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Fig. 1 left) 3D visualisation of a partially crystallised packing
containing 200,000 beads. right) MegaTwo

opents in topological data analysis has resulted in new tools
that allows us to interrogate the geometry, topology and me-
chanics of granular systems at the grain scale? ? ? .

In this paper we demonstrate that new ideas associated with
computational topology provide an efficient, robust and faith-
ful approach to implementing tractable models to decipher
the complexity of the spatial structures of the configurational
space of granular systems. More specifically, we present a
novel topological characterisation tool, Persistent Homology
(PH), to study dense granular systems. We show that PH
is able to explore and characterise the configurational phase
space of disordered and partially ordered macroscopic gran-
ular systems by identifying key features specific to granular
systems.

We first detail the experimental systems and the imaging
procedure followed by the mathematical description of the
persistent homology, and in particular its application for gran-
ular systems.

2 Experiment and methodology

In this section we briefly present the experimental procedure
and the tools that we utilise to acquire experimental data. Fur-
ther we describe the underlying mathematical technique to in-
terrogate the experimental data to reveal hidden topological
structure in data.

2.1 Experimental

We analyse two sets of experimental granular packings each
containing over 150,000 monosized acrylic beads (diameter d
= 1 mm, polydispersity = 0.025 mm): i) a partially ordered
packing produced using a vibrational protocol with a pack-
ing density of f = 0.685 (see Fig. ??a) and ii) a fully dis-
ordered packing produced by pouring beads into a cylindri-
cal container with a packing density of f = 0.635 (see Fig.
??b). Details of the experimental procedure can be found

elsewhere? ? . Our experiments harness X-ray Computed To-
mography (XCT) and three-dimensional (3D) image analysis
to accurately determine grain centres with the precision of
(< 10�3µm) and grain’s diameter with precisions greater than
⇡ 10�2µm? .

Figure ??(a) shows a 3D rendering of such a partially crys-
tallized structure. The bright regions correspond to locally dis-
ordered aggregates of beads; a disordered core and boundaries
between different crystal domains are thus highlighted. Both
random and crystalline phases coexist in the packing. Figure
??(b) shows the disordered packing.

Helical XCT is utilised to image the internal 3D structure of
the packings with a spatial resolution of 30 microns? ? ? . Our
analyses have been carried out over the entire packing struc-
ture as well as over non-overlapping cubical subsets each con-
taining 4000 beads. These subsets are from the inner region of
the packings, four sphere diameters away from the container
walls. Contrary to the disordered packing, the partially or-
dered packing shows spatial structural heterogeneity (see Fig
??a). Subsets from the partially ordered packing have a wide
range of volume fractions ranging from f = 0.58 to f = 0.73.

2.2 Persistant Homology

Persistent homology? is a technique for quantifying topolog-
ical structures in data? ? . In the past ten years it has become
an increasingly useful tool for studying shape in application
areas from dynamical systems? ? to high-dimensional data-
mining? ? to digital images? ? ? ? . Homology is an algebraic
tool for studying topological structure. The sizes of the ho-
mology groups are called the Betti numbers and these quan-
tify connectivity in each dimension. For objects embedded in
three-dimensional space, the 0-dimensional Betti number, b0
is the number of pieces the object has, b1 is the number of
independent 1-dimensional loops through the space, and b2
counts the number of enclosed voids in the object. Persistent
homology extends traditional homology by tracking how the
homology groups change as an object grows.

Each homology class has two values, which are calcuated
by varying a filtration parameter associated with it (see Sup-
plimental): a birth value and a death value. It is common
practice to represent this information in a Persistence Diagram
(PD) for each dimension of homology. PDk contains all pairs
(b,d), b  d, associated with a persistent homology class in
dimension k.

The bead packing data is specified by coordinates for the
centre of each bead (and its radius), extracted from micro-CT
images. For simplicity, assume the beads are mono-disperse,
with radius r = 0.5mm, and consider the union of balls of ra-
dius a growing around each bead centre, X(a) =

S
B(x,a).

The topology of X(a) is conveniently captured by the alpha
shape, a subset of the Delaunay tessellation (DT) (see Suppli-
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MD and PD1

Hierarchical Structural Analysis of Silica Glass
with Nakamura, Hirata, Escolar, Matsue, Nishiura           PNAS (2016)        CREST TDA, SIP
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[Å2]

[Å
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Inverse Analysis of glass PD

Glass contains curves in PD
Curves express geometric constraints  
(orders) of atomic configurations
Inverse analysis reveals hierarchical ring 
structures
PD multi-scale analysis characterizes 
inter-tetrahedral O-O orders (curve Co)
Useful tool for structural analysis
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iron oxide calcium ferrite 
(CF)

X-CT of iron-ore sinters background

Materials Informatics: Machine Learning on PDs
with Kimura (KEK), Obayashi (AIMR)     SIP, CREST TDA

large amount of experimental images 
are available
want to find a compact descriptor to 
connect images to materials properties 
(conductivity, cracks, elasticity, etc)

 our approach
PD for compact descriptor of images 
ML for combining with big data

LASSO (Sparse PD)

Trigger site of micro 
cracks are supposed to be 
related to hetero-structure 
of iron oxide and CF. No 
descriptors have been 
developed so far. detected trigger site of cracks

inverse



- PDs from simulation/experiment depend on the system size 
- Those system sizes are usually very small scale (          ) 

comparing to the real materials (        ) 
- We need to consider a scaling limit to study universality 
- Does there exists a limiting PD as the system size             ?

Mathematical Motivation

L

L ! 1

1. Study limiting behaviors of Betti numbers and persistence 
diagrams on random point processes and cubical sets in  

2. Machine learnings on PDs: sparse PDs as dual vectors

Content of today’s talk

Rd
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Limit theorems for random cubical homology
Y. H. and K. Tsunoda, arXiv:1612.08485



Random cubical set in 

: the set of all elementary cubes in Kd Rd

an elementary cube:

⌦ = [0, 1]K
d

: configuration space, ⌦ 3 ! = {!Q}Q2Kd : a configuration

Q = I1 ⇥ · · ·⇥ Id, Ik = [lk, lk + 1] or Ik = [lk, lk]
lk 2 Z

Rd
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: Probability measure on            satisfying P

- stationarity:  
- ergodicity: 

(⌦,F)

P (⌧�1
x

A) = P (A), 8x 2 Zd

, A 2 F
⌧

�1
x

A = A, 8x 2 Zd

=) P (A) = 0 or 1

ex: product measure, Bernoulli (Linial-Meshulam), Costa-Farber, etc

random cubical set of     at   : X(t) =
[

{Q 2 Kd : !Q  t}!

Xn(t) = X(t) \ ⇤n, ⇤n = [�n, n]d

random filtration: X = {X(t)}0t1

⇢ ⇢

t

X(0.6)

⇢ ⇢
(�n,�n)

(n, n)(�n, n)

(n,�n)

(0  t  1)



Theorem (LLN): Let                              . For each                 and 
there exists a non-random constant          s.t. 

�n
q (t) = �q(X

n(t)) t 2 [0, 1]

�̂q(t)

as                  almost surely.
�n
q (t)

|⇤n|
�! �̂q(t) n �! 1

Limit theorems for random cubical homology
Y. H. and K. Tsunoda, arXiv:1612.08485

LK = {Q ⇢ ⇤K}Let                            . For              , define random cubical setsL � LK

XK
L (t) :=

[
{Q 2 L \ LK : !Q  t}

Let                       be the set of all configurations satisfying

XL(t) :=
[

{Q 2 L : !Q  t}

⌦q(K, t) ⇢ ⌦

�q(XL(t)) � 1 + �q(X
K
L (t))

for any finite subset              with              .L ⇢ Kd LK ⇢ L

L
LK

0  q < d

Proposition (positivity): If there exists            with                          , 
then                .

K > 0 P (⌦q(K, t)) > 0

�̂q(t) > 0



Proof of LLN                             :�n
q (t)/|⇤n| ! �̂q(t)

Limit theorems for random cubical homology
Y. H. and K. Tsunoda, arXiv:1612.08485

�̂q(t) := lim
1

|⇤n|
E[�n

q (t)]Set                                       

�n n

2K

2(K + 1)

n

m grid

Fix            and take            s.t.K 2 N m 2 N
(K + 1)m  n < (K + 1)(m+ 1)

! 0 by 

! 0 by multivariate ergodic  
theorem

Set                                       Xm,K(t) :=
�
Q 2 Kd : !Q  t, Q ⇢

 

�m,K
q (t) := �q(X

m,K(t))

|
�n
q (t)

|⇤n|
� �̂q(t)|  |

�n
q (t)

|⇤n|
�

�n
q (t)

|⇤K |md
|

+|
�m,K
q (t)

|⇤K |md
� �̂q(t)|

+|
�n
q (t)

|⇤K |md
�

�m,K
q (t)

|⇤K |md
|

Then

⇤n = [�n, n]d

! 0 by |�q(Y )� �q(X)|  #Y �#X

 3d|Z| (Y \X ⇢ Z)

(X ⇢ Y )



lim
n!1

Ln
q

|⇤n|
=

Z 1

0
�̂q(t)dtCorollary (LLN):                                        almost surely.

P (!Q  t)Theorem: Assume the marginal distribution function                  is 
continuous in  . Then, t

lim
n!1

sup
t2[0,1]

| 1

|⇤n|
�n
q (t)� �̂q(t)| = 0 almost surely.

Ln
q =

Z 1

0
�n
q (t)dtLifetime sum on                       :

- = lifetime sum of the q-th persistent homology on  
- plays an important role for higher dim generalization of   

Frieze’s        -theorem (H. and Shirai. Rand. Str. Alg. 2017)⇣(3)

Limit theorems for random cubical homology
Y. H. and K. Tsunoda, arXiv:1612.08485

⇤n = [�n, n]d

- For LLN, we need a uniform convergence. 

lim
n

Ln
q

|⇤n|
= lim

n

Z 1

0

�n
q (t)

|⇤n|
dt =

Z 1

0
lim
n

�n
q (t)

|⇤n|
dt =

Z 1

0
�̂q(t)dt

but not a.s. convergence in general (    continuous parameter   )t
dominated convergence

LLN for Betti

*

- If we ignore the exceptional sets of a.s. convergence,

�n
q (t) = �q(X

n(t))

Xn = {Xn(t)}0t1
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Limit theorem for persistence diagrams
T. K. Duy, T. Shirai, and Y. H., arXiv:1612.08371
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Limit theorem for Betti number

Assume that     is a stationary point process having all finite moments. 
Then, there exists a constant      such that 

In addition, if    is ergodic, then  

holds almost surely.

�

�

as

as

L��.

L��

�̂r
q

�q(C(��L , r))
Ld

�� �̂r
q

Theorem (Yogeshwaran, Subag, Adler. 2015): 

�

�A

C(�A, r)

: point process on       (locally finite random counting measure)Rd

⇤L = [�L/2, L/2)d : window in Rd

: restriction of     on A ⇢ Rd�

: Čech complex built on      with radius  �A r

E[�q(C(�⇤L , r))]

Ld
�! �̂r

q



Limit theorem for persistence diagrams
T. K. Duy, T. Shirai, and Y. H., arXiv:1612.08371

Assume that    is a stationary point process having all finite moments.  
Let        be the point process on     corresponding to the q-th PD 
for             . Then, there exists a unique Radon measure     on     s.t. 

In addition, if    is ergodic, then  

holds almost surely.

�

� =

birth

de
at

h

⇠q,L �
K(�⇤L)

Theorem (LLN):

�q �

1
Ld

�q,L
v�� �q

as

as

L��.

L��

1

Ld
E[⇠q,L]

v�! ⌫q

�

1. Show a LLN for persistence Betti numbers 
2. Apply random measure theory

Sketch of proof

0  b < d  1

(r,s)

�

�r,s
q



3. there is an increasing function                               s.t.

Let                                  be a function satisfying

Geometric model

F (Rd) : the collection of all finite subsets in Rd

 : F (Rd) ! [0,1)

(�)  (⌧) � ⇢ ⌧for1.
2. translation invariant: (� + x) = (�) for 8x 2 Rd

⇢ : [0,1) ! [0,1)

kx� yk  ⇢({x, y})

Given   , define a filtration                                                  
of simplicial complexes on a point process     by

K(�) = {K(�, t) : 0  t < 1}
�

K(�, t) = {� ⇢ � : (�)  t}

Čech filtration: ({x0, . . . , xk}) = inf

w2Rd
max

0ik
kxi � wk

Rips filtration:
({x0, . . . , xk}) = max

0i<jk

kxi � xjk
2

(called    -filtration)







Stability for κ-filtration and support of limiting measure

Suppose that     is Lipschitz w.r.t      , i.e., there exists           s.t.
Theorem (Stability):

 dH � > 0

|(�)� (�0)|  �dH(�,�0) for                          .

Then, dB(Dq(,�), Dq(,�
0))  �dH(�,�0) for                          .�,�0 2 F (Rd)

8�,�0 2 F (Rd)

is realizable(b, d) 2 � 9� 2 F (Rd)                      s.t.               (b, d) 2 Dq(,�)

: the set of all realizable pointsRq = Rq()

: the limiting persistence diagram (unique Radon measure  
  in Theorem (LLN))

⌫q

Let    be Lipschitz,    be a stationary point process, and     be its 
limiting PD. If     satisfies conditions about absolute continuity w.r.t 
Poisson p.p., then                            .  

Theorem (Support and realizability):
 � ⌫q

�
supp ⌫q = Rq()

Corollary (Support of Čech limiting PD)
For Čech PD generated by Poisson/Ginibre in      , Rd

supp ⌫q = �, q = 1, . . . , d� 1



Background

Statistical inverse analysis on persistence diagram

Want to extract statistical features in the dataset of PDs
Vectorization of PDs are necessary for applying machine learnings 
(persistence landscape, persistence image, PSSK, PWGK, etc)

Dataset of inputs Dataset of PDs Machine learning

- SVM 
- PCA 
- Regression 
- Anomaly detection 
- Time series 
- etc

Want to study the original data space (inverse problems)

Study machine learning models based on persistence diagrams
Vectorization: persistence image
ML: Logistic regression, Linear regression (LASSO/RIDGE)

with Obayashi (AIMR)     arXiv:1706.10082   CREST TDA, SIP, NEDO, MI^2

PDs are good descriptors in materials science

direct direct

inverseinverse



Given a training set                                                     ,  
find optimal              and           for the model 

Logistic regression of persistent homology 

L(w, b) = � 1

M

MX

i=1

{yi log ŷi + (1� yi) log(1� ŷi)}+ �R(w)

ŷi = g(w · xi + b)

Logistic regression:
{(xi, yi) : xi 2 Rn

, yi 2 {0, 1}}Mi=1

w 2 Rn b 2 R

find the minimizer

g(z) = 1/(e�z + 1)
P (y = 1 | w, b) = g(w · x+ b),

P (y = 0 | w, b) = 1� P (y = 1 | w, b) = g(�w · x� b),

learned vector     can be expressed by PD (called learned PD)

explanatory variable             : (vectorized) persistence diagramx 2 Rn

response variable                 : (binary) classification
w

y 2 {0, 1}

generators in the learned PD identify the relevant geometric  
features for classification

regularization
LASSO: RIDGE: R(w) = ||w||1 R(w) =

1

2
||w||22

(sparse PD analysis) (nice math property)
(a) (b)

(c) (d)



Performance of RIDGE logistic regressions: Easy example

Model A (200 trainings, 100 tests) Model B (200 trainings, 100 tests)

y = 0 y = 1

Classification result (mean accuracy) = 100%



Performance of RIDGE logistic regressions: Easy example

Red (resp. blue) generators 
contribute to 1 (resp. 0) for 
classification

(a)

(c-1) (c-2) (c-3) (c-4)

(b)

(a)

(c-1) (c-2) (c-3) (c-4)

(b)

Geometric features contributing for classification (via inverse prob.)

Learned persistence diagram and its thresholding (with RIDGE)

P (y = 1 | w, b) = g(w · x+ b),

P (y = 0 | w, b) = 1� P (y = 1 | w, b) = g(�w · x� b),

g(z) = 1/(e�z + 1)Logistic regression model:



(simple)

Performance of LASSO/RIDGE logistic regressions: Easy example

(a) (b) (c)

<LASSO>

<RIDGE>
RIDGE/LASSO learned PDs and overfitting parameters

�(complex)

sparse persistence diagram shows most effective generators for learning



Performance of logistic regressions: Hard example

Classification result (mean accuracy) = 92%



(simple)

Performance of RIDGE logistic regressions: Hard example

<RIDGE>

RIDGE learned PDs and overfitting parameters

�(complex)

(a) (b)

(cross validation)



Performance comparison

Method Mean accuracy

PI, logistic regression, `2-penalty 0.92

PI, SVM classifier with RBF kernel 0.935

Bag of keypoints using sift with grid sampling, SVM

classifier with �2
kernel

0.85

# of connected components of black pixels 0.73

# of connected components of white pixels 0.50

# of white pixels 0.50



(a) (b)

(c) (d)

(a) (b)

(c) (d)

Performance of linear regressions

(a)

(b)

random images with parameters                    

predict     from the learned PD

S = 0, . . . , 9

S

PI-RIDGE 
(score=0.86)

PI-LASSO 
(score=0.86)

Both-RIDGE 
(score=0.93)

Both-LASSO 
(score=0.94)
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