(Relating attractors to the) topological organization of neural networks

> Carina Curto Penn State Math Dept ccurto@psu.edu

Applied Algebraic Topology 2017 Hokkaido University, Sapporo Aug 11, 2017

Plan of the talk

- Attractors in neuroscience
- Network structures/motifs
- Threshold-linear networks, CTLNs
- Early explorations...
- Graphical analysis of fixed points of CTLNs

Plan of the talk

- Attractors in neuroscience
- Network structures/motifs
- Threshold-linear networks, CTLNs
- Early explorations...
- Graphical analysis of fixed points of CTLNs

Memory states as attractors of a neural network

Appendix E of Kandel (Seung & Yuste)

memory patterns \iff fixed point attractors

Classical model – Hopfield networks

memory patterns \iff fixed point attractors

famous Hopfield result: guaranteed convergence to a fixed point for symmetric interaction matrix

Example: place cell activity in hippocampus

McNaughton et. al., Nature Rev. Neurosci. 2006 Tsodyks & Sejnowski 1995, Samsonovich & McNaughton 1997

Example: place cell activity in hippocampus

Individual positions do not correspond to fixed points, but sequences...

Example: place cell activity in hippocampus

Individual positions do not correspond to fixed points, but sequences...

What other types of attractors are important for neural computation?

Example: You want to remember Jenny's phone # 867-5309

Limit cycles are also useful for modeling central pattern generators (CPGs) that govern respiration, locomotion, etc.

Evidence for memories as sequential attractors (and the dangers of an overly large basin of attraction)

https://www.youtube.com/watch?v=HNRNHgi1RzU

Memory states as attractors of a neural network

fixed point attractors (including continuous attractors/ "bump" attractors)

dynamic memory patterns <--->

periodic attractors (sequences, rhythms)

[other periodic attractors: central pattern generators (CPGs) – biological rhythms, locomotive gaits, etc.]

memory patterns <--> chaotic attractors

Plan of the talk

- Attractors in neuroscience
- Network structures/motifs
- Threshold-linear networks, CTLNs
- Early explorations...
- Graphical analysis of fixed points of CTLNs

Recurrent vs. feedforward architecture

<u>directed clique</u>: there exists an ordering on the nodes such that

 $i \to j$ if i > j

Feedforward motifs (FF flow of information)

<u>feedforward graph</u>: there exists an ordering on the nodes such that

$$i \not\rightarrow j$$
 if $i > j$

Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits

Sen Song¹, Per Jesper Sjöström^{2,3}, Markus Reigl¹, Sacha Nelson², Dmitri B. Chklovskii^{1*}

2005

- local cortical circuits
- layer 5 pyramidal neurons
- rat visual cortex
- simultaneous quadruple whole-cell recordings

Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits

Sen Song¹, Per Jesper Sjöström^{2,3}, Markus Reigl¹, Sacha Nelson², Dmitri B. Chklovskii^{1*}

2005

- local cortical circuits
- layer 5 pyramidal neurons
- rat visual cortex
- simultaneous quadruple whole-cell recordings

Figure 4. Several Three-Neuron Patterns Are Overrepresented as Compared to the Random Network

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function

Michael W. Reimann^{1†}, Max Nolte^{1†}, Martina Scolamiero², Katharine Turner², Rodrigo Perin³, Giuseppe Chindemi¹, Paweł Dłotko^{4‡}, Ran Levi^{5‡}, Kathryn Hess^{2*‡} and Henry Markram^{1,3*‡}

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function

Michael W. Reimann^{1†}, Max Nolte^{1†}, Martina Scolamiero², Katharine Turner², Rodrigo Perin³, Giuseppe Chindemi¹, Paweł Dłotko^{4‡}, Ran Levi^{5‡}, Kathryn Hess^{2*‡} and Henry Markram^{1,3*‡}

Directed cliques associated with "feedforward" flow of information!

Recurrent vs. feedforward architecture

<u>directed clique</u>: there exists an ordering on the nodes such that

 $i \to j$ if i > j

Feedforward motifs (FF flow of information)

<u>feedforward graph</u>: there exists an ordering on the nodes such that

$$i \not\rightarrow j$$
 if $i > j$

Recurrent vs. feedforward architecture

Recurrent motifs (attractors)

Feedforward motifs (FF flow of information)

Plan of the talk

- Attractors in neuroscience
- Network structures/motifs
- Threshold-linear networks, CTLNs
- Early explorations...
- Graphical analysis of fixed points of CTLNs

Threshold-linear networks

Threshold-linear dynamics

$$\frac{dx_i}{dt} = -x_i + \left[\sum_{j=1}^n W_{ij}x_j + \theta\right]_+$$

same as ReLU (rectified linear unit) in deep learning networks

Threshold-linear networks

same as ReLU (rectified linear unit) in deep learning networks

Fixed points/steady states/equilibria

Fixed points arise when linear fixed points lie in the "correct" chamber of the hyperplane arrangement.

Fixed points/steady states/equilibria

Fixed points arise when linear fixed points lie in the "correct" chamber of the hyperplane arrangement.

There is at most one fixed point per support (subset of neurons):

$$supp(x) = \{i \in [n] \mid x_i > 0\}$$

<u>Combinatorial</u> Threshold-Linear Networks (CTLNs)

Threshold-linear dynamics

$$\frac{dx_i}{dt} = -x_i + \left[\sum_{j=1}^n W_{ij}x_j + \theta\right]_+$$

Graph to network connectivity

$$W_{ij} = \begin{cases} 0 & \text{if } i = j \\ -1 + \varepsilon & \text{if } i \leftarrow j \text{ in } G \\ -1 - \delta & \text{if } i \not\leftarrow j \text{ in } G \end{cases}$$

Parameter constraints

$$\delta > 0$$
 $\theta > 0$

$$0 < \varepsilon < \frac{\delta}{\delta + 1}$$

Pyramidal neurons in a sea of inhibition

4 neural networks with matching degree sequence

all graphs have the same in/out-degree sequence: (1,2), (1,2), (2,1), (2,1), (2,2)

examples of nonlinear network dynamics: limit cycles

examples of nonlinear network dynamics: limit cycles

examples of nonlinear network dynamics: chaos

examples of nonlinear network dynamics: multistability

A single network can display multiple attractors of different types

Spontaneous state transitions in large random networks

Spontaneous state transitions in large random networks

Model (50 neurons)

Okun et. al., Nature 2015

Central Pattern Generator (CPG) quadruped motion

Patching together cyclic modules

phone number network

This network has m⁵ limit cycles, like the one above.

Important Facts about CTLNs

- all nodes are identical
- for fixed parameters $\varepsilon, \delta, \theta$, only the graph matters
- many aspects of dynamics are invariant under parameter changes
- we can use this model to study emergent dynamics as shaped by connectivity alone (the graph)
- global properties of connectivity may matter more than local features
- mathematically tractable
- displays a rich variety of nonlinear dynamics

A competitive network theory of species diversity

Stefano Allesina^{a,1} and Jonathan M. Levine^b

^aDepartment of Ecology and Evolution, Computation Institute, University of Chicago, Chicago, IL 60637; and ^bDepartment of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106

5638-5642 | PNAS | April 5, 2011 | vol. 108 | no. 14

Fig. 1. (*A*) Species' competitive abilities can be represented in a tournament in which we draw an arrow from the inferior to the superior competitor for all species pairs. A tournament is a directed graph composed by *n* nodes (the species) connected by n(n-1)/2 edges (arrows). (*B*) Simulations of the dynamics for the tournament. The simulation begins with 25,000 individuals assigned to species at random (with equal probability per species). At each time step, we pick two individuals at random and allow the superior to replace the individual of the inferior. We repeat these competitions 10^7 times, which generates relative species abundances that oscillate around a characteristic value (*SI Text*). (*C*) The average simulated density of each species from *B* (shown in lighter bars) almost exactly matches the analytic result obtained using linear programming (shown in darker bars).

Discrete species competition model

Fig. 1. (*A*) Species' competitive abilities can be represented in a tournament in which we draw an arrow from the inferior to the superior competitor for all species pairs. A tournament is a directed graph composed by *n* nodes (the species) connected by n(n-1)/2 edges (arrows). (*B*) Simulations of the dynamics for the tournament. The simulation begins with 25,000 individuals assigned to species at random (with equal probability per species). At each time step, we pick two individuals at random and allow the superior to replace the individual of the inferior. We repeat these competitions 10^7 times, which generates relative species abundances that oscillate around a characteristic value (*SI Text*). (*C*) The average simulated density of each species from *B* (shown in lighter bars) almost exactly matches the analytic result obtained using linear programming (shown in darker bars).

Plan of the talk

- Attractors in neuroscience
- Network structures/motifs
- Threshold-linear networks, CTLNs
- Early explorations...
- Graphical analysis of fixed points of CTLNs

What would Darwin do?

Darwin's Beetle Box

Darwin's beetles were sorted, reidentified and placed into storage boxes by the entomologist George Robert Crotch (1842-1874) in the 1870s. This box was donated to the Museum by Charles' son Francis in 1913. The contents are mostly ground beetles (Carabidae) and dung beetles (Scarabaeidae). Many of the specimens in the box are the species featured in Darwin's publications in Illustrations of British Entomology.

Early facts about stable fixed points

<u>Thm 1</u>. If G is an oriented graph with no sinks, then the network has no stable fixed points (but bounded activity).

Early facts about stable fixed points

<u>Thm 1</u>. If G is an oriented graph with no sinks, then the network has no stable fixed points (but bounded activity).

<u>Thm 2</u>. For any G, a clique is the support of a stable fixed point if and only if it is a target-free clique.

Taxonomy for oriented graphs on 5 neurons

Every oriented graph with no sinks on n=5 can be built up and named using these base graphs:

Neuron numbering chosen to maximally align sequences in observed attractors

Dictionary of attractor types

Rep. graph D1[2,3,4], seq 15234. All graphs: D1[2,3,4], D1[2,3] (aka E2[3]), D1[2,4], D1[2] (aka D2[3]), D2[1,3,4], D2[1,3] (aka E1[2]), D2[3,4], D3[4,*], E1[2,3,4], E1[2,4], E1[3,4], E1[3] (aka F2[1,3]), E1[4], E2[1,3,4], E2[3,4], E2[3] (aka D1[2,3]), E2[1,3] (aka E1[2,3]), E3[1,2,4], E3[1,4], E3[2,4], E3[4].

Rep. graph T4[1], seq 1234. All graphs: T4[1,2,3], T4[1,2], T4[1,3], T4[2,3]_seq1 (aka D1[4]_seq2), T4[1], T4[2]_seq1 (aka G1[4]_seq2), T4[3]_seq1, T4[3]_seq2.

Dictionary of attractor types

Using the taxonomy, we could identify 19 attractor types and classify graphs based on which attractor types they exhibited – this classification largely aligned with the taxonomy!

Attractor types include:

Limit cycles with simple cycles Limit cycles with synchronous firing Period-doubled limit cycles Quasperiodic attractors Chaotic attractors

1. 3-cycles supporting (unstable) fixed points yield attractors, while others do not.

1. 3-cycles supporting (unstable) fixed points yield attractors, while others do not.

234 does not have a fixed point – nor a corresponding limit cycle!

- 1. 3-cycles supporting (unstable) fixed points yield attractors, while others do not.
- 2. Sources die i.e., do not participate in any attractors.

- 1. 3-cycles supporting (unstable) fixed points yield attractors, while others do not.
- 2. Sources die i.e., do not participate in any attractors.
- 3. When two networks share certain **common subgraphs**, they tend to have at least one attractor in common.

For $n \leq 5$ only 19 attractor types! (~200 observed attractors)

- 1. 3-cycles supporting (unstable) fixed points yield attractors, while others do not.
- 2. Sources die i.e., do not participate in any attractors.
- 3. When two networks share certain common subgraphs, they tend to have at least one attractor in common.

For $n \leq 5$ only 19 attractor types! (~200 observed attractors)

4. Unstable fixed points are closely related to – and predictive of – limit cycles and chaotic attractors

unstable fixed points in chaotic attractors

baby chaos: 4 attractors

Lorenz attractor

A word of caution

1 (unstable) fixed point

A word of caution

1 (unstable) fixed point

limit cycle + quasiperiodic attractor!

Sequence 1473625

Plan of the talk

- Attractors in neuroscience
- Network structures/motifs
- Threshold-linear networks, CTLNs
- Early explorations...
- Graphical analysis of fixed points of CTLNs

Graphical analysis of fixed points of CTLNs

GOAL: Analyze the graph to predict the stable and unstable fixed points

(This gives insight into the dynamics.)

$FP(G) = \{ \sigma \subseteq [n] \mid \sigma \text{ is a fixed point support } \}$

How do we find the fixed point supports?

for $i \in \sigma, \sigma \subseteq [n]$ $s_i^{\sigma} = \det((I - W_{\sigma \cup \{i\}})_i; 1)$

How do we find the fixed point supports?

for
$$i \in \sigma, \sigma \subseteq [n]$$

$$s_i^{\sigma} = \det((I - W_{\sigma \cup \{i\}})_i; 1)$$

 $\begin{array}{l} \underline{\mathsf{Lemma}} \text{ (fixed point supports)} \\ \sigma \in \mathrm{FP}(G) \Leftrightarrow \mathrm{sgn}\, s_i^\sigma = \mathrm{sgn}\, s_j^\sigma = -\,\mathrm{sgn}\, s_k^\sigma \\ & \text{for any } i,j\in\sigma, k\notin\sigma \\ \end{array}$ Fixed point is stable iff $-I + W_\sigma$ is a stable matrix.

 $\operatorname{sgn} s_i^{\sigma} = +/-$

 $\operatorname{sgn} s_i^{\sigma} = +/-$

simplest version: $j, k \in \sigma$ k <u>dominates</u> j with respect to σ if 1. $j \rightarrow k, k \not\rightarrow j$ 2. $i \rightarrow j \Rightarrow i \rightarrow k$ for each $i \in \sigma \setminus \{j, k\}$

simplest version: $j,k\in\sigma$ k dominates j with respect to σ if 1. $j \rightarrow k, k \not\rightarrow j$ 2. $i \rightarrow j \Rightarrow i \rightarrow k$ for each $i \in \sigma \setminus \{j, k\}$ $\sigma = \{1, 2, 3, 4\}$ 2 4 1 dominates 2 and 3

2 dominates 1

Lemma: $j,k\in\sigma$

If k dominates j with respect to σ then $\sigma \notin \operatorname{FP}(G|_{\sigma})$

Lemma: $j,k\in\sigma$

If k dominates j with respect to σ then $\sigma \notin \operatorname{FP}(G|_{\sigma})$

Some consequences:

Fixed point supports cannot have sources

 rules out paths

Lemma: $j,k\in\sigma$

If k dominates j with respect to σ then $\sigma \notin \operatorname{FP}(G|_{\sigma})$

Some consequences:

- Fixed point supports cannot have sources

 rules out paths
- 2. FF graphs cannot be fixed point supports (unless a union of isolated nodes)

<u>Lemma</u>: $j,k\in\sigma$

If k dominates j with respect to σ then $\sigma \notin \operatorname{FP}(G|_{\sigma})$

Some consequences:

- Fixed point supports cannot have sources

 rules out paths
- 2. FF graphs cannot be fixed point supports (unless a union of isolated nodes)
- 3. Directed cliques cannot be fixed points supports (unless it's a full bidirectional clique)

Recurrent vs. feedforward architecture

Recurrent motifs (attractors)

Feedforward motifs (FF flow of information)

More facts about (unstable) fixed points

• If G is has uniform in-degree, it supports a fixed point

More facts about (unstable) fixed points

• If G is has uniform in-degree, it supports a fixed point

• If a subgraph is a fixed point support, this fixed point may or may not survive to the full graph!

More facts about (unstable) fixed points

• If G is has uniform in-degree, it supports a fixed point

 If a subgraph is a fixed point support, this fixed point may or may not survive to the full graph!

<u>Thm 3</u>. G has uniform in-degree d. Fixed points survives ↔ no node outside G receives d+1 (or more) edges from G

Which 3-cycles of the graph give limit cycles? Those that correspond to surviving fixed points

What can we learn using topology?

Naive Idea:

Make a simplicial complex from the network graph by filling in directed cliques...

Supergraphs theorem

Supergraphs theorem: if we replace each node *i* in a graph *G* by a subset ω_i with the same edges to obtain \widetilde{G} , then $\widetilde{\sigma} \in \operatorname{FP}(\widetilde{G})$ if and only if $\widetilde{\sigma} = \bigcup_{i \in \sigma} \tau_i$ where $\tau_i \in \operatorname{FP}(\widetilde{G}|_{\omega_i})$ for each $i \in \sigma$ and the index set $\sigma \in \operatorname{FP}(G)$. Moreover, $\operatorname{type}(\widetilde{\sigma}) = \operatorname{type}(\sigma) \prod_{i \in \sigma} \operatorname{type}(\tau_i)$.

Summary

- CTLNs have rich nonlinear dynamics that are shaped by the graph of network connectivity
- Fixed point supports appear to depend only on properties of the graph, independent of parameters $\varepsilon, \delta, \theta$
- We can prove many facts about which (sub)graphs support fixed points, and when those fixed points survive to larger graphs
- Unstable fixed points are closely related and predictive of – limit cycles and chaotic attractors
- A simplicial complex obtained by filling in directed cliques has the potential to tell us something about the attractors... if we figure out how to do it in the right way!

Thanks!

Collaborators:

Katie Morrison (University of Northern Colorado) Caitlyn Parmelee (Keene State College) Jesse Geneson & Chris Langdon (postdocs @ Penn State)

Anda Degeratu (Stuttgart) Vladimir Itskov (Penn State)

Funding: NIH R01 EB022862, NSF DMS 1516881

Plan of the talk

- Attractors in neuroscience
- Network structures/motifs
- Threshold-linear networks, CTLNs
- Early explorations...
- Graphical analysis of fixed points of CTLNs

A general principle: domination

Lemma 4.1. k dominates j with respect to σ if the following three conditions hold:

- 1. If $i \to j$ then $i \to k$ for each $i \in \sigma \setminus \{j, k\}$,
- 2. if $j \in \sigma$, then $j \to k$, and
- 3. if $k \in \sigma$, then $k \not\rightarrow j$.

Lemma 2.29 (domination). Suppose k dominates j with respect to σ . The following statements all hold:

- (a) If $j, k \in \sigma$, then $\sigma \notin FP(G|_{\sigma})$.
- (b) If $j \in \sigma$, $k \notin \sigma$, then $\sigma \notin FP(G|_{\sigma \cup \{k\}})$.

(c) If $j \notin \sigma$, $k \in \sigma$, and $\sigma \in FP(G|_{\sigma})$, then we also have $\sigma \in FP(G|_{\sigma \cup \{j\}})$.

A general principle: domination

Definition 2.28. We say that k dominates j with respect to σ if the following three conditions hold:

1.
$$\sum_{i \in \sigma \setminus \{j,k\}} W_{ki} |s_i^{\sigma}| \ge \sum_{i \in \sigma \setminus \{j,k\}} W_{ji} |s_i^{\sigma}|,$$

- 2. if $j \in \sigma$, then $W_{kj} > -1$ (i.e., $j \to k$), and
- **3.** if $k \in \sigma$, then $W_{jk} < -1$ (i.e. $k \not\rightarrow j$).

Note that condition 1 is always satisfied if $W_{ki} \ge W_{ji}$ for all $i \in \sigma \setminus \{j, k\}$ – that is, if $i \to k$ whenever $i \to j$.

Lemma 4.1. k dominates j with respect to σ if the following three conditions hold:

- 1. If $i \to j$ then $i \to k$ for each $i \in \sigma \setminus \{j, k\}$,
- 2. if $j \in \sigma$, then $j \to k$, and
- 3. if $k \in \sigma$, then $k \not\rightarrow j$.