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Baudot et Bennequin [2] have introduced a cohomology adapted to information theory. To this 
end, they use the constructions of topos theory [1]: an “information topos” is a ringed topos on 
a suitable site whose objects      are σ-algebras.   One can define a family of sheaves Fq, with q 

> 0, such that Shannon’s entropy generates H1(F1) and Tsallis’ entropy Sq generates H1(Fq) 
when q≠ 1.  Other information functions appear also as cocycles and the theory can be 

extended to the quantum case. 
In this context, we identify the entropy as the solution of a problem of extension of algebras. 

We also present a combinatorial analogue of Shannon’s axioms [5] for strings of size N with 
fixed type (the proportion of appearances of each symbol) that give the cocyle equation in the 
limit N → ∞. 

Each probabilistic graphical model [4] gives an information topos; accordingly, Bayesian 
networks, Markov fields and other interesting models find a place in our theory. The site is such 
that the usual Bethe-Kikuchi approximation is obtained by Möbius inversion on it, followed by 
a truncation [3]. We present a simplicial representation for factor graphs; the obstruction to find 
a global state (probability law) with prescribed marginals is strongly related to the topology of 
this representation.  Some explicit examples will be discussed. 
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