"Stochastic Models for Granular Matter 2"

Stochastic models for granular liquids and solids

Kuniyasu Saitoh MSM, CTW University of Twente

Random variables

Random variable

Its evolution is always fluctuating, i.e. *stochastic*, around the mean.

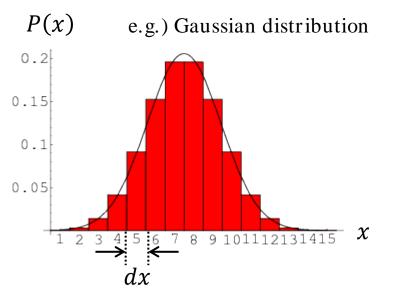
e.g.) Velocities of Brownian particles, stock prices, currency JPY/EUR, etc.

Probability distribution function (PDF)

"The probability that a random variable, x, is found between $x \sim x + dx$ " = P(x)dx

The sum of probabilities is one, i.e. *normalized*.

$$\int P(x)dx = 1$$



Chapman-Kolmogorov equation

Markov process

Random variables depend *only* on the previous values. e.g.) x_k at t_k is fully determined from x_{k-1} at t_{k-1} .

Chapman-Kolmogorov eq.

$$P(x_{k}, t_{k}) = \int W(x_{k}|x_{k-1})P(x_{k-1}, t_{k-1})dx_{k-1}$$

 $W(x_k|x_{k-1})$, transition probability: The probability for x_{k-1} to become x_k

e.g.) Markov-chain

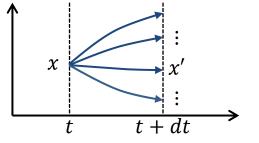
$$P(x_k, t_k) = \int \cdots \int W(x_k | x_{k-1}) W(x_{k-1} | x_{k-2}) \cdots W(x_2 | x_1) P(x_1, t_1) dx_{k-1} \cdots dx_1$$

Master equation

Chapman-Kolmogorov eq. $P(x, t + \Delta t) = \int W(x|x')P(x', t)dx'$

Transition probabilities are normalized to one:

 $\int W(x'|x)dx' = 1$



$$P(x, t + \Delta t) - P(x, t) = \int W(x|x')P(x', t)dx' - P(x, t) \int W(x'|x)dx'$$
$$= \int [W(x|x')P(x', t) - W(x'|x)P(x, t)]dx'$$

Transition rate
$$T(x|x') \equiv \lim_{\Delta t \to 0} \frac{W(x|x')}{\Delta t}$$

Master eq.

$$\frac{\partial}{\partial t}P(x,t) = \int [T(x|x')P(x',t) - T(x'|x)P(x,t)]dx'$$
gain loss

cf.) Note the similarity with the Boltzmann equation!

Fokker-Planck equation

Master eq. $\frac{\partial}{\partial t}P(x,t) = \int [T(x|x')P(x',t) - T(x'|x)P(x,t)]dx'$

Multiplied by an arbitrary function, h(x), and integrated over x,

$$\int h(x) \frac{\partial}{\partial t} P(x,t) dx = \iint [h(x)T(x|x')P(x',t) - h(x)T(x'|x)P(x,t)] dx dx'$$

=
$$\iint [h(x') - h(x)]T(x'|x)P(x,t) dx dx'$$

Exchange
x with x'

Taylor expansion, $\Delta x \equiv x' - x \ll 1$ (cf. van Kampen's small noise expansion).

$$h(x') - h(x) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^n h}{\partial x^n} \Delta x^n$$

Integrating the right-hand-side by parts,

$$\int h(x) \frac{\partial}{\partial t} P(x,t) dx = \iint \sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^n h}{\partial x^n} \Delta x^n T(x'|x) P(x,t) dx dx'$$
$$= \iint h(x) \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x^n} [\Delta x^n T(x'|x) P(x,t)] dx dx'$$

Fokker-Planck equation

The *n*-th moment of transition rate

$$\alpha_n(x) \equiv \int \Delta x^n T(x'|x) dx'$$
$$\int \frac{\partial}{\partial t} P(x,t) dx = \int h(x) \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x^n} [\alpha_n(x) P(x,t)] dx$$

Because h(x) is arbitrary, the rest of terms should be equal:

Kramers-Moyal expansion

$$\frac{\partial}{\partial t}P(x,t) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x^n} [\alpha_n(x)P(x,t)]$$

The expansion truncated at n = 2 is the so-called **Fokker-Planck eq.**

$$\frac{\partial}{\partial t}P(x,t) = -\frac{\partial}{\partial x}[\alpha_1(x)P(x,t)] + \frac{1}{2}\frac{\partial^2}{\partial x^2}[\alpha_2(x)P(x,t)]$$

"Drift" "Diffusion"

Fokker-Planck equation

e.g.) Fokker-Planck eq. with time dependent coefficients:

$$\frac{\partial}{\partial t}P(x,t) = -A(t)\frac{\partial}{\partial x}[xP(x,t)] + \frac{B(t)}{2}\frac{\partial^2}{\partial x^2}P(x,t)$$

The solution is a Gaussian distribution:

$$P(x,t) = \frac{1}{\sqrt{2\pi\rho}} \exp\left[-\frac{(x-\langle x \rangle)^2}{2\rho}\right]$$

The mean, $\langle x \rangle$, and variance, $\rho = \langle x^2 \rangle - \langle x \rangle^2$, are the solutions of the following equations:

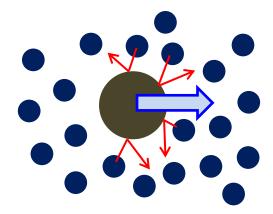
$$\frac{d}{dt}\langle x\rangle = A(t)\langle x\rangle$$
 $\frac{d}{dt}\rho = 2A(t)\rho + B(t)$

Exercise) Please show that the Gaussian is a solution of the Fokker-Planck eq. with time dependent coefficients.

"**Brownian particle** (a macroscopic sphere immersed into liquid)" is a physical model of stochastic process which can be described by the **Langevin eq.**:

$$m\frac{d}{dt}\mathbf{v}(t) = -m\gamma\mathbf{v}(t) + \mathbf{R}(t)$$

Drag force Random force (macro) (micro)



Uncorrelated "white noise"

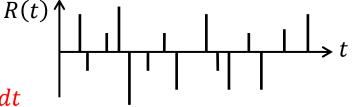
- Mean value is zero, $\langle \mathbf{R}(t) \rangle = 0$
- Correlation-time is zero, $\langle \mathbf{R}(t) \cdot \mathbf{R}(0) \rangle = 2R_0 \delta(t)$
- Integrating over $t = 0 \sim \infty$, $R_0 = \int_0^\infty \langle \mathbf{R}(t) \cdot \mathbf{R}(0) \rangle dt$
- Uncorrelated with previous velocities, $\langle \mathbf{R}(t) \cdot \mathbf{v}(0) \rangle = 0$

The solution is
$$\mathbf{v}(t) = \left[\mathbf{v}(0) + \frac{1}{m} \int_0^t e^{\gamma t'} \mathbf{R}(t') dt'\right]$$

e.g.) Velocity autocorrelation *decays exponentially*

 $\frac{\langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle}{\langle \mathbf{v}(0) \cdot \mathbf{v}(0) \rangle} = e^{-\gamma t}$

 $e^{-\gamma t}$



Squaring the solution and taking an statistical (ensemble) average,

$$\begin{split} \langle \mathbf{v}(t)^2 \rangle &= \langle \mathbf{v}(0)^2 \rangle e^{-2\gamma t} + \frac{2e^{-2\gamma t}}{m} \int_0^t e^{\gamma t'} \langle \mathbf{R}(t') \cdot \mathbf{v}(0) \rangle dt' + \frac{e^{-2\gamma t}}{m^2} \iint_0^t e^{\gamma (t'+t'')} \langle \mathbf{R}(t') \cdot \mathbf{R}(t'') \rangle dt' dt'' \\ &= \langle \mathbf{v}(0)^2 \rangle e^{-2\gamma t} + \frac{R_0}{m^2 \gamma} (1 - e^{-2\gamma t}) \end{split}$$

Thermal equilibrium:

$$\frac{m}{2}\langle v(t)^2 \rangle = \frac{m}{2}\langle v(0)^2 \rangle = \frac{3}{2}k_BT$$

$$\therefore \langle v(t)^2 \rangle = \langle v(0)^2 \rangle = \frac{3k_BT}{m}$$

$$\frac{3k_BT}{m} = \frac{3k_BT}{m}e^{-2\gamma t} + \frac{R_0}{m^2\gamma}(1 - e^{-2\gamma t}) \rightarrow \frac{R_0}{m^2\gamma} \quad (t \to \infty)$$

Fluctuation-dissipation theorem (FDT)

$$\gamma = \frac{R_0}{3mk_BT} = \frac{1}{3mk_BT} \int_0^\infty \langle \mathbf{R}(t) \cdot \mathbf{R}(0) \rangle dt$$

Multiplying the Langevin eq. by $\mathbf{r}(t)$ and taking a statistical (ensemble) average,

$$m\left(\mathbf{r}(t)\cdot\frac{d}{dt}\mathbf{v}(t)\right) = -m\gamma\langle\mathbf{r}(t)\cdot\mathbf{v}(t)\rangle + \langle\mathbf{r}(t)\cdot\mathbf{R}(t)\rangle$$

$$\mathbf{r} \cdot \frac{d}{dt} \mathbf{v} = \frac{1}{2} \frac{d^2}{dt^2} \mathbf{r}^2 - \mathbf{v}^2 \qquad \mathbf{r} \cdot \mathbf{v} = \frac{1}{2} \frac{d^2}{dt^2} \mathbf{r}^2$$

Random force is space-independent! $\langle \mathbf{r}(t) \cdot \mathbf{R}(t) \rangle = 0$

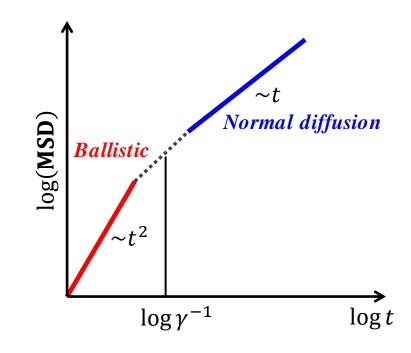
Differential equation of $\langle r(t)^2 \rangle$

$$\frac{d^2}{dt^2} \langle \mathbf{r}(t)^2 \rangle + \gamma \frac{d}{dt} \langle \mathbf{r}(t)^2 \rangle = 2 \langle \mathbf{v}(t)^2 \rangle = \frac{6k_B T}{m}$$

Mean-square displacement (MSD)

$$\therefore \langle \mathbf{r}(t)^2 \rangle = \frac{6k_BT}{m\gamma} \left(t - \frac{1}{\gamma} + \frac{1}{\gamma} e^{-\gamma t} \right)$$

$$\approx \begin{cases} \frac{3k_BT}{m} t^2 & \text{(short time scale, } \gamma t \ll 1) \\ \frac{6k_BT}{m\gamma} t & \text{(long time scale, } \gamma t \gg 1) \end{cases}$$



Diffusion coefficient

$$D \equiv \lim_{t \to \infty} \frac{\langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \rangle}{6t} = \frac{k_B T}{m\gamma}$$

$$\langle \mathbf{r}(t)^2 \rangle \approx \frac{6k_BT}{m\gamma}t$$

m(0) = 0

Time-integral of the velocity autocorrelation function

$$\int_0^\infty \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle dt = \langle \mathbf{v}(0)^2 \rangle \int_0^\infty e^{-\gamma t} dt = \frac{3k_B T}{m\gamma}$$

Green-Kubo formula

$$D = \frac{1}{3} \int_0^\infty \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle dt$$

<u>Note the similarity with the FDT!</u> Both are given by time-integrals of autocorrelation!

cf.) Green-Kubo formula for transport coefficients:

Shear viscosity
$$\eta = \lim_{|\mathbf{k}| \to 0} \frac{1}{k_B T V} \int_0^\infty \langle \boldsymbol{\sigma}_{\mathbf{k}}^{\perp}(t) \cdot \boldsymbol{\sigma}_{\mathbf{k}}^{\perp}(0) \rangle dt$$

cf.) Long-time tails

 $\langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \sim t^{-d/2}$ (in a long-time limit, in *d*-dimension)

Langevin equation (1-dimension)

$$\frac{d}{dt}x = -\gamma x + R(t) \qquad \therefore \Delta x \approx -\gamma x \Delta t + \int_{t}^{t+\Delta t} \frac{R(t')dt'}{N}$$
NOT $R(t)\Delta t$

$$\begin{array}{c|c}
 & \underbrace{\text{``slow variable''}}_{\text{``fast variable''}} x(t) \\
 & \underbrace{\text{``fast variable''}}_{t \text{variable''}} x(t) \\
 & \underbrace{\text{``fast variable''}}_{t \text{variable'''}} x(t) \\
 & \underbrace{\text{``fast variable'''}}_{t \text{variable'''}} x(t) \\$$

The *n*-th moment

$$\alpha_{n}(x) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int \Delta x^{n} W(x'|x) dx' = \lim_{\Delta t \to 0} \frac{\langle \Delta x^{n} \rangle}{\Delta t}$$

Take an average over all possible x'
e.g.)

$$\alpha_{1}(x) = \lim_{\Delta t \to 0} \frac{\langle \Delta x \rangle}{\Delta t} = \lim_{\Delta t \to 0} \left[-\gamma x + \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \langle R(t') \rangle dt' \right] = -\gamma x$$

$$\langle \cdots \rangle \text{ does not work on } x$$

$$\alpha_{2}(x) = \lim_{\Delta t \to 0} \frac{\langle \Delta x^{2} \rangle}{\Delta t} = \lim_{\Delta t \to 0} \left[(\gamma x)^{2} \Delta t - 2\gamma x \int_{t}^{t+\Delta t} \langle R(t') \rangle dt' + \frac{1}{\Delta t} \iint_{t}^{t+\Delta t} \langle R(t') \rangle dt' dt'' \right] = R_{0}$$

Fokker-Planck eq.

$$\frac{\partial}{\partial t}P(x,t) = \gamma \frac{\partial}{\partial x}[xP(x,t)] + \frac{R_0}{2}\frac{\partial^2}{\partial x^2}P(x,t)$$

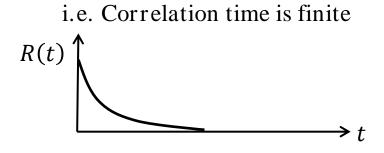
Generalized Langevin equation

$$m\frac{d}{dt}\mathbf{v}(t) = -m\int_0^t \gamma(t-t')\mathbf{v}(t')dt' + \mathbf{R}(t)$$

Viscosity coefficient has "memory"

Correlated "colored noise"

$$\langle \mathbf{R}(t) \cdot \mathbf{R}(0) \rangle = mk_B T \boldsymbol{\gamma}(t)$$



Multiplying the generalized Langevin eq. by $\mathbf{v}(0)$ and taking statistical average, the velocity autocorrelation function obeys

$$\frac{d}{dt}\langle \mathbf{v}(t)\cdot\mathbf{v}(0)\rangle = \int_0^t \gamma(t-t')\langle \mathbf{v}(t')\cdot\mathbf{v}(0)\rangle dt'$$

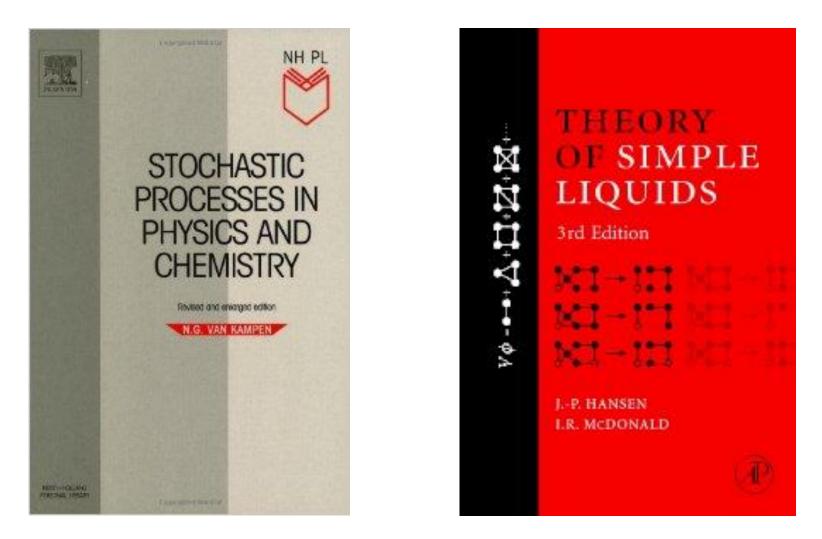
e.g.)
$$\gamma(t) = \gamma(0)e^{-t/\tau}$$

$$\frac{\langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle}{\langle \mathbf{v}(0) \cdot \mathbf{v}(0) \rangle} = \frac{\gamma_1 e^{-\gamma_2 t} - \gamma_2 e^{-\gamma_1 t}}{\gamma_1 - \gamma_2}$$

Mixing two relaxation time scales, γ_1^{-1} and γ_2^{-1}

References

- 1. N.G. van Kampen, "Stochastic Processes in Physics and Chemistry", the 3rd edition.
- 2. J.-P. Hansen and I.R. McDonald, "Theory of Simple Liquids", the 3rd edition.



References

K. Saitoh, V. Magnanimo, and S. Luding,

"A Master equation for the probability distribution functions of forces in soft particle packings"

Soft Matter 11 (2015) 1253

Featured as "2015 Soft Matter Hot Papers"

http://pubs.rsc.org/en/Content/ ArticleLanding/2015/SM/C4SM02452D

