International Conference on Applied Algebraic Topology 2017

Materials TDA and random-statistical topology

Yasu Hiraoka

WPI-AIMR, Tohoku University

Supported by

JST CREST SIP Structural Materials for Innovation JST Innovation Hub MI^2I, NIMS NEDO

Materials TDA

Supported by AIMR, CREST, SIP, MI^2I, NEDO

Hierarchical Structural Analysis of Silica Glass

with Nakamura, Hirata, Escolar, Matsue, Nishiura

PNAS (2016)

CREST TDA, SIP

MD and PD₁

Inverse Analysis of glass PD

- Glass contains curves in PD
- Curves express geometric constraints (orders) of atomic configurations
- Inverse analysis reveals hierarchical ring structures
- PD multi-scale analysis characterizes inter-tetrahedral O-O orders (curve Co)
- Useful tool for structural analysis

Materials Informatics: Machine Learning on PDs

with Kimura (KEK), Obayashi (AIMR) SIP, CREST TDA

X-CT of iron-ore sinters

original

iron oxide

calcium ferrite (CF)

Trigger site of micro cracks are supposed to be related to hetero-structure of iron oxide and CF. No descriptors have been developed so far.

background

- large amount of experimental images are available
- want to find a compact descriptor to connect images to materials properties (conductivity, cracks, elasticity, etc)

our approach

- PD for compact descriptor of images
- ML for combining with big data

LASSO (Sparse PD)

detected trigger site of cracks

Mathematical Motivation

- PDs from simulation/experiment depend on the system size L
- Those system sizes are usually very small scale ($\leq \mu m$) comparing to the real materials ($\approx m$)
- We need to consider a scaling limit to study universality
- Does there exists a limiting PD as the system size $L \to \infty$?

Content of today's talk

- 1. Study limiting behaviors of Betti numbers and persistence diagrams on random point processes and cubical sets in \mathbf{R}^d
- 2. Machine learnings on PDs: sparse PDs as dual vectors

Limit theorems for random cubical homology Y. H. and K. Tsunoda, arXiv:1612.08485

Random cubical set in \mathbf{R}^d

- an elementary cube: $Q = I_1 \times \cdots \times I_d$, $I_k = [l_k, l_k + 1]$ or $I_k = [l_k, l_k]$ $l_k \in \mathbf{Z}$
- \mathcal{K}^d : the set of all elementary cubes in \mathbf{R}^d
- $\Omega = [0,1]^{\mathcal{K}^d}$: configuration space, $\Omega \ni \omega = \{\omega_Q\}_{Q \in \mathcal{K}^d}$: a configuration
- P : Probability measure on (Ω, \mathcal{F}) satisfying
 - stationarity: $P(\tau_x^{-1}A) = P(A), \ \forall x \in \mathbf{Z}^d, A \in \mathcal{F}$

- ergodicity:
$$\tau_x^{-1}A = A, \forall x \in \mathbf{Z}^d \Longrightarrow P(A) = 0 \text{ or } 1$$

• ex: product measure, Bernoulli (Linial-Meshulam), Costa-Farber, etc

Theorem (LLN): Let $\beta_q^n(t) = \beta_q(X^n(t))$. For each $0 \le q < d$ and $t \in [0, 1]$ there exists a non-random constant $\hat{\beta}_q(t)$ s.t.

 $\frac{\beta_q^n(t)}{|\Lambda_n|} \longrightarrow \hat{\beta}_q(t)$ as $n \longrightarrow \infty$ almost surely.

Let $\mathcal{L}_K = \{Q \subset \Lambda_K\}$. For $\mathcal{L} \supset \mathcal{L}_K$, define random cubical sets $X_{\mathcal{L}}(t) := \bigcup \{Q \in \mathcal{L} : \omega_Q \leq t\}$ $X_{\mathcal{L}}^K(t) := \bigcup \{Q \in \mathcal{L} \setminus \mathcal{L}_K : \omega_Q \leq t\}$

Let $\Omega_q(K, t) \subset \Omega$ be the set of all configurations satisfying

 $\beta_q(X_{\mathcal{L}}(t)) \ge 1 + \beta_q(X_{\mathcal{L}}^K(t))$

 \mathcal{L}_K

for any finite subset $\mathcal{L} \subset \mathcal{K}^d$ with $\mathcal{L}_K \subset \mathcal{L}$.

Proposition (positivity): If there exists K > 0 with $P(\Omega_q(K, t)) > 0$, then $\hat{\beta}_q(t) > 0$.

Limit theorems for random cubical homology Y. H. and K. Tsunoda, arXiv:1612.08485

Limit theorems for random cubical homology Y. H. and K. Tsunoda, arXiv:1612.08485

Lifetime sum on
$$\Lambda_n = [-n, n]^d$$
: $L_q^n = \int_0^1 \beta_q^n(t) dt$

- = lifetime sum of the q-th persistent homology on $\mathbb{X}^n = \{X^n(t)\}_{0 \le t \le 1}$

 $\beta_a^n(t) = \beta_q(X^n(t))$

- plays an important role for higher dim generalization of Frieze's $\zeta(3)$ -theorem (H. and Shirai. Rand. Str. Alg. 2017)
- If we ignore the exceptional sets of a.s. convergence,

$$\lim_{n} \frac{L_{q}^{n}}{|\Lambda_{n}|} = \lim_{n} \int_{0}^{1} \frac{\beta_{q}^{n}(t)}{|\Lambda_{n}|} dt = \int_{0}^{1} \lim_{n} \frac{\beta_{q}^{n}(t)}{|\Lambda_{n}|} dt = \int_{0}^{1} \hat{\beta}_{q}(t) dt$$

but not a.s. convergence in general (\because continuous parameter t)

- For LLN, we need a uniform convergence.

Theorem: Assume the marginal distribution function $P(\omega_Q \le t)$ is continuous in *t*. Then,

$$\lim_{n \to \infty} \sup_{t \in [0,1]} \left| \frac{1}{|\Lambda_n|} \beta_q^n(t) - \hat{\beta}_q(t) \right| = 0 \text{ almost surely.}$$

Corollary (LLN):
$$\lim_{n\to\infty} \frac{L_q^n}{|\Lambda_n|} = \int_0^1 \hat{\beta}_q(t) dt$$
 almost surely.

Limit theorem for persistence diagrams T. K. Duy, T. Shirai, and Y. H., arXiv:1612.08371

- $\Lambda_L = [-L/2, L/2)^d$: window in \mathbf{R}^d
- Φ : point process on \mathbf{R}^d (locally finite random counting measure)
- Φ_A : restriction of Φ on $A \subset \mathbf{R}^d$
- $\mathbb{C}(\Phi_A, r)$: Čech complex built on Φ_A with radius r

Theorem (Yogeshwaran, Subag, Adler. 2015):

Assume that Φ is a stationary point process having all finite moments. Then, there exists a constant $\hat{\beta}_a^r$ such that

$$\frac{\mathbb{E}[\beta_q(\mathbb{C}(\Phi_{\Lambda_L},r))]}{L^d} \longrightarrow \hat{\beta}_q^r \qquad \text{as } L \to \infty$$

In addition, if Φ is ergodic, then

$$rac{eta_q(\mathbb{C}(\Phi_{\Lambda_L},r))}{L^d}\longrightarrow \hat{eta}_q^r \qquad ext{as} \ L o\infty$$

holds almost surely.

Theorem (LLN):

Assume that Φ is a stationary point process having all finite moments. Let $\xi_{q,L}$ be the point process on Δ corresponding to the q-th PD for $\mathbb{K}(\Phi_{\Lambda_L})$. Then, there exists a unique Radon measure ν_q on Δ s.t.

 ∞

$$\frac{1}{L^d} \mathbb{E}[\xi_{q,L}] \xrightarrow{v} \nu_q \quad \text{as } L \to \infty.$$

In addition, if Φ is ergodic, then

$$rac{1}{L^d}\xi_{q,L} \xrightarrow{v}
u_q$$
 as $L o$

holds almost surely.

Sketch of proof

- 1. Show a LLN for persistence Betti numbers $\beta_q^{r,s}$
- 2. Apply random measure theory

- $\mathscr{F}(\mathbf{R}^d)$: the collection of all finite subsets in \mathbf{R}^d
- Let $\kappa : \mathscr{F}(\mathbf{R}^d) \to [0,\infty)$ be a function satisfying

1. $\kappa(\sigma) \leq \kappa(\tau)$ for $\sigma \subset \tau$

2. translation invariant: $\kappa(\sigma + x) = \kappa(\sigma)$ for $\forall x \in \mathbf{R}^d$

3. there is an increasing function $\rho: [0,\infty) \rightarrow [0,\infty)$ s.t.

 $||x - y|| \le \rho(\kappa\{x, y\})$

Given κ, define a filtration K(Φ) = {K(Φ, t): 0 ≤ t < ∞}
 of simplicial complexes on a point process Φ by

 $K(\Phi, t) = \{ \sigma \subset \Phi \colon \kappa(\sigma) \leq t \}$ (called κ -filtration)

• Čech filtration: $\kappa(\{x_0,\ldots,x_k\}) = \inf_{w \in \mathbf{R}^d} \max_{0 \le i \le k} \|x_i - w\|$

• **Rips filtration:** $\kappa(\{x_0, ..., x_k\}) = \max_{0 \le i < j \le k} \frac{\|x_i - x_j\|}{2}$

Stability for κ -filtration and support of limiting measure

Theorem (Stability): Suppose that κ is Lipschitz w.r.t d_H , i.e., there exists $\gamma > 0$ s.t. $|\kappa(\sigma) - \kappa(\sigma')| \leq \gamma d_H(\sigma, \sigma')$ for $\forall \sigma, \sigma' \in \mathscr{F}(\mathbf{R}^d)$.

Then, $d_B(D_q(\kappa, \Phi), D_q(\kappa, \Phi')) \leq \gamma d_H(\Phi, \Phi')$ for $\Phi, \Phi' \in \mathscr{F}(\mathbf{R}^d)$.

- $(b,d) \in \Delta$ is realizable $\Longrightarrow \exists \Phi \in \mathscr{F}(\mathbf{R}^d)$ s.t. $(b,d) \in D_q(\kappa,\Phi)$
- $R_q = R_q(\kappa)$: the set of all realizable points
- ν_q : the limiting persistence diagram (unique Radon measure in Theorem (LLN))

Theorem (Support and realizability):

Let κ be Lipschitz, Φ be a stationary point process, and ν_q be its limiting PD. If Φ satisfies conditions about absolute continuity w.r.t Poisson p.p., then supp $\nu_q = \overline{R_q(\kappa)}$.

Corollary (Support of Čech limiting PD) For Čech PD generated by Poisson/Ginibre in \mathbb{R}^d , $\operatorname{supp} \nu_q = \Delta, \quad q = 1, \dots, d-1$

Statistical inverse analysis on persistence diagram with Obayashi (AIMR) arXiv:1706.10082 CREST TDA, SIP, NEDO, MI^2

Background

- PDs are good descriptors in materials science
- Want to extract statistical features in the dataset of PDs
- Vectorization of PDs are necessary for applying machine learnings (persistence landscape, persistence image, PSSK, PWGK, etc)
- Want to study the original data space (inverse problems)

Study machine learning models based on persistence diagrams Vectorization: persistence image ML: Logistic regression, Linear regression (LASSO/RIDGE)

Logistic regression of persistent homology

Logistic regression:

Given a training set $\{(x_i, y_i) : x_i \in \mathbf{R}^n, y_i \in \{0, 1\}\}_{i=1}^M$, find optimal $w \in \mathbf{R}^n$ and $b \in \mathbf{R}$ for the model

 $P(y = 1 | w, b) = g(w \cdot x + b),$ $P(y = 0 | w, b) = 1 - P(y = 1 | w, b) = g(-w \cdot x - b),$

find the minimizer

$$L(w,b) = -\frac{1}{M} \sum_{i=1}^{M} \{y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i)\} + \lambda R(w)$$
$$\hat{y}_i = g(w \cdot x_i + b)$$

- explanatory variable $x \in \mathbf{R}^n$: (vectorized) persistence diagram
- response variable $y \in \{0, 1\}$: (binary) classification
- learned vector w can be expressed by PD (called learned PD)

generators in the learned PD identify the relevant geometric features for classification

regularization

LASSO: $R(w) = ||w||_1$ (sparse PD analysis)

RIDGE:
$$R(w) = \frac{1}{2}||w||_2^2$$

(nice math property)

Classification result (mean accuracy) = 100%

Performance of RIDGE logistic regressions: Easy example

Learned persistence diagram and its thresholding (with RIDGE)

Performance of LASSO/RIDGE logistic regressions: Easy example

RIDGE/LASSO learned PDs and overfitting parameters <RIDGE>

sparse persistence diagram shows most effective generators for learning

Performance of logistic regressions: Hard example

Classification result (mean accuracy) = 92%

RIDGE learned PDs and overfitting parameters

<RIDGE>

(complex)

(simple) λ

Performance comparison

Method	Mean accuracy
PI, logistic regression, ℓ^2 -penalty	0.92
PI, SVM classifier with RBF kernel	0.935
Bag of keypoints using sift with grid sampling, SVM classifier with χ^2 kernel	0.85
# of connected components of black pixels	0.73
# of connected components of white pixels	0.50
# of white pixels	0.50

- random images with parameters $S = 0, \ldots, 9$
- \bullet predict S from the learned PD

THANK YOU