Topological Data Analysis on Materials Science

Yasuaki Hiraoka

WPI-AIMR, Tohoku University

Supported by

JST CREST SIP Structural Materials for Innovation JST Innovation Hub MI^2I NEDO

Background : Shape of Data

Data-driven science studies potential values of big and complicated data for machine learning and AI

develop mathematical theory for shape of data

Idea : Shape of Data

Input data

resolution of data

- fattening point data
- changing resolution for multiscale analysis
- characterization using birth & death of holes

(ref. Edelsbrunner, Mucke)

New math: Persistent homology

Persistent homology of digital image

Characterize grayscale/spatial persistent holes in images

Edelsbrunner & Mücke '94

X4

X5

Хз

X2

 X_1

Alpha filtration

- $X = \{x_i \in \mathbb{R}^m \mid i = 1, \dots, n\}$: point cloud
- $\mathbf{R}^m = \bigcup_i V_i$: Voronoi decomp.
- $\cup_i B_i(r) = \cup_i (B_i(r) \cap V_i)$
- Alpha shape $\mathcal{A}(X, r)$: dual of $\{B_i(r) \cap V_i \mid i = 1, ..., n\}$ (simplicial complex)

• Nerve theorem: $\cup_i B_i(r) \simeq \mathcal{A}(X, r)$

• $\mathcal{A}(X, r) \subset \mathcal{A}(X, s)$ for r < s

easy to analyze by computers

filtration: changing resolution

Edelsbrunner, Letscher, Zomorodian, Carlsson, de Silva

Materials TDA WPI-AIMR, CREST, SIP, MI^2I, NEDO

Atomic configurations of silica (SiO2)

Hierarchical Structural Analysis of Silica Glass with Nakamura, Hirata, Escolar, Matsue, Nishiura PNAS (2016) CREST TDA, SIP

MD and PD₁

Inverse Analysis

Glass contains curves in PD

- Curves express geometric constraints (orders) of atomic configurations
- Inverse analysis reveals hierarchical ring structures
- PD multi-scale analysis characterizes inter-tetrahedral O-O orders (curve Co)
- Useful tool for structural analysis

Y.H., et al. PNAS (2016)

Curves and constrains

0-0-0 structures (MRO)

- * O-O-O ring constrains are discovered
- necessary to study both distance and angle distributions simultaneously (conventional methods cannot detect)