Introduction to topological data analysis

Ippei Obayashi

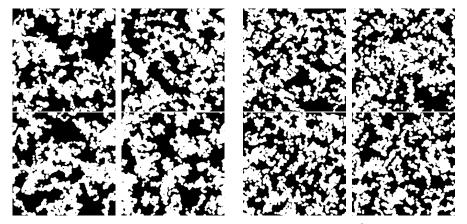
Adavnced Institute for Materials Research, Tohoku University

Jan. 12, 2018

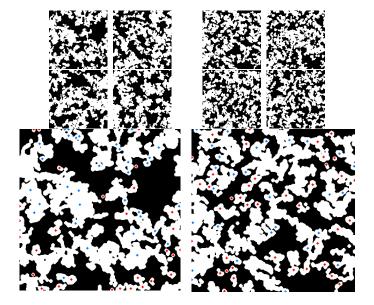
Persistent homology

- Topological Data Analysis (TDA)
 - Data analysis methods using topology from mathematics
 - Characterize the shape of data quantitatively
 - ★ By using connected components, rings, cavities, etc.
- Persistent homology (PH) is a main tool of TDA
 - The key idea is "Homology" from mathematics
 - Gives a good descriptor for the shape of data (called a persistence diagram)
- Rapidly developed in 21st century
 - Mathematical theories
 - Software
 - Applications to materials science, sensor network, phylogenetic network, etc.

Example 1



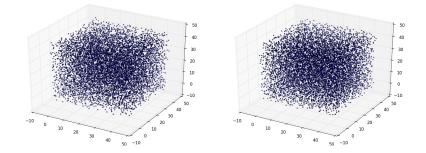
These images are classified into two groups (left 4 images and right 4 images). Do you find the characteristic shape to distinguish the two groups?



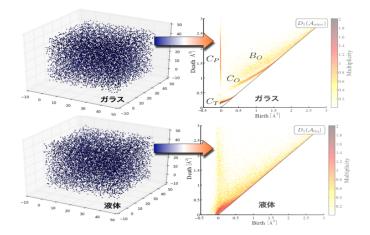
Shapes around blue dots are "typical" for left images, and red dots for right images

I. Obayashi (AIMR (Tohoku U.))

Example 2



Atomic configurations of amorphous silica (SiO_2) and liquid silica. Do you find the difference?



From Y. Hiraoka, et al., PNAS 113(26):7035-40 (2016)

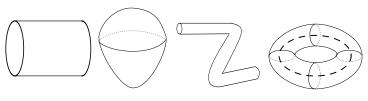
Persistence diagrams can capture the difference clearly

I. Obayashi (AIMR (Tohoku U.))

Introduction to TDA

Homology

- Connected components, rings, and cavities are mathematically formalized by homology.
- Algebra is used to formalize such geometric structures
- There are many types of holes and characterized by "dimension"

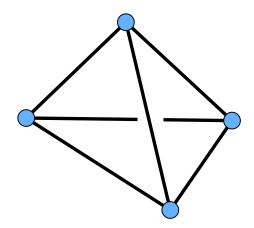


dim 1: 1dim 1: 0dim 1: 1dim 1: 2dim 2: 0dim 2: 1dim 2: 0dim 2: 1

1 dim: You can see the inside from outside 2 dim: You cannot see

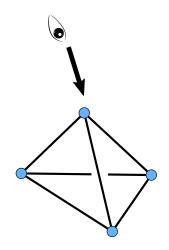
How to count rings

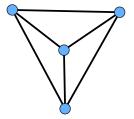
How many rings/holes in the tetrahedron skelton?



Four?

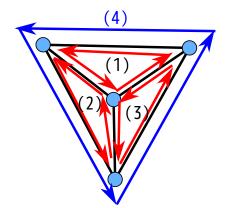
But if you see the tetrahedron from upside, the number of rings is three.





What happened?

I. Obayashi (AIMR (Tohoku U.))



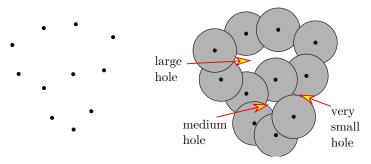
We cosider the addition of rings. Then (1) + (2) + (3) = (4) since two arrows with opposite directions are vanished when added. This means that the four rings are not *linearly independent*. We can formalize the number of linearly independent rings by linear

algebra. I. Obayashi (AIMR (Tohoku U.))

Persistent homology

- Characterizing the shape of data is a difficult problem
 - Especially, for 3D data
- Homology is one possible tool for that purpose, but homology drops the details about the shape of data too much
 - Homology can only count the number of holes
- We want more information about the shape of data with easy-to-use form
- Computational homology is proposed in 20 century, but it is sensitive to noise
- \rightarrow using increasing sequence (called filtration)

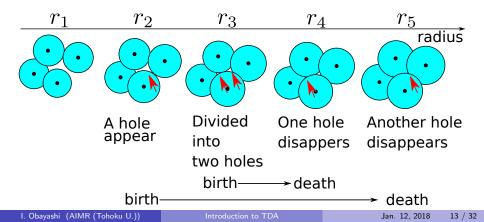
r-Ball model



- Input data is a set of points (called a point cloud)
- The points themselves have no "hole", but there are some hole-like structures
- Put a disc whose radius is r onto each point
- There are three holes
 - Homology can detect the number of holes

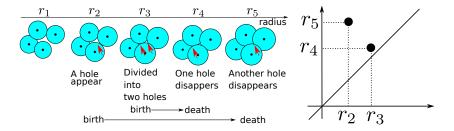
Filtration

By increasing the radii r gradually, many holes appear and disappear. The theory of PH can make mathematically proper pairs of the radii of appearance and disappearance.



Persistence diagram

The pairs are called birth-death pairs. The pairs are visualized by a scatter plot on (x, y)-plane.



This diagram visualizes 1-dimensional persistent homology. This diagram is called persistence diagram.

• We can apply PH to any dimensional data.

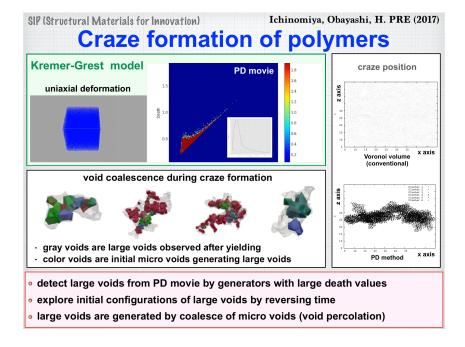
- Practical for 2D and 3D
- Because it is difficult to understand high dimensional "holes"
- Since it is hard to characterize the shape of 3D data, the application to 3D data is especially useful
- We can apply PH to various kinds of increasing sequences
 - We can apply PH other than point clouds
 - Bitmap data
 - ▶ PH is useful for 3D bitmap data such as X-ray CT data

Mathematics of PH

PH relates various fields

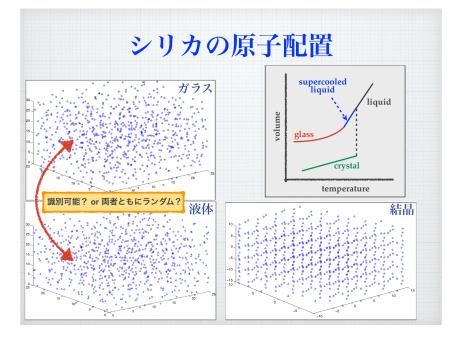
- Algebraic topology
- Representation theory
- Computational geometry
- Combinatorics
- Probability theory
- Statistics

Various studies about fundamental theories are important



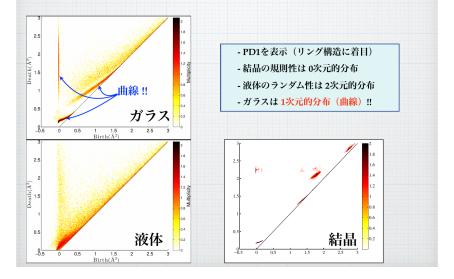
Amorphous Silica

- What is glass?
- Not liquid, not solid, but something in-between
- Atomic configuration looks random
- But it maintains rigidity
- We require further geometric understandindgs of atomic configurations

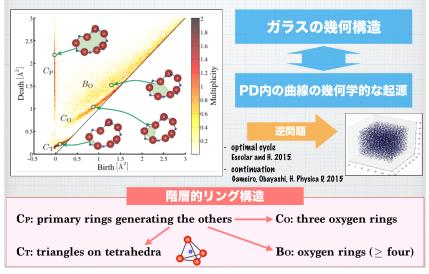


Y.H., T. Nakamura et al. PNAS (2016)

シリカのパーシステント図



ガラスの階層的幾何構造

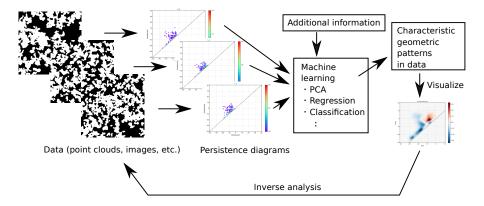


I. Obayashi (AIMR (Tohoku U.))

Introduction to TDA

Y.H., T. Nakamura et al. PNAS (2016)

Combination of statistics/machine learning



Software

For the practical data analysis using PH, analysis software is important.

I will introduce Homcloud.

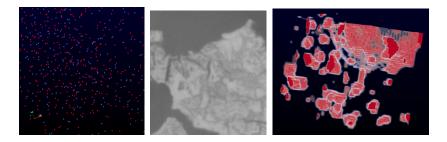
Softwares for PH

Various analysis softwares are developed for their own purpose and interest

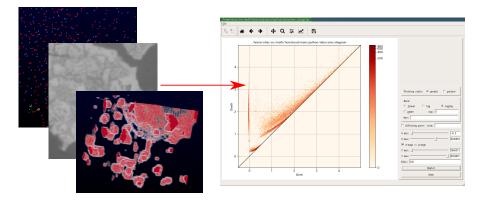
- Gudhi
- dipha, phat, ripser
- eirine
- RIVET
- JavaPlex
- Perseus
- Dionysus
 - :

Homcloud

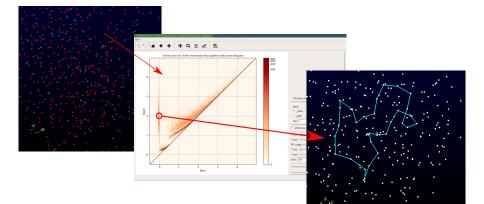
- Focus on applications, especially to materials science
 - Data analysis for molecular dynamical simulations
 - Images from electric microscopy, 3D images from X-ray CT



We can compute persistence diagrams from various sources (point clouds, 2D/3D bitmap data)



Inverse analysis



Homcloud as a platform for the development of new methods

- Getting an idea → Writing a code and trying it → If it works, we consider a background theory
- We can quickly introduce such a new idea into data analysis
 - Collaborators also use the idea quickly
- Try ideas found in papers by other researchers

• I develop the software and analyze data together

- Mainly data from materials science
 - ★ Provided by collaborators
- Dogfooding
- Do not implement unused functionality
- Collaborators also use Homcloud
- Implemented mainly in python
 - Python is often used for data science

Homcloud Demo

Future plan of Homcloud

- Better user interface
- Performance improvement
- Implement new methods
 - Parallel to theoretical researches
- Publish in this winter
 - http://www.wpi-aimr.tohoku.ac.jp/hiraoka_ labo/homcloud.html
- If you want to use Homcloud, please contact with us: ippei.obayashi.d8@tohoku.ac.jp

Wrap up

- Persistent homology enable us to analyze the shape of data quantitatively and effectively by using the power of the mathematical theory of topology
 - A persistence diagram is a good descriptor for the shape of data
 - Applications to 3D data is most effective, in my opinion
- There are many applications
 - We mainly apply persistent homology to materials science
 - Meteology
 - Brain science, life science, etc.
- Combination of theoretical researches, software development, and applications is important