Applied Algebraic Topology 2017 August 10, Sapporo, Japan http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/aat2017/index.html

Characterizing and Modeling Neural Dynamic Complexity

Taro Toyoizumi RIKEN Brain Science Institute

Characterizing neural dynamic complexity

Recording technology has been advanced.

Ahrens and Keller 2013

Yet, big data challenge our understanding.

Neural activity is variable.

Pachitariu et al. 2015

How to characterize dynamic complexity?

PCA is often used to characterize the complexity, i.e., dimensionality of the dynamics.

Mante et al. 2013

But the method does not capture

- How the complexity is generated by the network.
- Nonlinear properties

Nonlinearity can obscure PCA dimensions

We develop a model-free, nonlinear method that can estimate fundamental **dynamical complexity** and show that it is related to **information processing hierarchy**.

Delay embedding — a principle in deterministic dynamical systems —

The Takens embedding theorem guarantees a mapping with one-to-one correspondence between a global state and a local state in delay-coordinates (with enough dimensions).

Cross-embedding reveals causal network interactions

Sugihara et al. 2012

Generically, the state of the upstream node is completely specified by the observation of the downstream node.

Embedding can be used to define the complexity: Embedding requires sufficient dimensionality

Nice principle.

In practice, the estimated dimension is sensitive to the time bin -- the estimation is biased if observations are coherent with the dynamics. We propose a simple extension: embedding timeseries in **randomized** delay coordinates.

This allows us to reliably and simultaneously estimate

the **complexity** of each node and **information flow** between pairs of nodes.

Cross-embedding in randomized delay-coordinates for accurate dimensionality estimation

Tajima et al. 2015

The downstream attractor must have higher dimensions than the upstream attractor.

Randomized delay-coordinates enable robust estimation of dynamical complexity.

An application to neural activity data

Large-scale ECoG recording from monkeys

Signatures of the awake brain dynamics

Consistency across conditions

A hierarchy of cortical dynamics: The complexity increases along cross-areal information flow

Tajima et al. 2015

Summary 1

- We extended the embedding method for a model-free nonlinear characterization of neural dynamics.
- By randomized embedding coordinates, our method robustly extracts both dynamic complexity and information flow across brain regions.
- The approach reveals a new hierarchical organization of brain areas based on dynamical complexity.
- The approach is readily applicable for general largescale network dynamics.

Characterizing dynamic complexity

Modeling dynamic complexity

The brain is active even at rest.

resting BOLD signal

Fox and Greicius 2010

How to model neural variability?

Hypothesis: variability due to "high-dimensional chaos"

Dynamical behavior of a neuron is reliable in isolation.

Mainen and Sejnowski 1995

 One hypothesis is that the chaotic activity of a network of neurons produces the stochastic nature of background activity seen in vivo (van Vreeswijik and Sompolinsky 1996).

Alternative hypothesis: variability due to noise

Stochastic models have played an important role in the literature.

Stochastic networks for studying information coding

Stochastic networks for studying plasticity

 θ_{-} . The linear Poisson neuron generates spikes stochastically with stochastic firing intensity v^{post} proportional (with parameter $1/\alpha$) to u^s , hence the probability of firing in a short time between t and $t + \Delta$ is $P_F(t;t+\Delta) = v^{\text{post}}(t)\Delta = u^s(t)\frac{\Delta}{\alpha}$.

How does the origin of neural variability affect neural coding and plasticity?

Summary 2

- We have proposed a one-parameter family of networks, interpolating between the deterministic and stochastic networks, that share the same spontaneous activity.
- The response to external stimulus monotonically increases with the coupling strengths in this family.
- The consequence of plasticity depends on the origin of variability.
- The deterministic network with chaotic dynamics can perform near optimal Monte Carlo sampling by integrating sensory cues.

Neural attractors can represent

- M_x x₂ x₂
- state-dependent hierarchical information flow
- neural sensitivity to sensory input
- efficiency of synaptic plasticity and learning
- sampling based on integrated information

Topological characterization of neural attractors would shed light on the information used in these processes...

Acknowledgement

Collaborators

Embedding:

- Satohiro Tajima (RIKEN BSI / U. Geneva)
- Toru Yanagawa (RIKEN BSI)
- Naotaka Fujii (RIKEN BSI)

Chaotic sampling:

- Sakyashingha Dasgupta (RIKEN BSI / IBM)
- Isao Nishikawa (U Tokyo)
- Kazuyuki Aihara (U Tokyo)
- Funding

