential componentsgdindg” are given by

t g-(g-ee, (2.13)
t” = g’ -(g"-ee, (2.14)

respectively. If the granular particles are frictionless, the tangentiatitg does not change by the
collisiont =t”, i.e.,
g-(9-6)e=g" - (g"-ee. (2.15)

Therefore, from Eq. (2.12), we find
24 1
g :g—(1+ E)(g-e)e. (2.16)
The velocity of the center-of-mass of the two granular partiG@es (v1 +Vvz)/2 andG” = (v +Vv5)/2

also do not change by the collisidd = G”, becuase of the conservation law of the momentum
mvy +mvy = mvy + mvz. From the definition, the relation betwe@nandg is given by

1
G :vl—ég. (2.17)
Then, we convertlv;dv, to dGdg as
d(G, 9)
dGdg = dvidvs , 2.18
g o(vi,vo)|E (2.18)

where the Jacobian is given by

9G,9) _ 919 1409
A(V1, V2) d(v1,v2)  20(v1,V2)
0(vi.v1)  9(v1,V2)
d(v1,v2) (v, Vo)
0(v1,V2)
d(v1, Vo)
= -1. (2.19)




Figure 2.1: Collision cylinder.

Thereforedvidv, = dGdg. In the same way, we also fi¥}'dv; = dG"’dg”. If we choose the-axis
in the same direction d&f, i.e.,e = (0,0, 1), the components @f’ given by Eq. (2.16) are written as

24

4 4 l
gx :gX7 gy:gy7 gZ:gZ_(1+é)gZ7 (2.20)

respectively, and we find

) 10 0
dg”’ = % dg=abs0 1 0 |dg= 1'dg. (2.21)
©) 0 0 —1/d e

From Eq. (2.21) andG” = dG, we finddvydv; = (1/€)dGdg and the conversion afvy'dvy into

dvidvs is given by
dvidvy = %dvldvz. (2.22)

2.3 Boltzmann equation

In this section, we show the microscopic expression of the change ddt&t).q, in Eq. (2.9) and
derive the Boltzmann equation. Let us consider that the particle 1 with velociggjll collide with
the particle 2 with velocity, during the time intervadlt, where both of them are placed in a small
volumedr aroundr. Figure 2.1 shows the configuration of these two particles, whéehe angle
betweeng ande, and is defined between< 6 < n/2 so that the two particles can collide with each
other. In this figure, the volume of trellision cylinderis given by the aredydy x db (the yellow
shaded area in Fig. 2.1(b)), multiplied by the heigjut, i.e.

dV = bgdbdpdt = o?g cost singdddedt = o-?|g - eldQdt, (2.23)

where we useth = o sind, db = o-cosfdd, and|g - € = |gcosf — 6)| = gcosh, and introduce a solid
angle agQ = sindddde. We call the particles 1 and@illider andscatter respectively. The scatters
are placed in a volumér aroundr and have the velocities in an elemeht aroundv,. On the other



hand, the colliders are placed in the collision cylind& to collide with the scatters and have the
velocities in an elememv, aroundv;. Then, the number of pairs of such particles are given by using
the pair distribution function as

f(r,ve;r,vp; t)dVdrdvidvs . (2.24)

Strictly speaking, the positions of the colliders should lbere or somewhere in the collision cylinder,
however, if the system is dilute, we can assume the velocity distribution furdiesnot change with
slightly changing the positiof(r + o€, v1; r,vo;t) = f(r,vq;r, vo;t). Moreover, if the system is dilute,
we can also assume the correlation between the colliders and the scatteesegtigible. Therefore,
the pair distribution function can be decomposed into the single distributiotidusas

f(r,vy;r,vo;t) = f(r,vy, t)f(r,vo,t) . (2.25)
Above assumptions are not correct if the system is dense and we wilkdittzel case of
f(r +oev;r,vot) # f(r,vy, 1) f(r,vo,t) . (2.26)

in the final chapter "Collisional transfer”. From Egs. (2.23) and (2.2% number oflirect collisions
Eq. (2.24) is given by
f(r, v, £) f(r, v, t)olg - eldQdvidvadrdt. (2.27)

In the same way, the number ioiverse collisionss given by
f(r,vy, t)f(r,vy, t)o2lg” - eldQavy dvydrdt. (2.28)

From Egs. (2.12) and (2.22), Eq. (2.28) is rewritten as
é f(r,vy, 0f(r,vy, t)o?|g - €ldQdv;dvodrdt . (2.29)

The direct collisions contribute to decrease the number of parti¢tes;, t)drdv; and the inverse
collisions contribute to increasilr, vy, t)drdv;. If we integratev, ande in Egs. (2.27) and (2.29),
the right-hand-side of Eq. (2.7) is given by thé&eience of them

()
ot col

where we divided the factalv,drdt and the second integral is restricted to the cagp-@&< 0, oth-
erwise the two particles do not collide with each other. Eq. (2.30) is thels®callision integrals
From Eqg. (2.9), the Boltzmann equation is given by

o-zfdvzf dng-e|{éf(r,v’l’,t)f(r,v’z’,t)— f(r,vl,t)f(r,vz,t)}
g-e<0
I(f, ), (2.30)

of
E+V-Vf—|(f, f). (2.31)
Clealy, the collision integrdl(f, f) satisfies the following algebra
I(f+p.f+aq = I(f,)+1(f.a+I(p.f)+1(p.0). (2.32)
I(af,bf) = abl(f, f), (2.33)

wherep andq are functions of the velocity, armlandb are constants. From Egs. (2.32) and (2.33),
we readily find

[(af + bp,cf +dq) = acl(f, f) + adI(f,q) + bcl(p, f) + bdl(p,q) , (2.34)

wherec andd are constants.



2.4 Collision invariant

If we multiply the function of the velocity/(v;) to I (f, f) and integrate over;, we find
fdvllp(vl)l(f, f) = o-zfdvlfdvzf dQ|g-e|éf(r,v’l’,t)f(r,v’z’,t)w(vl)
g-e<0
—azfdvlfdvzf dQlg- ef(r,vy, t)f(r,vo, h(vy) . (2.35)
g-e<0

If we notice the relation

1 7/ 77 7
glg-eldvlde =1g” - eldvidvy , (2.36)
the first term in the reft-hand-side of Eq. (2.35) becomes
o-zfdv’l’fdv’z’f dQlg” - elf(r, vy, t)f(r,v5, hy(vy) . (2.37)
g”’-e<0

Since the relationy, vj) — (v1,V2) (the relation between the velocities before the collision and the
velocities after the collision) is equivalent te(v2) — (v3,V5), we can rewrite Eq. (2.37) as

o2 f dvy f dvs f dQig - ef(r, va, ) f(r, va, thy(V}) . (2.38)
g-e<0

Eq. (2.38) is symmetric aboui andv, and does not change by exchanging the indices 1 and 2. Thus,
Eqg. (2.38) is equivalent to

o’ f dv, f dv, f dQIg - el f(r, va, ) (r, va, i (vs) . (2.39)
g-e<0

From Egs. (2.38) and (2.39), the first term in the reft-hand-side of E85) is rewritten as

o2
7fdvlfdvzLKOdMg-e|f(r,vl,t)f(r,vz,t)[w(v’l)+¢(v’2)], (2.40)

which is completely symmetric about the indices 1 and 2. The second term infttenel-side of
Eq. (2.35) is also symmetric abowt andv,, and in the same way with Eq. (2.40), this term is also
rewritten as

2
T [avs [ove [ dog-elfte.va 01, va 01uu) + w(va). (2.41)
ge<
which is also symmetric about the indices 1 and 2. Then, Eq. (2.35) is given b
2
[avwicr.n) = G [on [ov [ doig-aapuey suwaltle, (@242
g-e<

where we denoted, = f(r, vy, t) with a = 1, 2 and we introducedy (v) = (V') —y/(v). The function
¥(v) defines the set afollision invariant

Y(v) = {m, mv, gvz} : (2.43)
where each component satisfies
Alm+m = 0, (2.44)
Almvy+mvp] = 0, (2.45)
Me, M 2] M . e)?2
A[2v1+2v2 = -2-e)g- e, (2.46)

corresponding to theonservation of masshe conservation of momentyuend theenergy balance
respectively.
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Chapter 3

Homogeneous cooling state
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3.1 Granular temperature

Even though the granular gases include a huge amount of granulatgsgrtiach granular particle is
still macroscopic material and is noffected by theéhermal fluctuation Therefore, the temperature
may not have so much importance in granular gases. However, we catuiceran analogical expres-
sion of "temperature” in granular gases and keep consistency with the utenlgases. If the system
is in a homogeneous state, where the density is uniform const and the velocity fields are zero
u = 0, the distribution functions are independent on the spaceyeartlilar temperatures defined as
the average of the kinetic energy of granular particles

f dv%"vzf(v, ) = gnT(t) . 3.1)

Due to the inelastic collisions between granular particles, the kinetic enecgyades as time goes on.
Thus, the granular temperature continuously decays if any externa éleldot existHomogeneous
cooling states defined withn = const andu = 0, thus the system behaves like an equilibrium state at
each time instant, except for the decay of the granular temperature. thedBoltzmann equation is
written as

P
ST =1(f1). (3.2)

Because the homogeneous cooling state is governed by the time depeadetdrgemperaturé(t),
we scale the velocity of each granular particles bytthermal velocity y(t) = 2T (t)/m and the
distribution function is scaled as

~

f(v, 1) = f(o), (3.3)

n
vr(t)3

where we defined the scaled veloaity v/vr(t) and the absolute value= |c|.

3.2 Sonine polynomials expansion

If the granular particles are slightly inelastcs 1, f(c) can be expanded around the Maxwell distri-
bution function. Therefore, we assurh) can be expanded into the series of the orthogonal function
as

f(©) = 4(c) {1 > apsp(cz)} , (3.4)
p=1
where the leading term is the Maxwell distribution function
— 1 2 35
¢(c) = T exp(c’) , (3.5)
and the series of the orthogonal functi®p(x) represent the deviation from the elastic gases. In the

following, we adopt the Sonine polynomials for the orthogonal funcBg(x). The Sonine polyno-
mials are defined as the associated Laguerre polynomials

p
(M) or (-1)"(m+p)!
Sp (9 = ano (m+n)l(p-n)n! X (3.6)

where we definen = d/2-1 in thed-dimension. In the following, we consider the 3-dimensional case,
i.e.,m=3/2-1=1/2 and omit the upperscript such &g(x) = S%l/z)(x). The Sonine polynomials
satisfy the orthogonal condition

2(p + 1/2)!
Vrp!

12
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wherep, q = 0 are also included and we notice the expression

(p+%)! - «/7?1:[)(“%). (3.8)

Thus, from Eq. (3.4), the cdiécientay is given by

ap = = f deSp(c?) f(c) - (3.9)
Np
The first few terms of the Sonine polynomials are given by
So(x) = 1, (3.10)
S1(X) = —x+ g , (3.11)
x> 5x 15
S0 = S -5 +g (3.12)

thun, the powers of the scaled velocity are written as

1 = S, (3.13)
¢ = g—Sl(cz), (3.14)
ct = 282(02)—581(02)+175, (3.15)

respectively. From Eq. (3.10), we also writ&) in the form
f(©) = 9(0) ) apSp(c?) . (3.16)
p=0

where we definedg = 1. Using Egs. (3.13)-(3.15), we also find the moments of the scaled velocity
(cPy = f decPf(x), (3.17)
for instance,
() = f dec?f(c)
- [ s {50 - s} p2ap&‘:p(cz)

3
= anNo - N

- Sa-a, (3.18)

(ch = f dec*f(c)
= f deg(c) {252(02)—551(02)+%};)apsp(cz)

15
= 2ayNo —5aiN1 + ZaoNo

15
= Z(az -2a+1), (3.19)

13



where we usedVp = 1, N1 = 3/2 andN> = 15/8. Thus, the co@icientsa; anda, are respectively
represented by the moments as

ap

2
1- 42
3<C>,

a

4 4_‘_1 2
1—5(c> 3<c>+1.

3.3 Dimensionless Boltzmann equation

From Eg. (3.3), the left-hand-side of the Boltzmann equation Eq. (2.3ljtewas

where we used

of _ v o (nf(c))

ot at ovr |2
3n -~ n oc d » .|ovr
= |-=Zf — 2 fol=
( 2O v (C)) it

n ovr 0\ ~
_\ZE(3+ Ca_C) f(C) s

oc 6(v)__l c
Voo

oVt B ovr \vr

The right-hand-side of the Boltzmann equation Eq. (2.31) is written as

I(f, )

where we defined;,

2 1 -~ N . N
Ry Joe: [ dowea{ G fepiten - feaitea)

O-an 1~ I\ £ A £ £
= IE 12~e<0d9|c12-e|{@f(cl)f(c2 - fleftea

22
TN,
VT

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

= ¢; - C; = vrg and useddv, = dvdwdy, = vidcdgde, = vidc, and
|g- € = vr|c12 - €. From Egs. (3.22) and (3.24), the Boltzmann equation is written as

1 ovr AW _ 2T f
EE(:’wca—c)f(c)_anI(f,f)-

From the definition of the granular temperature, we find

d/(3 m ,of
d—t(znT) delEViE
fdvlgvil(f, f)

= M3o2? [ deydi(f, f
= von® | degcl(f, f)
= o’nwT f de;2i(f, f)

= —0'2n2VTT/42 ,

14
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where we defined the moment of the dimensionless collision integral

pp = _fdclcfr(f”, f). (3.27)
Therefore, we find the cooling law as
dT 2
ot = —éUznVrTﬂz . (3.28)

From the definition of the thermal velocily = mv?r/Z, the time derivative of is given bydT/dt =
mvrdvr/dt. Then, we find
lovy m 1 0T 1 0OT 1

2
dovw _m 10T _ o _ L2, 3.29
ot 2Tmv dt  2vT ot 37 2 (3.29)

where we used the cooling law Eqg. (3.28). From Eq. (3.25), we find therdiimieless Boltzmann
equation

M2 (AT
§(3+ Ca_c) f(c) = i(f, ). (3.30)

Eq. (2.42) can be also written in the dimensionless form. The left-hand-$igg.0 (2.42) with
changing the functiog(v1) — ¥(c1) gives

f dvay(c)I(f, f) = o2nvr f dewy(cy)i(f, ), (3.31)

where we used Eq. (3.24). The right-hand-side of Eq. (2.42) withgihgithe functiony(v1), ¥(v2) —
(1), ¥(c2) gives

2
G [avs [ove [ dog-datuien + wiean e
ge<
1 .
= gotvr [de [deo [ dolers- eluien + wiea fenfled . (332)
Thus, we find

[ dorwteiti.N =3 [dos [aco [ doiesr-aatuted +ueafenfled . @:33)

3.4 Dimensionless moments

The codficients of the Sonine polynomials are given by the moments of the scaled velsdiiysa
(3.20) and (3.21). At first, we find

f dvgvzf - ngv% f dec?f(c) = ngv%<c2> - nT(D) . (3.34)
On the other hand, we also find the following relation from the definition of thawgar temperature
m 3
f dVEVZf =5nT. (3.35)
Egs. (3.34) and (3.35) are the same equations, thus we find

3

2y _ —
=3 (3.36)
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From Eg. (3.20),
ag=1- §<02> =0. (3.37)

Therefore,a, may be the first non-zero cfiient of the expansion Eq. (3.4). To calculatg let
us multiply cP to the dimensionless Boltzmann equation Eq. (3.30) and integratecavérom the
definition of the moment, Eq. (3.27), the right-hand-side giveg,. The left-hand-side is written
as

’% f dccp(3+c(%) fo), (3.38)

where the first term is given by
pe [ decPT(Q) = uae” (3.39)

21 T ) O ~
f de f sinodg f cP3—f(c)dc
0 0 0 Jc
= 4n{[cp+3f(c)];°—(p+3) f cp+2f”(c)dc}
0
= —4rx(p+23) f cP*2f(c)dc
0

- —(p+3)fdccpf(c)
= —(p+3xXcP), (3.40)

and the second term is given by

O ~
pr10
f doc®*— ()

where we used the spherical coordinate in the integaald assume thdt(c) decays much faster than
any powers ot, i.e., lim._,. cPf(c) = 0. We also notice the relation

47rfdccz---:fdc.... (3.41)

Loy = pp (3.42)

In Eq. (3.42),p = 2 is trivial andp = 4 gives

Then, from Eqg. (3.38), we find

4
Ha = §#2<C4> = Sup(ap + 1), (3.43)

where we used Eqg. (3.21) witly = 0. Therefore, the moments andug4 give the first non-zero
codficientay.

3.5 Kinetic integrals

To determine the Sonine cheients, we need to evaluate the momgpt From Eq. (3.33)u, is
given by

Hp = —fdclcg’r(fi f)

—% f de; f de, f dQlcr2 - A[c? + Bl f(cy) f(c2) - (3.44)
C12-e<0
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We assume the céiicienta, is small and the distribution function can be well described by the linear
approximation N
f(c) = gL + aS2(c?)] - (3.45)

Then, if we neglect the second order termsgfEq. (3.44) can be written as
1 2 P, P
up==3 | dor [ de | doerr (o) |1+ a2 {Sa(c5) + Sa(ch)}| Al + cF] . (3.46)
Cp2-e<
Let us evaluate Eg. (3.46). At first, we transform the velocitgndc, to the velocity of the center

of massC = (c1 + ¢p)/2 and the relative velocitg;» = ¢1 — Co. In the same way with Eq. (2.18), the
Jacobian is unity

dcidcy = dCdcy o . (3.47)
The Gaussian distribution functions can be rewritten as
sevoien = et (2] e = pae) (3.48)
@2 | |
The Sonine polynomials can be rewritten as
1 1 5 15
|1+ {Sa(c2) + Sa(ch))] = C* + éczci2 + 1—6c‘1‘2 +(C - c19)? - 5C% - Zciz - (349
We also find
Al +¢3] = —%(l - &) (12 €, (3.50)

Alc] + ¢ 2(1+ €)2(c12- ©%(C- €)% + %(1 — A c12-©)*

- P)erz 7~ (1 ez o)
-4(1+¢€)(C-c12)(C-e)(cr2-€), (3.51)

respectively. Then, it is readily found that Eq. (3.46) is given by thelmoation of thekinetic
integrals

Jlmng = f dc f deio f OdQIC12'e|¢(012)¢>(C)CkCI12(C'C12)m(C'e)n(C12'e)q- (3.52)

For example Jx|mo.q, JkI.m1q andJkm2q are respectively given by the formulae

_ 8(-1)d2(krlra-1)y2 it [(K+mM+3) _([l+m+q+4
Jk,l,m,O,q = (q n 2)(m+ 1) [1 - (_1) ]F 2 r 2 >
| 4(-1)miptklray2 e (K+M+4\ [+ m+q+4
Jamia = =gy ]r( 2 )F 2 ’
A(—1)02(-k+l+a-1)/2 it (K+EM+5) _(l+m+q+4)\(gq+1 1
Jl.m2q (q+4)(p+2) (=D 2 r 2 m+3 m+1)"

Then,u; is evaluated as

1- 1
pe = — [J00002 +@2(Ja0002 + Joo202 + 1604002

15

1
+§Jz,2,0,0,2 - 5320002 — ZJo,z,o,o,z + ZJo,o,o,o,z)]

- V- &) (1 S O(ag)) . (3.53)

17



In the same wayy4 is evaluated as

La = 4@[% (g + e2) + az{s(l_ €) (69 + 106?) + %(1 + e)} +0(a2)] . (3.54)

128

Substituting Egs. (3.53) and (3.54) to Eq. (3.43) and neglecting the secdadterms of,, we find
the second Sonine cfiient
a 16(1- €)(1 - 2€?)
, =

© 81-17e+302(1-¢€) (3.59)
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Chapter 4

Inhomogeneous granular gases

19



4.1 Hydrodynamic equations of granular gases

Although our system of granular gases is discretized into the individuéties, the system includes a
number of granular particles and the macroscopic aspects of the grgaséa can be described by the
continuum description. We adopt the local averages of the collision imtar(®) for the continuum
variables, since these averages give the hydrodynamic fields, i.eletisgy field the velocity field
and thegranular temperaturerespectively. From the definition of the velocity distribution function
Eq. (2.2), the density field is defined as

n(r,t) = f f(r,v,t)dv, 4.1)
and any macroscopic fieldr, t) are given by the average of the functionvadis

~ Ju)f(r,v, dv
A(r,t) = ff(r,v, Dav ) fw(v)f(r v,t)dv . (4.2)

Then, the velocity field is defined as

1
u(r,t) = mfvf(r,v,t)dv, 4.3)
and the granular temperature is defined as
d 1 1 5
ET(r,t) = mfzmv f(r,v,t)dv (4.4)

in d-dimension, where the local velocity is introducedvas v — u(r, t).

4.1.1 Continuum equation

Continuum equatiors the result of the mass conservation. Let us multiply Infpto the Boltzmann
equation Eq. (2.31) and integrate Then, the right-hand-side is equal to zero because of Eq. (2.44)
and the left-hand-side is given by

fdv%f+fdvvivif = fdvf +V,fdvvI

= E + Vi(ny) , (4.5)

where we used the summation rule for the twice appearance of the indicemtMéethe time deriva-
tive 9/at and the integral of can be exchanged and the gradi®nhidoes not act ow;. Thus, the
continuum equation is derived as

on
r + Vi(ny) = (4.6)

4.1.2 Equation of motion

Equation of motioris the result of the conservation of momentum. Let us multiplyto the Boltz-
mann equation and integrate Then, the right-hand-side is equal to zero because of Eqg. (2.45) and
the left-hand-side is given by

fdvmw%f +fdvm\4vjvjf = fdvv,f - fdv%f + Vi fdvmwv, 4.7)
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The first term in the right-hand-side of Eq. (4.7) gives

0

0
ma(mi)

|
3
T
+
2

|

mn% -myVvj(ny), (4.8)

where we used Egs. (4.3) and (4.6). The second term in the rightdidedf Eq. (4.7) gives
mfdv%f:fdvFif:O, 4.9)

ot

becuase the external body force is zfo= 0. The last term in the right-hand-side of Eq. (4.7) can
be written as

Vi fdvmwvjf

Vj fdvm(vi + Lli)(Vj + Uj)f

ijdvm\/.vjf+Vj(mnuuj)+mVjujfdeif+mVjuifdejf
VjPij +manjui +muVj(nuj), (4.10)

where the average of the local velocity is zero

fdeif:fdvvif—uifdvf:nu—nu:O, (4.11)

and we defined thstress tensor

P = fdvm\/.vjf. (4.12)
From Egs. (4.8) and (4.10), we obtain the equation of motion
oy 1
5_tl+ujiji :_mvjpij , (4.13)
where the ternmuyV;(nu;) was canceled and we divideun The stress tensd?; can be also ex-
pressed as
1 2 1. .2
Pij = §5ij dvmVv-f + | dvm ViVj - ééijv f
= nTgjj +deDijf , (4.14)
where we defined the deviatric part of the stress tensor
1.2
Dij = m{ViV; - §5ijv , (4.15)

andp = nT is the hydrostatic pressure.

4.1.3 Equation of energy

Equation of energgescribes the time development of the granular temperature. In the caséeof mo
ular gases, the total energy of the system is conserved, however,dage®f the granular gases, the
kinetic energy decreases by inelastic collisions and the total energy ismetrwed. Let us multiply
mV2/2 to the Boltzmann equation and integratso as we can derive the equation of energy.
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Right-hand-side
The right-hand-side is given by

(rhs) = fdvgvzl(f, f) = —gnTg(r,t) , (4.16)
where we defined theooling rateas
)= ——— fdvvzl(f f). (4.17)
Because o¥/2 = V2 — 2v,u; + u?, we find

fdvvzl(f, f) = fdvvzl(f, f)—2uifdvvil(f, f)+u2fdvl(f, f)

fdvvzl(f, f), (4.18)

where we used Egs. (2.42), (2.44) and (2.45). Then, the cooling neetigten as

—%fdvvzl(f, f)
-1 v [av. f dolg- (g &2f T
1™ f dvy f dvagP fa fo (4.19)

Z(r.)

24nT

where we used Eqgs. (2.42) and (2.46), and the integr&l wfas calculated as follows. The inner
product is given by - e = —gcost < 0 (0< 6 < n/2). Then, the integral ove2 becomes

27 /2
g3f dtpf dosindcos’ 6
0 0

0
= 271 | cos 6(- sinods)
/2

1
= 2ng® fo x3dy

_ T3
= 39, (4.20)

f dolg - el(g - ©)2
g-e<0

where we definegh = cosd which givesdy = — singdo.

Left-hand-side
The left-hand-side is given by

(Lhs) = f dvgvzgf+ f dvgv%ivif. (4.21)

0 m, - m(ao, .,

é)(fdv Vf) fdv (étv)f
g( nT) fdi—f
9
ot

( 2nT) (4.22)

The first term of Eq. (4.21) is written as

fd —vza
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where the second term was vanished as

fdv v%f_fdvmv{at(v. u)}f_fde,Ff—mau'fd Wif =0 (4.23)

because oF; = 0 and Eq. (4.11). The second term of Eq. (4.21) is written as

fdvgvzviVif fdngZViVif +de%1V2UiVif

m m m
Vi (deEVZVi f) - deE (ViVZVi) f+ deEVZUiVif

= Viq —fdvg (ViVZVi)f'FdeszuiVif, (4.24)

where we defined thieeat fluxas
g = f VIV T (4.25)
If we notice the relation
ViVaV, Vi(VEVi + VQVi + V2V)
2VyViViVy + 2V Vi ViVy + 2V,Vi ViV + VRV + VIV + V2V
2ViVjViVj + V2VV; (4.26)

Eq. (4.24) is written as
Vi — f VMMV, (ViVy) f — f dngZ(ViVi)f ; f dvgvzuivif

Viai +(Vin)fdvmV|ij +(Viui)fdvgvzf +fdv%1V2UiVif

Vigi + PijViu; + :—;nTViui + deszuiVif , (4.27)

where we notice the relationgV; = -V;u; andV;V; = -Vju;, and used the definition of the stress
tensor Eq. (4.12). The last term of Eq. (4.27) is rewritten as

fdvgvzuivif Ui Vi (demVZf)—Ui fdvm(vivz)f

= uV; ( ) f dv(V; Vo) f . (4.28)
If we notice the relation

ViV2

Vi(V5 + V{ + V3)
= 2VjViVj, (4.29)

the second term of Eq. (4.28) is vanihsed as

gui de(ViVZ)f =muy deVj(ViVj)f = —mu(Vin)deij =0, (4.30)

where we use®;V; = -Vju; and Eq. (4.11). From Eqgs. (4.22), (4.27) and (4.30), we find that the
left-hand-side Eq. (4.21) is given by

(I.h.s) 0 (SnT) +Vigi + PijViuj + 5

3 3
73 =NTVu; + Y V; (znT)

2

J (3 3

2nTu) . (4.31)
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If we notice

Q g’nT = §n£+§ @
at\2 24t 2 ot
30T 3
= Snor = 5TV, (4.32)
3 3 3
Vi (énTu) = EaniT + ETVi(nu) , (4.33)

where we used the continuum equation Eq. (4.6), Eq. (4.31) is rewritten as

3 4T 3
(|.h.S) = EHE + EaniT + Viqi + PijVin . (4.34)
From Egs. (4.16) and (4.34), the equation of energy is obtained as
aT 2
r + UViT = ~n (Viqi + PijVin) -(T. (4.35)
It should be noticed, if we use Eq. (4.11), the heat fjugan be also written as
g = deSif , (4.36)
where we defined
s = (Mv2_ 27y, (4.37)
I = 2 2 | s .

and the second term & is vanished because of32) f w;f =0.

4.1.4 Phenomenological transport cd#icients

In linear approximation with respect to the gradiént the stress tensor and the heat fluxdin
dimension are given in the phenomenological expressions as

2
poij — T](Vin +Viju - aéijvkuk) s (4.38)
G = —«ViT —uVin, (4.39)

respectively, wher@, n, x, andu are thehydrostatic pressutehe shear viscositythe thermal con-
ductivity, and the coficient of the density gradient, respectively. The fo&nt 4 does not have
an analogue in the usual hydrodynamics, becuase the heatlx is the results of the inelastic
collisions of the granular particles, where the collision frequency in desggen is higher than that in
dilute region and the heat flows from the dilute region to the dense regionsiBy the expressions
Egs. (4.38) and (4.39), the gradient of the stress tensor is given by

2
VjPij 5ijVjp—n(VjVin+VjVjUi——(5ijVijUk)

3

2
Vip - U(ViVJ‘Uj + Vzui — §Vinuk)

1
Vip—n{v2ui + évi(VjUj)} , (4.40)
where we introduced the Laplaci&i, and the gradient of the heat flux is given by

Vigi = —«V°T — uV°n, (4.41)
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and the second term in the right-hand-side of Eq. (4.35) is given by

PijViu; = pf?ijViuj—n{(Vin)(Vin)+(Vjui)(Vin)—:—iéij(VkUk)(Vin)}

pVili — n{(Vin)(Viuj) + (Vju)(Viuj) - g(viui)z} . (4.42)

4.2 Chapman-Enskog theory

We develop the Boltzmann theory explained in the previous sections to slightiymiform gases.
The aim of the Chapman-Enskog theory is to construct a perturbatiemsiqn of the velocity distri-
bution function and gives the microscopic expressions of the phenonggeallransport cocients
n, k andu. The first step of the Chapman-Enskog theory is to assume the velocity wtistmilb(r, v, t)
develops in the long time scale and spatially changes in the long wave length, waéis the time
development and the spatial changes of the velocity distribution functiguenaihrough the hydro-
dynamic fieldsn(r,t), u(r,t) andT(r,t). Therefore, the time derivative and the gradientf of, v, t)
are given by

of ofon  of ou  of oT

or _ olon olou otol 4.43

at anat  ou ot aT ot (4.43)
of _  of of

vi = Zvns Lo+ Lyt 4.44
an " tag UtaTy e (4.44)

respectively. Such dependence of the velocity distribution function ohyttieodynamic fields can
be justified if the spatial gradient of non-uniformity is small enough. Themjntroduce the small
parameten as the measure of the gradient

A~0K) <1, (4.45)

wherek is the wave number which is the same order with the gradieatik. Thus, we scale the
gradient as
V— AV. (4.46)

Generally, the dispersion relation gives the frequency as a functioreafdire numbew(k), and if
k < 1, we can expand(k) into the series ok as

a)(k) = wo+w1k+a)2k2 +...
~ wo+ dwy+ Pwz + ... (4.47)
Therefore, from the relatiofi/ ot = iw, the time derivative can be also expanded as

o 00 oW 25(2)
—=——4+A——+A"—

priatrn p p +.o.. (4.48)

4.2.1 Expansion of the Boltzmann equation

The velocity distribution function is also expanded into the series of the gradie
f=fO4af@ 4 2@ 4 | (4.49)

and the Boltzmann equation Eqg. (2.31) is expanded as

o0 oW
(— + A +---+/lv-V)(f(0)+/lf(l)+...) =1(fO 1 2O 4 O 42D 4 ). (4.50)
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From Eq. (2.34), the zero-th and the first orderd afe respectively given by

00

= £©) 1(f©, £ O (4.51)
©) ()
a@t f(1)+(‘9(9t +V- v)f(o) = 1(fO, Oy 11 (D, £O)) (4.52)

Corresponding to the expansion Eqg. (4.49), the cooling rate Eq. (4.4Bpiexpanded into the series
of 1as
(=04 204 2202 4 | (4.53)

where the zero-th order term is given by

20— 1- ez)’;ZnUT f dvy f dvog? O£ (4.54)

and the first order term is given by

W -~ (1M 30 (1) 314 0)
;o= (1- )24nT dvy | dvogf 757 + | dvy | dvog®firf;

12nT f dvy f dvog® O . (4.55)

We notice that we exchanged the indices 1 and 2 in the second term of tHé&ref Eq. (4.55),
which does not change the absolute vajue

4.2.2 Expansion of the hydrodynamic equations

Because we scale the gradientids the hydrodynamic equations with the phenomenological trans-
port codficients are also scaled as

on

i —-AVi(ny) , (4.56)
oy 1 n 1

R AR R LR on
oT (0) 2 1) 2 3

- = T-2 uiViT+%pViui+.{ T|+2°Q+ O(2°), (4.58)

where we used Egs.(4.40), (4.41) and (4.42), and defined
= —(KVZT +uv2n) + =L {(V u;)(Viuj) + (Vju)(Viu;) — —(V u) } [T (4.59)

Becuase of the expansion of the time derivative Eq. (4.48), the zenalh loydrodynamic equations
is given by

50

=0 = 0. (4.60)
o 0 (4.61)
_U| = N .
ot

©

aa_t = /071, (4.62)
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and the first order hydrodynamic equations is given by

oD

=N = Vi), (4.63)
o 1

Eui = -ujVju — mvip , (4.64)
oW 2

—oT = “UViT - 2TV - T, (4.65)

where we used the equation of state= nT in Eq. (4.65). We note that the zero-th order hydro-
dynamic equations Eqgs. (4.60)-(4.62) representhibimogeneous cooling staéad the first order
hydrodynamic equations Egs. (4.63)-(4.65) areEhker equationsWe also give another expression
of Egs. (4.63)-(4.65):

DM
Ftn = —nViUi 5 (466)
D@ 1

- = "V, .
S = Vi, (4.67)
DM 2

e BVATZEO) ¥ 4.
Dt 3! Vit =T (4.68)
where we introduced thmaterial derivative
DO /D)
or = v + U V. (4.69)

4.2.3 Zero-th order equation

The zero-th order Boltzmann equation Eq. (4.51)
o0
= fO = (O, Oy (4.70)

is the same form with the Boltzmann equation in the homogeneous cooling stat8.Bgar{df©
corresponds to the distribution function of the homogeneous cooling., Weaualso scaldé© by the
thermal velocity

10 = g, (4.71)
VT

where we note that = V/vy and bothn andvy depend on the space and time, irgr, t) andvy(r, t),
which is diferent from the previous definition Eg. (3.3). Since the distribution functiagherhomo-
geneous state can be written by the Sonine polynomials expag&boan be calculated. From Eq.
(4.17),9 is given by

20 = _% f dVV2I(FO, £O) (4.72)

where we changed the integration variable freno V, sincedv = dV and both variables cover the
range—oo < Vv,V < oo. From Eq. (3.24), Eq. (4.72) is scaled as

22
[0 = —£v3v$ﬂfdcc2f(f~, f)

2 2T
_ :_%O_zn ,EMZ, (4.73)



where we usedr = V2T/mandps; is given by Eq. (3.53). Therefore(® « nTY/2 and we find the
derivatives

ac© B [0 ac© ~ O
n T nc T T (4.74)
4.2.4 First order equation
The first order Boltzmann equation is given by Eq. (4.52)
(0) 1)
aat f(1)+(‘9(9t V- V)f(o) = 1(FO, £@) 4 1 (£D), ) (4.75)

Since the zero-th order distribution functiéf?) is known, the second term in the left-hand-side

(% +v-V) f<0>=(¥+v-v)f(°> (4.76)
can be calculated. Because of Egs. (4.43) and (4.44), Eq. (4.76itsnas
(% +V- V) O — (% +V,V;j ) 8(;:’) + (% i ju,) 80f_L(ji°) + (% + VjVjT) %1(_0)
= (V;Vjn-nv; u.)i«)) + (V,V,u. - imVi p) %ljio)
+ (v,-v,-T - gTViu. §(1>T) 6;;) : (4.77)

where we used Egs. (4.66), (4.67) and (4.68). Then, the deris@if®/on, 9f©/au; andaf© /T
are calculated as

) ~
% = if(O)(c)
"
_ %f(m, (4.78)
0
of vV 9 o
oy, oy oV
Vv, 0t @
= 1 4.7
V oV (4.79)
0
ﬂ() _ 9 _f(O)()
oT oT ovr v3
1 3n n oc o
- = fO) ¢ FO) (¢
mvr{ \/T‘ ©+ v3(9 ac ©
= ——(3+ca)f(°)(c)
m\t‘?
= (3+v 0 )f(°>
m\%
_ 31v2 )50 (4.80)
2T ov ’
respectively, where we used the relations
N OV vr 1 o ¢ ] 9
PRV T Tmw aw s we Sa Vv (4.81)
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Therefore, Eq. (4.77) is given by

@ o
(aa_t“’ V)f(o) = (VjEan—Viui)f(o’—(vjvjui—ivip)ﬁaf

V oV
Vi1 1 " 0\ o
(ZTVT 3V iUi { 3+ Va f
1 V: 9f©@
= (Vivi 'Ogn—ViUi)f(o)—(VjVjui——Vip)v'—av

Vi T i) 9\ 0
(ZV.IogT 3Vu. g 3+V<9Vf .

From the equation of stajg= nT, we find

1 1
—Vip = —Vi(nT
o Vip - vi(nT)
1 1
= —TVin+ =V;T
nm m
T
= E(Vilogn+vilogT),

and Eq. (4.82) is written as

mV oV 2 mV oV

(4.82)

(4.83)

@ O O
(%—t+v V)f(o) = {Iﬁﬂ—v' (3 V;)f(o)}V.l gT + (I&&+Vif(°))vilogn

1, ,0f0@ ViV ot @ 0
vl vy — 417 v+ =D — 1O
+(3V EY; Viui vV oV V,u,)+ 2§ (3+V8V)f

2T VoV 2 VoV

1 10f0 0
—(viv,- 35"V2)v oy Vil + g(l)(3+vav)f(°).

If we define the prefactors &fj log T, Vilogn andV;u; as

T (m\2 10 3
ooy me ©)
A= V'{m(ZT 1)vav+2}f ’

T16
VA ©)

B = V(mvav 1)f ’
1 10f@
Cj = (viv,- 35.,v2)v VAR

respectively, the first order Boltzmann equation Eq. (4.52) is given by
(0)
aa 04 (O, 1®) 4 §(1> (3+va‘9 ) f©O = AVilogT + BiVilogn + Ci;V;ui

where we defined
J(f(O)’ f(l)) = (f(O), f(l)) - (f(l), f(O)) ]

From Egs. (4.85)-(4.87), we note bothandB; are proportional td;

A< Vi, Bi Vi,
andCj; is traceless
1. .\ 10f0@ ) 10f@
c.._(v.v. 33V)V ey =(V V)V =
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—v-{T (ﬂ—l) 19 3} fOV, logT + Vi (Iliu) fOV; logn

(4.84)

(4.85)
(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)



4.2.5 Correction of the distribution function

The deviation of the distribution functioff!) can be obtained by solving Eq. (4.88). Except for the
term related t@©, Eq. (4.88) is proportional té"). On the other hand, the right-hand-side contains
the terms proportional to l0B, logn andVju;, respectively. Thus, we can assur® can be written
in the form

f(1)=CKiVi logT +BiVilogn+vijV;ui, (4.92)
where the cofficientsa;, 5 andy;j are the functions o¥; and the hydrodynamic fields. If we adopt
Eq. (4.92) forf@D, /O is vanished as follows. Substituting Eq. (4.92) to Eq. (4.88), we compare the
prefactors of lod, logn andVu; in both sides. Then, we find, 5; andy;; are proportional t@\, B
andC;;, respectively, and from Egs. (4.90) and (4.91), hatandg; are also proportional to;

@i o Vi, Bi < Vi, (4.93)
andy;; also satisfies
1
Yij o« ViVj — ééijVZ R (4.94)

and tracelesg; = 0. From Eq. (4.55)

o = (1- ) f dg [ aVag OV + 9 TV). (4.95)

where we changed the integration variablesvasw,) — (g, V) sincedvidv, = dgdV,. Because the
zero-th order distribution function is homogeneoff8)(V, + g) is symmetric abou¥, = —g and we
can always find the counterpai®®)(V, — g) by the integralf dg. From Egs. (4.93) and Eq. (4.94),
fM(V,) is always odd function o¥/,. Of course, the absolute valgé is even function. Therefore,
the integral in Eq. (4.95) is vanished afi® = 0.
Becuase of Eqgs. (4.60)-(4.62), the time derivatives;pf; andy;jj in the zero-th order are given
by

00 da; 00T dai
_ Oai _ _ o7 4.96
ot JaT ot ¢ oT’ ( )
99p; 9 0T _ 9Bi
— = = O = 4.97
ot oT ot ¢ 8T ( )
0O0yi; dyij 00T i
ZA L AT orZi 4.98
ot oT ot oT ’ ( )
respectively, and we also find
O 10071
—VilogT = Vi[=Z—
a9 '(T at )
- _V é*(o)
54(0) ac©
= V — _V
gn NG VT
1
= /@ (Vi logn+ Vi log T) : (4.99)
where we used Eq. (4.74). Then, we find the time derivativEBfas
oOf® da d oy
= ( atl)v' logT +a'(6tvi IogT) ((’ﬁl)v' logn + ( a”)V Ui
1
= ({(O)T a(_T_' Eg(o)ai)vi logT - (g(O)T % §(o)a'|)V logn
0
g(O)TﬂVJ u . (4.100)
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If we substitute Eq. (4.100) to the first order Boltzmann equation Eq. (4®8compare the prefac-
tors of logT, logn andV;u; in both sides, we find

1
_g<0>(TaiT+§)m+a(f<°>,m) = A, (4.101)
o (+9Bi | 0 p) - B
—g Tﬁ +aj|+ J (f ,ﬂl) - BI > (4102)
(O)Tayﬂ fO ) = C 4,103
O +3(1%n) = . (4.103)

The codficientsA;, B; andC;; are calculated by Eqgs. (4.85)-(4.87), and thefiécentsa;, 8 and
%ij can be determined from Eqgs. (4.101)-(4.103). Then, we can obtainrghedirection to the
distribution functionf® from Eq. (4.92).

4.3 Transport codficients

Comparing the definition of the stress tensor Eq. (4.14) with the phenomérailegpression of the
stress tensor Eq. (4.38), we fipd= nT and

fdvDijf = —n(Viuj + VUi - géiijUk) . (4.104)
Substitutingf = f© + 21f to Eq. (4.104), we find the zero-th order gradient gives
f avD;;f@ =0. (4.105)
Substitutingf(l) =a;VilogT + ;i Vilogn + vijV;u;, we find the first order gradient gives

deDija'k = deDijﬁk =0, (4.106)

because the right-hand-side of Eqg. (4.104) does not include thesporrding terms oV; T andV;n,
and

deDij’}/k|V|Uk = —T](Vin + ViU - géiijUk)
= -y (5"5k,- + 610k — gai j(slk) ViU . (4.107)
Therefore, we find
deDiijl =-7n (5|i5kj + 610k — géij&k) - (4.108)
If we usek = j andl =iin Eq. (4.108),
deDij)’ji = —77(5”5”' +06ij0ji — géij&j)
= -10y, (4.109)

where we notice the relatiodg = 6j; = 3 andsj;dji = 6jjéij = 3. Then, we find the formal expression
of the shear viscosity as

1
n= _1_odeDij7ji . (4.110)
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In the same way, we compare the definition of the heat flux Eq. (4.36) withhtregmenological
expression of the heat flux Eq. (4.39) and find

f dvSif = —kV;T — uVin. (4.111)
Substitutingf = f© + A1 to Eq. (4.111), we find the zero-th order gradient gives
f dvsif@=0. (4.112)
Substitutingf® = «;V;log T + 8;V; logn + %ijVjui, we find the first order gradient gives

deSWkI =0, (4.113)

because the right-hand-side of Eq. (4.111) does not include thesporréing term o¥;ux, and

deSia'jVj logT = —«ViT, (4.114)
deSiﬂjVj logn = —uvin. (4.115)
Egs. (4.114) and (4.115) reduce to
%fdvsiajVjT = —«ViT, (4.116)
%fdvsiﬁjvjn = —uvin, (4.117)
or
1
?deSia'j = —kdij , (4.118)
%fdvsiﬁj = —udjj . (4.119)
Then, we use = j in Egs. (4.118) and (4.119) and find
1
?deSia’i = -3, (4.120)
]ﬁ-deSi,Bi = -3u, (4.121)

where we noticey; = 3. Therefore, the formal expressions of the thermal conductivity aad th
codficient of the density gradient are respectively given by

1
K = —ﬁfdvsia'i, (4.122)

1
u —ﬁfdvsiﬂi. (4.123)

Now, we have the formal expressionsmgpfx andu which are the functions ofji, aj andg;,

respectively. The cdBcientsa;, 5 andy;; can be obtained by solving Egs. (4.101)-(4.103), where
the codficientsA;, Bj andC;; defined as Egs. (4.85)-(4.87) can be calculated by using the zero-th
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order distribution functiorf ©). To evaluate the transport diieients, we truncaté(® at the second
Sonine polynomials
1O~ T 4(0) {1+ aSa(c) - (4.124)
vr(t)3
Then, we will see the kinetic integrals Eq. (3.52) in Eqs. (4.101)-(4.1688)yax andu can be
written by the combination of the kinetic integrals. The evaluations of the trainspeficients are
straightforward, thus we refer the details in the reference and only gtefinal results

_ 15 [mT 3(4-3e)
! 20+e)(13-9c2 \ 7 (1 * maZ) ; (4.125)
75 T 797+ 211e
“ T 20+e@+ 7902 Vm (1 * maz) : (4.126)
B 750(1- €) \/f
H= A+ e©@+7¢19-39n02 Y 2m (1+Nh(eay) (4.127)

where we defined
_ 50201-3097% - 72537 + 44073

e = —g5a-9@a9-30©+ 79 (4.128)
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Chapter 5

Collisional transfer
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