Homotopy types of gauge groups related to certain 7-manifolds

Ingrid Membrillo-Solis
Mathematical Sciences, University of Southampton, United Kingdom

Let X be a path-connected pointed topological space and let G be a topological group. Given a principal G-bundle over X, $P \to X$, the gauge group is the group of G-equivariant automorphisms of P that fix X. The study of the topology of gauge groups when X is a low dimensional manifold has played a prominent role in mathematics and mathematical physics over the last thirty years. In 2011, however, Donaldson and Segal established the mathematical set-up to construct gauge theories using principal G-bundles over high dimensional manifolds. In this talk I will present some results on the homotopy theory of gauge groups when X is a manifold that arises as the total space of a S^3-bundle over S^4 and G is a simply connected simple compact Lie group.