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Directed Topology/Concurrency

Take home message:

Models of concurrency → geometry/topology questions  New
mathematics - usual topology does not suffice.  

Results in concurrency.

A new mathematical area.

New questions in concurrency.
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Sequential programs

x = 1;
y = x + 1;
x = y + 2;

Another program:

Pick up chopsticks

Eat

Put down chopsticks

Think.

Instructions are executed in the order they are written.
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Models of sequential programs.

Turing machine Graph (automaton).

Models needed to understand programs. To write code.
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Concurrent program. Dining philosophers.

Program for each philosopher

Pick up right chopstick

Pick up left chopstick

Eat

Put down chopsticks

Think.

They interleave - no global
prescribed order.
Philosopher 1 and 3 may proceed
independently of each other.
Concurrent execution is faster than
serial.
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Concurrency  new problems

Output depends on interleaving (and input)

Deadlocks may appear

Statespace explosion problem  verification is often
timeconsuming/impossible  Limited use in critical software -
airplanes, nuclear power plants, ...

Resource starvation - one proces never gets access to resources needed

Need good models to understand and attack these problems.
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Concurrent programs - several models

Lots of graphs? Lots of Turing Machines? One for each thread

7



Parallel programs 6= Many copies of sequential programs.

Threads interact - share resources - communicate.
What model?

Petri Nets

Process calculus

Event structures

Higher Dimensional Automata
...

Here: Locks.

Focus: Resources.
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The PV -model

E.W. Dijkstra, 1965, Mutual Exclusion. Resources cannot be used above
their capacity.

Pa.Pb.Vb.Va|Pc .Pa.Vb.Va|Pb.Pc .Vb.Vc

Pa: request access to a. Va: release resource a.

Capacity of a: How many threads can use a at the same time. I.e., be
between Pa and Va.
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Vaughan Pratt ”Modelling Concurrency with Geometry.” 1992. Rob Van
Glabbeek ”Bisimulations for Higher Dimensional Automata,” 1991

This model has geometry. (And needs topology.)
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The Swiss flag - two dining philosophers.

Pa.Pb.Vb.Va|Pb.Pa.Va.Vb

T1 = PaPbVbVa, T2 = PbPaVaVb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A

B

T1

T2
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PV -programs - controlling concurrency through locks

A set of shared resources R - memory, printers,...

A capacity function κ : R → N. κ(r) - maximal number of locks on r .

PV programs
p ::= Pa | Va | p.p | p|p | p + p | p∗

Pa - request to access a, if granted then lock a.

Va -release a.

Thread: No p|p. Sequential.

At ⊥ and >: No locks.
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Geometrically
One thread - a graph.
n threads in parallel - a product of n graphs with “holes”.

T1 = T2 = Pa.Pb.Va.Pa.Vb.Va κ ≡ 1

Pa Pb Va Pa Vb Va

Pa

Pb

Va

Pa

Vb

Va

A

A

A

A

B

T1

T2
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Geometrically
One thread - a graph.
n threads in parallel - a product of n graphs with “holes”.

T1 = T2 = Pa.Pb.Va.Pa.Vb.Va κ > 1

Pa Pb Va Pa Vb Va

Pa

Pb

Va

Pa

Vb

Va

A

A

A

A

B

T1

T2
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An execution is a directed path

Pa Pb Va Pa Vb Va

Pa

Pb

Va

Pa

Vb

Va

A

A

A

A

B

T1

T2
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Equivalence of executions

Executions are equivalent, if they have the same output given the same
input.

Executions are equivalent, if the corresponding directed paths can be
continuously deformed into eachother via directed paths!

Why not piecewise linear. Why not only the 2-skeleton.

Want: Robust to subdivision. Also ”true concurrency” - k threads execute
together ∼ a k-cube.
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Examples in the plane

Pa Pb Va Pc Vb Pa Vc Va

Pa

Pb

Va

Pc

Vb

Pa

Vc

Va

A

A

A

A

B

C

T1

T2

4 executions up to equivalence. Equivalent directed paths ∼ homotopic
directed paths.
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Two holes

Pa Va Pb Vb

Pa

Va

Pb

Vb

A

B

T1

T2

Pa Va Pb Vb

Pb

Vb

Pa

Va
A

B

T1

T2

The number of directed paths up to equivalence depends on the order of
the holes.
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T = PaVa, κ = 1, T 3

T

T

T

3! serial executions, pairwise inequivalent.
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With at least 3 threads, homotopic 6= directed homotopic

3 resources (red blocks)

Capacity 2 and 3

Classification of executions  verification for each equivalence class  
Too much identification is a serious PROBLEM. (Too little is just
inefficient.)

Need: Topology with direction, directed topology. More later.... also
categories....
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Deadlock - no time-directed paths leave the point

Pa Pb Va Pa Vb Va

Pa

Pb

Va

Pa

Vb

Va

A

A

A

A

B

T1

T2

Red region: unsafe. No directed path leaves it. Red balls: deadlock
points.
Algorithm finds deadlocks, unsafe region and unreachable region
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Deadlocks

T1 = PaPbVaPcVcVb, T2 = PcPaVaPbVbVc

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Pc

T1

T2

22



Deadlocks

T1 = PaPbVaPcVcVb, T2 = PcPaVaPbVbVc

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Pc

T1

T2

22



Deadlocks

T1 = PaPbVaPcVcVb, T2 = PcPaVaPbVbVc

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Pc

T1

T2
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Lipsky Papadimitriou

Px .Py .Pz .Vx .Pw .Vz .Vy .Vw |Pu.Pv .Px .Vu.Pz .Vv .Vx .Vz

|Py .Pw .Vy .Pu.Vw .Pv .Vu.Vv

Seems to have deadlocks in usual analysis (loops in request graph), but
our methods show there is no deadlock.
Also building a physical model will work.
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A cut-off theorem for deadlocks

Theorem 1, F.

Let T be a PV thread accessing resources R with capacity κ : R → N.
Let T n be n copies of T run in parallel.
T n is deadlock free for all n if and only if TM is deadlock free, where
M = Σr∈Rκ(r).

Theorem 2, F.

Given R = {r1, . . . , rk} with capacity κ : R → N, the thread
T = Pr1Pr2Vr1Pr3Vr2 . . .PrkVrk−1Pr1VrkVr1 satisfies:

There is a deadlock in TM (and hence for all n ≥ M)

There are no deadlocks in T n for n < M

Deadlock at x = (

κ(rk )︷ ︸︸ ︷
x1, . . . , x1,

κ(r1)︷ ︸︸ ︷
x2, . . . , x2, . . . ,

κ(rk−1)︷ ︸︸ ︷
xk . . . xk) xi = Pri , x1 the

second Pr1

24



Deadlock in T 3 Not in T 2

Pa Pb Va Pc Vb Pa Vc Va

Pa

Pb

Va

Pc

Vb

Pa

Vc

Va

A

A

A

A

B

C

T1

T2

Deadlocks at (6, 4, 2) (4, 6, 2)
(2, 6, 4) (6, 2, 4) (4, 2, 6)
(2, 4, 6)
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Programs with loops.
Deadlocks and unsafe area found in finitely many “deloopings”.
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Directed topology

Topological spaces with direction

Definition

Objects of dTop are d-Spaces: (X , ~P(X )) where X ∈ Top, ~P(X ) ⊆ X I ,
the dipaths. ~P(X ) is

closed under concatenation,

contains the constant paths

closed under subpath, i.e., composition with f : I → I increasing but
not necessarily surjective.

A d-map f : X → Y is a continuous map satisfying
γ ∈ ~P(X )⇒ f ◦ γ ∈ ~P(Y )
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Examples of d-spaces

X = S1, ~P(X ) the clock wise paths.
~P(X ) the constant paths.
~P(X ) = X I , all paths.

X = Rn and γ ∈ ~P(X ) if s ≤ t ⇒ γi (s) ≤ γi (t), i = 1, . . . , n

X = Γ1 × . . .× Γn a product of directed graphs. γ ∈ ~P(X ) if γi is a
directed path in Γi , i = 1, . . . , n

Main examples: Directed paths are paths which are locally increasing
wrt. a reasonable local order structure.

In the model for PV -programs:

X is a state space. ~P(X ) are (partial) executions.
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Equivalence of executions - dihomotopy

Definition

Two dipaths γ0, γ1 ∈ ~P(X )(p, q) are dihomotopic, if there is a dimap
H : I × ~I → X s.t. H(t, 0) = γ0(t), H(t, 1) = γ1(t), H(0, I ) = p,
H(1, I ) = q. (Dipaths in I are constant. Dipaths in ~I are non-decreasing)

H : ~I × I → X •
q

•
p

⊂ X

~I × I

H(0, t)

γ0

H(1, t)

γ1
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Equivalence of executions

X is a state space - product of directed graphs, with holes. ~P(X ) =
locally non-decreasing paths. The following are equivalent.

Execution paths γ1, γ2 : ~I → X are dihomotopic

They are in the same connected component of the path space
~P(X )(0, 1) (Compact-Open topology)

They are in the same connected component of the trace space
~T (X )(0, 1) (dipaths modulo monotone reparametrization)
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Questions - concurrency

Classify executions up to equivalence ↔ Find components of
~P(X )(p, q) or ~T (X )(p, x).

Algorithms - connections to configuration spaces. (Raussen,
Ziemianski, Meshulam)

Equivalence of programs - bisimulation ↔ dicoverings. (F.)

Verification: Will the program behave?
I If there is a “bad” state, is it reachable? Is there a directed path to it

from the initial state(s)
I Will all possible executions give a “true” result? Study directed paths

up to equivalence.

State space explosion. Now we have infinitely many states - want
dicomponents!
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It’s complicated.
(Almost) Every topological space is an execution space -
same homology.

Theorem (K. Ziemianski, 2013)

Any finite simplicial complex S on n vertices is a component of a space of
executions:
There is a subset F ⊂ ~I n a union of n-rectangles such that ~P(~I n \ F )(0, 1)
is homology equivalent to S t Sn−2
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Serializability - part of classifying executions

Pa Pb Va Pa Vb Va

Pa

Pb

Va

Pa

Vb

Va

A

A

A

A

B

T1

T2

Two executions up to dihomotopy. Equivalent to the serial executions
T1.T2 and T2.T1. Serial ⇒ easier to verify.
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Serializability - a cut-off theorem

Theorem (Fajstrup)

Let T be a PV -thread accessing resources R all of capacity 1.
Let T n be n copies of T run in parallel. Then T n is serializable if and only
if T 2 is serializable.

Consequence: Easy to test for serializability of T n for all n.
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Serializability. General κ.

Definition

x = (x1, . . . , xn) ∈ X is a local choice point if

1 For some r̃ there is S = {i1, . . . , im} ⊂ [1 : n], m ≥ 2, such that
xij = Pr̃

2 ρr̃ (x) = κ(r̃)− 1,

3 for i 6∈ S either xi = > or xi = Pr and ρr (x) = κ(r)
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Theorem (F., applying Raussen 2000)

No local choice points in TM where M = 1 + Σr∈Rκ(r) ⇒ no local choice
points in T n for any n.
If κ(r) = 1, then choice point in T n for all n ≥ 2.
T n non-serializable for some n ⇒ local choice points in TM .

Theorem F.

For κ : R → N \ {1},T = Pr1Pr2Vr1Pr3Vr2 . . .PrkVrk−1Pr1VrkVr1
satisfies:

TM has a local choice point M = Σr∈Rκ(r) + 1

T n has no choice point for n ≤ M − 2.

Choice point in TM−2 at x = (

κ(rk )−1︷ ︸︸ ︷
x1, . . . , x1,

κ(r1)︷ ︸︸ ︷
x2, . . . , x2, . . . ,

κ(rk−1)︷ ︸︸ ︷
xk . . . xk)
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The directed path space in general

Algorithm (M.Raussen)

Calculates a prod-simplicial model of ~P(X )(0, 1), when X = I n \ F , F is a
union of n-rectangles. Method behind: Nerve Lemma.

Implemented in Alcool. Output: Homology of ~P(X )(0, 1). A
representative for each connected component. OBS: Verification only
needed on those.
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Loops and the trace space algorithm.

The trace space algorithm is combined with periodicity.

An automaton which outputs the schedules, i.e., the info to build the
trace space. (F. 2011, F., Goubault, Haucourt, Mimram, Raussen,
2012)

For programs T = (PaVa)∗ in parallel with itself, T n, configurations
spaces give good models. (Raussen, Zimianski, Meshulam)
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Maths questions - curiousity driven
Ditopology

Dihomotopy
Dihomology
How many d-structures on a given space.
Model structure?
etc.

Relationships between Top and dTop:

Forgetful functor U : dTop→ Top.
Right adjoint: ~P(X ) = X I . All continuous maps to (X , ~P(X )) are
dimaps.
Left adjoint: ~P(X ) = the constant paths. All continuous maps from
(X , ~P(X )) are dimaps.

Theorem: (F. 2011, F.,J. Pita Costa 2016)

The set of d-structures on X ∈ Top is a Heyting algebra under inclusion.

(~P ∧ ~Q = ~P ∩ ~Q, ~P ∨ ~Q = ~P ∪ ~Q, closure under concatenation and
subpath.)
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Directed topology - invariants?

Remember ~P(X )(p, q) the space of dipaths, compact-open topology.

The fundamental category

Components of ~P(X )(p, q) organised in The fundamental category

Objects: All points in X

Morphisms: ~π1(X )(p, q)

I The connected components of ~P(X )(p, q)
I Equivalently: ~π1(X )(p, q) = ~P(X )(p, q)/ ∼ where ∼ is dihomotopy.

~π1(X )(p, q) is the number of inequivalent (partial) executions.

OBS: It is not a group.
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No cancellation in ~π1
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Other invariants

(co)Homology, homotopy groups,... of ~P(X )(p, q).
Variation of basepoints → (homo)morphisms.
σ ∈ ~P(X )(p′, p) induces

σ∗ : ~P(X )(p, q)→ ~P(X )(p′, q)

.
σ∗ : ~P(X )(r , p′)→ ~P(X )(r , p)

Dihomology - (co)Homology M.Grandis, 2009, S. Krishnan, 2013,
J.Dubut, E.Goubault, J. Goubault Larrecq
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Directed coverings - equivalence of programs
Computer Science p.o.v. - geometric version:

Two programs with geometric model X and Y are equivalent (bisimilar), if
there is a program Z and maps

f : Z → X , g : Z → Y

such that every dipath in X lifts uniquely to Z along f : For γ : ~I → X and
z0 ∈ f −1(γ(0) there is unique γ̃ : I → Z s.t. f ◦ γ̃ = γ. I.e., f and g are
dicoverings and similarly for g

F., Dicovering spaces. Homology, Homotopy Appl., Vol. 5, Nr. 2,
2003

F., J. Rosický, A convenient category for directed homotopy. I:
Theory Appl. Categ., Vol. 21, Nr. 1, 2008.

F. Classification of dicoverings. I: Topol. Appl., Vol. 157, Nr. 15,
2010. 2015.
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Commercial and main collaborators
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