[CL7-2]

Simplicial networks and effective resistance

Kang-Ju Lee, Woong Kook Seoul National University

We introduce the notion of effective resistance for a *simplicial network* (*X*,*R*) where *X* is a simplicial complex and *R* is a set of resistances for the top simplices, and prove two formulas generalizing previous results concerning effective resistance for resistor networks. Our approach, based on combinatorial Hodge theory, is to assign a unique harmonic class to a *current generator* σ , an extra top-dimensional simplex to be attached to *X*. We will show that the harmonic class gives rise to the *current* I_{σ} and the *voltage* V_{σ} for $X \cup \sigma$, satisfying Thompson's energy-minimizing principle and Ohm's law for simplicial networks.

The effective resistance R_{σ} of a current generator σ shall be defined as a ratio of the σ -components of V_{σ} and I_{σ} . By introducing *potential* for voltage vectors, we present a formula for R_{σ} via the inverse of the weighted combinatorial Laplacian of X in codimension one. We also derive a formula for R_{σ} via weighted high-dimensional tree-numbers for X, providing a combinatorial interpretation for R_{σ} . As an application, we generalize Foster's Theorem, and discuss various high-dimensional examples. Moreover, as a tool for analyzing simplicial networks, we suggest a definition of information centrality for simplicial networks. This is a joint work with Woong Kook.